

T-fuzzy TL-ideal of Γ-near ring

N. Anitha* and J. Aruna2

Abstract

In this paper, we establish and revise the concept of T-fuzzy TL-ideal of Γ-near ring. Also the notations of TL-ideal of Γ-near ring were introduced with some related properties.

Keywords

Γ-near ring, TL-ideal, TL-Fuzzy ideal, Direct Product of TL- Fuzzy Sub Γ- near ring, Quotient Γ-near ring with \ast-norm.

AMS Subject Classification

16Y30, 16Y99, 03E72.

1, 2 Periyar University PG Extension Center, Dharmapuri-636 705, Tamil Nadu, India.

*Corresponding author: anithaarenu@gmail.com; arunaraguks.com

Article History: Received 24 November 2017; Accepted 17 December 2017

1. Introduction

The theory of fuzzy sets and their related properties was introduced by Zadeh.L.A [15] in 1965. In 1991, Abou Zaid. S [1] defined a Fuzzy subnear-rings and ideals. In 1996, Seung dong kim and hee sikkim was defined as the homomorphic image of fuzzy ideals and some related properties. The notation of Γ-near ring was introduced by Bhavanari Satyanarayana and Syam Prasad. K [11]. In 2007, Akram. M was introduced the T-fuzzy ideals in near rings. In 2012, Srinivas.T and Nagaiah.T [13] was presented T-fuzzy ideal of Γ-near ring has several properties of Γ-near rings. In this paper, by using T- fuzzy ideal and TL-ideal of Γ-near ring all the above are use them. Further, additionally we introduce homomorphic images and direct product of T-fuzzy TL-ideal of Γ-near ring. We may expand to this paper as the Γ- near ring from a theoretical portion.

2. Preliminaries

In this section, we review the some definitions that will be required in this paper.

Definition 2.1. A non empty set N with two binary operations \ast and \cdot is called a near ring if it satisfies the following axioms:

(i) (N, \ast) is a group.

(ii) (N, \cdot) is a semi group.

(iii) $x \cdot (y + z) = x \cdot y + x \cdot z$ for all $x, y, z \in N$.

Precisely speaking it is a left near ring because it satisfies the left distributive law. We will use the word near ring instead of “Left near-ring”. We denote xy instead of $x \cdot y$. Note that $x0 = 0$ and $x(-y) = -xy$, but $0x \neq 0$ for $x, y \in N$.

Definition 2.2. Let $(R, +)$ be a group and Γ be a nonempty set. Then R is said to be a Γ-near ring if their exist a mapping $R \times \Gamma \times R \rightarrow R$ satisfies the following conditions:

(i) $(x+y)\alpha z = x\alpha z + y\alpha z$.

(ii) $(x\alpha y)\beta z = x\alpha (y\beta z)$

for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

Definition 2.3. Let R be a Γ- near ring. A normal subgroup $(I, +)$ of $(R, +)$ is called

(i) a left ideal if $x\alpha(y+i) = x\alpha y \in I$ for all $x, y \in R, \alpha \in \Gamma, i \in I$.

(ii) a right ideal if $i\alpha x \in I$ for all $x \in R, \alpha \in \Gamma, i \in I$

(iii) an ideal if it is both a left ideal and a right ideal of R.

A Γ- near ring R is said to be a zero – symmetric if $a\alpha 0 = 0$ for all $a \in R$ and $\alpha \in \Gamma$, where 0 is additive identity in R.

Contents

1 Introduction ... 206
2 Preliminaries ... 206
3 T-fuzzy TL-ideal of Γ-near ring 207

References ... 211
Definition 2.4. A subset M of a Γ-near ring R is said to be a sub Γ-near ring if there exist a mapping $M \times \Gamma \times M \to M$ such that

(i) $(M,+)$ be a subgroup of $(R,+)$.
(ii) $(x+y)\alpha z = x\alpha z + y\alpha z$ for every $x,y,z \in M$ and $\alpha \in \Gamma$.
(iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for every $x,y,z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.5. A fuzzy sub near ring A of R is called a fuzzy ideal if it satisfies the following conditions:

(i) $A(y+x-y) \geq A(x)$ for all $x,y,z \in R$.
(ii) $A(xy) \geq A(y)$ for all $x,y \in R$.
(iii) $A((x+i)y-xy) \geq A(i)$ for all $x,y,i \in R$.

Definition 2.6. A binary operation T on a lattice L is called a Γ-fuzzy T-L-ideal of R if it satisfies the following conditions:

(i) $A(y+x-y) \geq A(x)$ for all $x,y,z \in R$.
(ii) $A(xy) \geq A(y)$ for all $x,y \in R$.
(iii) $A((x+i)y-xy) \geq A(i)$ for all $x,y,i \in R$.

Definition 2.7. Let ρ be a fuzzy T-fuzzy T-L-ideal of R then $\rho = \lambda \circ f$ in R. Similarly, if λ is a fuzzy set in $f(R)$, then $\rho = \lambda \circ f$ in R is defined as $\rho(x) = \lambda(f(x))$ for all $x \in R$ and is called the pre image of λ under f.

3. T-fuzzy T-L-ideal of Γ-near ring

Let R be a near-ring and L be a complete lattice.

Theorem 3.1. If L-subset of $A \in L^R$ is a T-fuzzy T-L-ideal of R then, $A(x+y) \geq A(x)$ for all $x,y \in R$.

Proof. Let L-subset of A be a T-fuzzy T-L-ideal of R then we have, $A(x+y) \geq A(0)$. But, $A(0) \leq A(x)$. Thus, $A(x-y) = A(0)$. Now consider,

$$A(x) = A(y+x-y) = A(y+(x-y)) \geq A(x)TA(y) \geq A(y).$$

Similarly we can prove that $A(y) \geq A(x)$. Hence $A(x) = A(y)$ for all $x,y \in R$.

Theorem 3.2. If L- subset of A and $B \in L^R$ are T-fuzzy TL-ideal of a Γ- near ring R then $A \cap B$ is a T-fuzzy TL-ideal of R.

Proof. (i) \[(A \cap B)(0) \geq A(0)TB(0) = 1\]

(ii) \[(A \cap B)(-x) \geq A(-x)TB(-x) \geq A(0-x)TB(0-x) \geq A(0)TA(x)TB(0)TB(x) \geq A(x)TB(x) \geq (A \cap B)(x)\]

(iii) \[(A \cap B)(x-y) \geq A(x-y)TB(x-y) \geq A(x)TA(y)TB(x)TB(y) \geq (A(x)TB(x))(A(y)TB(y)) \geq (A \cap B)(x)TA(A \cap B)(y)\]

(iv) \[(A \cap B)(y+x-y) \geq A(y+x-y)TB(y+x-y) \geq A(x)TB(x) \geq (A \cap B)(x)\]

(v) \[(A \cap B)(x\alpha y) \geq A(x\alpha y)TB(x\alpha y) \geq A(y)TB(y) \geq (A \cap B)(y)\]

(vi) \[(A \cap B)[(x\alpha(z+y)-x\alpha y)] \geq A[(x\alpha(z+y)-x\alpha y)]TB[(x\alpha(z+y)-x\alpha y)] \geq A(z)TB(z) \geq (A \cap B)(z).\]

Hence $A \cap B$ is a T-fuzzy TL-ideal of R. This completes the proof.

Theorem 3.3. Let L- subset of $A \in L^R$ be a T-fuzzy TL-ideal of a Γ- near ring R and L- subset of $A^* \in L^R$ be a fuzzy set in R then A^* defined by, $A^* = \frac{A(x)}{A(1)} \forall x \in R$. Then A^* is a normal T-fuzzy TL-ideal of R contains A.

Proof. Let L- subset of $A \in L^R$ be a T-fuzzy TL-ideal of a Γ- near ring R. For any $x, y, z \in R$ and $\alpha \in \Gamma$, we have,

(i) \[A^*(0) = \frac{A(0)}{A(1)} \geq 1\]

(ii) \[A^*(-x) = \frac{A(-x)}{A(1)} \geq \frac{A(0-x)}{A(1)} \geq \frac{A(0)TA(x)}{A(1)} \geq \frac{A(x)}{A(1)} \geq A^*(x)\]

(iii) \[A^*(x-y) = \frac{A(x-y)}{A(1)} \geq \frac{A(x)TA(y)}{A(1)} \geq \frac{A(x)A(1)TA^*(y)}{A(1)} \geq A^*(x)TA^*(y)\]

(iv) \[A^*(y+x-y) = \frac{A(y+x-y)}{A(1)} \geq \frac{A(x)}{A(1)} \geq A^*(x)\]

(v) \[A^*(x\alpha y) = \frac{A(x\alpha y)}{A(1)} \geq \frac{A(y)}{A(1)} \geq A^*(y)\]

(iv) \[A^*[x\alpha(z+y)-x\alpha y] = \frac{A[x\alpha(z+y)-x\alpha y]}{A(1)} \geq \frac{A(z)}{A(1)} \geq A^*(z)\]

Hence A^* is a normal T-fuzzy TL-ideal of R contains A.

208
Theorem 3.4. Let \(L \)-subset of \(A \in \mathbb{L}_R \) be a \(T \)-fuzzy \(TL \)-ideal of a \(\Gamma \)-near ring \(R \) and let \(L \)-subset of \(A^+ \in \mathbb{L}^R \) be a fuzzy set in \(R \) then \(A^+ \) is defined by, \(A^+(x) = A(x) + 1 + A(1) \) for all \(x \in R \). Then \(A^+ \) is a \(T \)-fuzzy \(TL \)-ideal of \(\Gamma \)-near ring \(R \) containing \(A \).

Proof. Let \(L \)-subset of \(A \in \mathbb{L}_R \) be a \(T \)-fuzzy \(TL \)-ideal of a \(\Gamma \)-near ring \(R \). For any \(x, y, z \in R \) and \(\alpha \in \Gamma \).

(i) \[A^+(0) = A(0) + 1 + A(1) = 1. \]

(ii) \[
A^+(-x) = A(0 - x) + 1 + A(1) \\
\geq (A(0) + 1 + A(1))TA(x) + 1 + A(1) \\
\geq A(x) + 1 + A(1) \\
\geq A^+(x)
\]

(iii) \[
A^+(x - y) = A(x - y) + 1 + A(1) \\
\geq (A(x) + 1 + A(1))TA(y) + 1 + A(1) \\
\geq A^+(x)TA^+(y).
\]

(iv) \[
A^+(y + x - y) = A(y + x - y) + 1 + A(1) \\
\geq A(x) + 1 + A(1) \\
\geq A^+(x).
\]

(v) \[
A^+(x\alpha y) = A(x\alpha y) + 1 + A(1) \\
\geq A(y) + 1 + A(1) \\
\geq A^+(y).
\]

(vi) \[
A^+[x\alpha(z + y) - x\alpha y] = A(x\alpha(z + y) - x\alpha y) + 1 + A(1) \\
\geq A(z) + 1 + A(1) \\
\geq A(z).
\]

Hence \(A^+ \) is a \(T \)-fuzzy \(TL \)-ideal of \(\Gamma \)-near ring \(R \) containing \(A \).

\[\square \]

Theorem 3.5. An onto homomorphic image of a \(T \)-fuzzy \(TL \)-ideal with sup property is a \(T \)-fuzzy \(TL \)-ideal.

Proof. Let \(M \) and \(N \) are \(\Gamma \)-near rings. Let \(f : M \rightarrow N \) be epimorphism and \(L \)-subset of \(A \in L^R \) be a \(T \)-fuzzy \(TL \)-ideal of \(R \) with sup property. Let \(x, y \in N, x_0 \in f'(x), y_0 \in f'(y) \) and \(z_0 \in f'(z) \) be such that \(A(x_0) = \sup_{n \in f'(x)} A(n), A(y_0) = \sup_{n \in f'(y)} A(n), A(z_0) = \sup_{n \in f'(z)} A(n) \) respectively. Then for any \(\alpha \in A, \) we have,

(i) \[A^f(0) = \sup_{z \in f'(0)} A(z) \geq A(0) = 1. \]

(ii) \[
A^f(-x) = \sup_{z \in f'(-x)} A(z) \\
\geq A(x_0) \\
\geq \sup_{n \in f'(x)} A(n) \\
= A^f(x).
\]

(iii) \[
A^f(x - y) = \sup_{z \in f'(x - y)} A(z) \\
\geq A(x_0 - y_0) \\
\geq \sup_{n \in f'(x)} A(n) \sup_{n \in f'(y)} A(n) \\
= A^f(y).
\]

(iv) \[
A^f(y + x - y) = \sup_{z \in f'(y + x - y)} A(z) \\
\geq A(x_0) \\
\geq \sup_{n \in f'(x)} A(n) \\
= A^f(x).
\]

(v) \[
A^f(x\alpha y) = \sup_{z \in f'(x\alpha y)} A(z) \\
\geq A(y_0) \\
\geq \sup_{n \in f'(y)} A(n) \\
= A^f(y).
\]

(vi) \[
A^f[x\alpha(z + y) - x\alpha y] = \sup_{z \in f'(x\alpha y)} A(z) \\
\geq A(y_0) \\
\geq \sup_{n \in f'(y)} A(n) \\
= A^f(y).
\]
Theorem 3.6. An epimorphic pre image of a T-fuzzy TL-ideal of a Γ-near ring is a T-fuzzy TL-ideal of R.

Proof. Let M and N be Γ near rings. Let $f: M \to N$ is an epimorphism. Let L-subset of $\lambda \in L^R$ be the T-fuzzy TL-ideal of N and ρ be the pre image of λ under f. Then for any $x, y, z \in M$ and $\alpha \in \Gamma$. We have,

(i) $\rho(0) = (\lambda \circ f)(0) = \lambda(f(0)) = 1.$

(ii) $
\begin{align*}
\rho(-x) &= (\lambda \circ f)(-x) \\
&= \lambda(f(-x)) \\
&\geq \lambda(f(x)) \\
&\geq (\lambda \circ f)(x) \\
&\geq \rho(x)
\end{align*}
$

(iii) $
\begin{align*}
\rho(x - y) &= (\lambda \circ f)(x - y) \\
&= \lambda(f(x - y)) \\
&\geq \lambda(f(x))T(f(y)) \\
&\geq \lambda(f(x))T(\lambda(f(y)) \\
&\geq (\lambda \circ f)(x)T(\lambda \circ f)(y) \\
&\geq \rho(x)\rho(y).
\end{align*}
$

(iv) $
\begin{align*}
\rho(y + x - y) &= (\lambda \circ f)(y + x - y) \\
&= \lambda(f(y + x - y)) \\
&\geq \lambda(f(x)) \\
&\geq (\lambda \circ f)(x) \\
&\geq \rho(x).
\end{align*}
$

(v) $
\begin{align*}
\lambda(x\alpha y) &= (\lambda \circ f)(x\alpha y) \\
&= \lambda(f(x\alpha y)) \\
&\geq \lambda(f(y)) \\
&\geq (\lambda \circ f)(y) \\
&\geq \rho(y).
\end{align*}
$

This completes the proof.

Hence ρ is a T-fuzzy TL-ideal of Γ-near ring.

Theorem 3.7. Let M and N be Γ-near rings. If L-subset of A_1 and $A_2 \in L^R$ be T-fuzzy TL-ideal of Γ-near rings of M and N respectively, then $A = A_1XA_2$ is a T-fuzzy TL-ideal of the direct product of MXN.

Proof. Let L-subset of A_1 and $A_2 \in L^R$ be T-fuzzy TL-ideal of Γ-near rings of M and N respectively. Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in MXN$ and $\alpha \in \Gamma$. Then,

(i) $A(0) = A_1XA_2(0) = 1.$

(ii) $
\begin{align*}
A(-(x_1, x_2)) &= A_1XA_2(-(x_1, x_2)) \\
&= A_1(-x_1, x_2)TA_2(-x_1, x_2) \\
&\geq A_1(x_1, x_2)TA_2(x_1, x_2) \\
&\geq A_1(x_1, x_2)^2 \\
&\geq A_1(x_1, x_2).
\end{align*}
$

(iii) $
\begin{align*}
A((x_1, x_2) - (y_1, y_2)) &= A_1XA_2(x_1 - y_1, x_2 - y_2) \\
&= A_1(x_1 - y_1)TA_2(x_2 - y_2) \\
&\geq A_1(x_1)TA_1(y_1)TA_2(x_2)TA_2(y_2) \\
&\geq (A_1XA_2)(x_1, x_2)TA_2(y_1, y_2) \\
&\geq A_1(x_1, x_2)TA(y_1, y_2).
\end{align*}
$
Theorem 3.8. If near ring R Then, ϕ_{μ} is a T-fuzzy TL-ideal of a Γ-near ring R, then ϕ_{μ} is a T-fuzzy TL-ideal of a Γ-near ring.

Proof. Let L-subset $\mu \in L^R$ be a T-fuzzy TL-ideal of a Γ-near ring R. Suppose that, $\mu(x-y) = 0$. Then $\mu(x+y) = \mu(x) = \mu(y)$. Let $x, y, z, \mu \in L^R$ and $\alpha \in \Gamma$. Then,

(i) $\phi_{\mu}(0+\mu) = \mu(0) = 1.$

(ii) $\phi_{\mu}((x+y)+\mu) = \mu((x+y)+\mu) = \mu((x+y)+\mu) = 1.$

Hence $A = A_1X_2\alpha$ is a T-fuzzy TL-ideal of R.

Notation ([11]) Let L-subset $\mu \in L^R$ be a T-fuzzy TL-ideal of a Γ-near ring R. We define $\phi_{\mu} = \frac{R}{\mu} \to [0, 1]$ by $\phi_{\mu}(x+y) = \mu(x)$ for all $x \in R$.

Theorem 3.8. If L-subset $\mu \in L^R$ is a T-fuzzy TL-ideal of a Γ-near ring R, then ϕ_{μ} is a T-fuzzy TL-ideal of a Γ-near ring.

Proof. Let L-subset $\mu \in L^R$ be a T-fuzzy TL-ideal of a Γ-near ring R and $x, y \in R$. Suppose that, $\mu(x-y) = 0$. Then $\mu(x+y) = \mu(x) = \mu(y)$. Let $x, y, z, \mu \in L^R$ and $\alpha \in \Gamma$. Then,

(i) $\phi_{\mu}(0+\mu) = \mu(0) = 1.$

(ii) $\phi_{\mu}((x+y)+\mu) = \mu((x+y)+\mu) = \mu((x+y)+\mu) = 1.$

Hence ϕ_{μ} is a T-fuzzy TL-ideal of a Γ-near ring $\frac{R}{\mu}$.

References

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
