About m-domination number of graphs

D. K. Thakkar¹ and Neha P. Jamvecha²*

Abstract
In this paper, we have defined the concept of m-dominating set in graphs. In order to define this concept we have used the notion of m-adjacent vertices. We have also defined the concepts of minimal m-dominating set, minimum m-dominating set and m-domination number which is the minimum cardinality of an m-dominating set. We prove that the complement of a minimal m-dominating set is an m-dominating set. Also we prove a necessary and sufficient condition under which the m-domination number increases or decreases when a vertex is removed from the graph. Further we have also studied the concept of m-removing a vertex from the graph and we prove that the m-removal of a vertex from the graph always increases or does not change the m-domination number. Some examples have also been given.

Keywords
m-dominating set, minimal m-dominating set, minimum m-dominating set, private m-neighbourhood of a vertex, m-removal of a vertex.

AMS Subject Classification
05C69

1,2 Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India.
*Corresponding author: ¹dkthakkar1@yahoo.co.in; ²jamvechaneha30@gmail.com

Article History: Received 12 October 2018; Accepted 17 March 2019
©2019 MJM.

Contents
1 Introduction .. 177
2 Preliminaries and Notations 177
3 Main Results ... 178
References ... 181

1. Introduction
In the area of mixed domination several new concepts have been appeared. The concept of a vertex which m-dominates an edge and the concept of an edge which m-dominates a vertex have been defined and studied by some authors like R. Laskar, K. Peters, E. Sampathkumar, S. S. Kamath and others [3–5]. The above concepts can be used to define m-adjacent vertices and m-adjacent edges. In fact, we have defined m-adjacent vertices and m-adjacent edges in [1]. We observe that these concepts give rise to new concept called m-dominating set using m-adjacent vertices.

We also introduce the concepts of minimal m-dominating set, minimum m-dominating set and m-domination number which is the minimum cardinality of an m-dominating set.

We have also a concept called m-removal of a vertex in graphs which has been introduced in [2]. We proved the effect of m-removing a vertex on m-domination number.

2. Preliminaries and Notations

If G is a graph then E(G) denotes the edge set and V(G) denotes the vertex set of the graph. If v is a vertex of G then G\v denotes the subgraph of G obtained by removing the vertex v and all the edges incident to v. N(v) denotes the set of vertices which are adjacent to v. N[v] = N(v) ∪ v. If x is any vertex then d(x) denotes the degree of x and is the number of edges incident at x.

Definition 2.1. [1] Let u and v be two vertices of G. Then u and v are said to be m-adjacent vertices in G if there is an edge of G which m-dominates both u and v in G.

Definition 2.2. [2] Let G be a graph and v ∈ V(G). We obtain a subgraph of G by removing vertex v and certain edges which is called the subgraph obtained by m-removing the vertex v from the graph G.

Definition 2.3. [2] Let G be a graph and v ∈ V(G). The subgraph obtained by m-removing vertex v from G has the vertex set V(G) \ {v} and by removing all the edges of G which m-dominate vertex v. This subgraph is denoted as G\"m v}.
3. Main Results

Definition 3.1. Let G be a graph and $S \subset V(G)$. Then S is said to be an m-dominating set if for every vertex v in $V(G) \setminus S$, there is a vertex u in S such that u and v are m-adjacent.

Note that every dominating set is an m-dominating set but m-dominating set need not be a dominating set.

Example 3.2. Consider the path graph P_5 with vertices $\{v_1, v_2, v_3, v_4, v_5\}$

\[\text{Figure 1. } P_5 \]

Let $S = \{v_3\}$ then S is an m-dominating set but not dominating set.

Definition 3.3. Let G be a graph and $S \subset V(G)$ be an m-dominating set. Then S is said to be a minimal m-dominating set if $S \setminus \{v\}$ is not an m-dominating set for every v in S.

Definition 3.4. An m-dominating set with minimum cardinality is called a minimum m-dominating set. The cardinality of minimum m-dominating set is the m-domination number of the graph G and it is denoted as $\gamma_m(G)$.

Definition 3.5. Let G be a graph and $v \in V(G)$. Then v is said to be an m-isolated vertex of G if for every other vertex u of G, u is not m-adjacent to v.

Obviously, a vertex v is isolated if and only if it is m-isolated.

Theorem 3.6. Let G be a graph and $S \subset V(G)$ be an m-dominating set of G. Then S is a minimal m-dominating set of G if and only if for every $u \in S$ atleast one of the following two conditions holds.

(i) u is not m-adjacent to any other vertex of S.

(ii) There exist a vertex $v \in V(G) \setminus S$ such that v is m-adjacent to only one vertex of S namely u.

Proof. Suppose S is a minimal m-dominating set. Let $u \in S$. Now $S \setminus \{u\}$ is not an m-dominating set. Therefore, there is a vertex v outside $S \setminus \{u\}$ such that v is not m-adjacent to any vertex of $S \setminus \{u\}$.

Case (i): $v = u$

Then u is not m-adjacent to any other vertex of S.

Case (ii): $v \neq u$

Then $v \notin S$.

Subcase (i): v is not m-adjacent to any vertex of $S \setminus \{u\}$.

Subcase (ii): v is m-adjacent to some vertex of S.

Therefore, v is m-adjacent to only one vertex of S namely u.

Conversely, suppose any of condition (i) and (ii) is satisfied for any $u \in S$.

Let $u \in S$.

Case (i): Suppose condition (i) is satisfied.

Therefore, u is not m-adjacent to any vertex of $S \setminus \{u\}$ and also $u \notin S \setminus \{u\}$.

Case (ii): Suppose condition (ii) is satisfied.

Let $v \in V(G) \setminus S$ such that v is m-adjacent to only one vertex of S namely u. Then v is not m-adjacent to any vertex of $S \setminus \{u\}$. Thus it follows that $S \setminus \{u\}$ is not an m-dominating set of G for any $u \in S$.

Therefore, S is a minimal m-dominating set.

Theorem 3.7. Let G be a graph without m-isolated vertices and S be a minimal m-dominating set of G. Then $V(G) \setminus S$ is an m-dominating set of G.

Proof. Let $v \in S$. Since S is a minimal m-dominating set, (i) or (ii) of theorem (3.6) is satisfied.

Suppose (i) is satisfied. Then v is not m-adjacent with any other vertex of S. Since v is not an m-isolated vertex of G, v is m-adjacent to some vertex u of G. Then $u \in V(G) \setminus S$.

Suppose (ii) is satisfied and suppose v is m-adjacent to some vertex of S. Now, there is a vertex u in $V(G) \setminus S$ such that u is m-adjacent to v and u is not m-adjacent to any other vertex of S.

Thus in both the cases v is m-adjacent to some vertex of $V(G) \setminus S$. Therefore, $V(G) \setminus S$ is an m-dominating set of G.

Corollary 3.8. Let G be a graph without m-isolated vertices. Then $\gamma_m(G) \leq n/2$.

Proof. Let S be a minimum m-dominating set of G. Then $\gamma_m(G) = |S|$. Now by the theorem (3.7), $V(G) \setminus S$ is also an m-dominating set.

Therefore, $\gamma_m(G) \leq |V(G) \setminus S|$. Therefore, $\gamma_m(G) = \min(|S|, |V(G) \setminus S|)$. If $|S| \leq n/2$ then $\gamma_m(G) \leq n/2$. If $|V(G) \setminus S| > n/2$ then $|S| < n/2$ and therefore $\gamma_m(G) \leq n/2$.

Definition 3.9. Let G be a graph and $x \in V(G)$. The m-vertex open neighbourhood of x (or simply m-open neighbourhood of x) is the set $N_{mv}(x) = \{u \in V(G) \text{ such that } u \text{ is } m\text{-adjacent to } x\}$.

Also the m-vertex closed neighbourhood of x is the set $N_{m}[x] = N_{m}(x) \cup \{x\}$.

Now we state and prove a necessary and sufficient condition under which the m-domination number of a graph increases when a vertex is removed from the graph.

Theorem 3.10. Let G be a graph and $v \in V(G)$. Then $\gamma_m(G \setminus \{v\}) > \gamma_m(G)$ if and only if following conditions are satisfied

(i) v is not an m-isolated vertex of G.
(ii) If S is a minimum m-dominating set of G and $v \notin S$ then there is a vertex x in $V(G) \setminus S$ such that $x \notin v$ and $d(x,S) > 3$ in the subgraph $G \setminus v$.

(iii) There is no subset S of $V(G) \setminus N_{mn}[v]$ such that $|S| \leq \gamma_{mn}(G)$ and it is an m-dominating set of $G \setminus v$.

Proof. Suppose $\gamma_{mn}(G \setminus v) > \gamma_{mn}(G)$.

(i) Suppose v is an m-isolated vertex of G. Let S be any minimum m-dominating set of G. Then $v \notin S$. Let $S_1 = S \setminus \{v\}$. Let x be any vertex of $G \setminus v$ such that $x \notin S_1$. Then $x \notin S$. Since S is an m-dominating set of G, $d(x,S) \leq 3$ in G. Now v is an m-isolated vertex, $d(x,S_1) = d(x,S)$ in $G \setminus v$. Therefore, $d(x,S_1)$ in $G \setminus v \leq 3$. Thus, x is m-adjacent to some member of S_1 in $G \setminus v$. This proves that S_1 is an m-dominating set in $G \setminus v$. Therefore $\gamma_{mn}(G \setminus v) \leq |S_1| < |S| = \gamma_{mn}(G)$, which is a contradiction. Therefore, v cannot be an m-isolated vertex of G.

(ii) Suppose, there is a minimum m-dominating set S of G such that $v \notin S$. Suppose for every vertex x which is not in S and $x \notin v$, $d(x,S) \leq 3$ in $G \setminus v$. Then S is an m-dominating set of $G \setminus v$. This implies that $\gamma_{mn}(G \setminus v) \leq |S| = \gamma_{mn}(G)$ which is a contradiction. Therefore, (ii) is satisfied.

(iii) Suppose, there is a subset S of $V(G) \setminus N_{mn}[v]$ such that $|S| \leq \gamma_{mn}(G)$ and S is an m-dominating set of $G \setminus v$. Then $\gamma_{mn}(G \setminus v) \leq |S| \leq \gamma_{mn}(G)$ which is again a contradiction. Therefore, (iii) holds.

Conversely, suppose condition (i), (ii) and (iii) are satisfied. First suppose that $\gamma_{mn}(G \setminus v) = \gamma_{mn}(G)$. Let S be a minimum m-dominating set of $G \setminus v$. Let x be any vertex of G such that $x \notin S$ and $x \notin v$. Then $d(x,S) \leq 3$ in $G \setminus v$ which is ≤ 3. Now suppose v is m-adjacent to some vertex of S. Then S is a minimum m-dominating set of G and $v \notin S$. If $x \in V(G) \setminus S$ such that $x \notin v$ then $d(x,S) \leq 3$ in $G \setminus v$. This contradicts condition (ii). Therefore, v cannot be an m-adjacent to any vertex of S. Then S is a subset of $V(G) \setminus N_{mn}[v]$. Also, $|S| \leq \gamma_{mn}(G)$. Also, S is an m-dominating set of $G \setminus v$. This contradicts condition (iii). Thus, $\gamma_{mn}(G \setminus v) = \gamma_{mn}(G)$ is not possible.

Suppose, $\gamma_{mn}(G \setminus v) < \gamma_{mn}(G)$. Let S be a minimum m-dominating set of $G \setminus v$. Since $|S| < \gamma_{mn}(G)$, S cannot be an m-dominating set of G. Therefore, v cannot be m-adjacent to any vertex of G. Therefore, S is a subset of $V(G) \setminus N_{mn}[v]$. Also $|S| \leq \gamma_{mn}(G)$. Also S is an m-dominating set of $G \setminus v$. This again contradicts (iii). Therefore, $\gamma_{mn}(G \setminus v) < \gamma_{mn}(G)$ is also not possible. Thus, $\gamma_{mn}(G \setminus v) > \gamma_{mn}(G)$.

Corollary 3.11. Let G be a graph and $v \in V(G)$ be such that $\gamma_{mn}(G \setminus v) > \gamma_{mn}(G)$ then $d(v,S) \leq 2$ for every minimum m-dominating set S of G.

Proof. Let S be any minimum m-dominating set of G. Suppose $v \notin S$. By (ii) of theorem (3.10), there is a vertex x in $V(G) \setminus S$ such that $d(x,S) > 3$ in $G \setminus v$. However, $d(x,S) \leq 3$ in G. Therefore, there is a vertex y in S such that $d(x,y) \leq 3$. Any path from x to y in G must contain v as an internal vertex (otherwise v does not appear in the path and therefore there is a path of length less than or equal to 3 between x and y in $G \setminus v$). Obviously, there is a path from v to y of length ≤ 2. Therefore, $d(v,S) \leq 2$.

Definition 3.12. Let G be a graph, $v \in V(G)$ and $S \subseteq V(G)$ such that $v \notin S$. Then private m-neighbourhood of v with respect to S is defined as $P_{mn}[v,S] = \{u \in V(G) \text{ such that } N_{mn}[u] \cap S = \{v\}\}$.

Remark 3.13. Note that if $v \in S$ and v is not m-adjacent to any other vertex of S then $v \in P_{mn}[v,S]$. If $u \in V(G) \setminus S$ then $u \in P_{mn}[v,S]$ if and only if u is m-adjacent to only one vertex of S namely v.

Now we state and prove a necessary and sufficient condition under which the m-domination number of a graph decreases when a vertex is removed from the graph.

Theorem 3.14. Let G be a graph and $v \in V(G)$. Then $\gamma_{mn}(G \setminus v) < \gamma_{mn}(G)$ if and only if there is a minimum m-dominating set S of G such that $v \in S$ and $P_{mn}[v,S] = \{v\}$.

Proof. Suppose $\gamma_{mn}(G \setminus v) < \gamma_{mn}(G)$. Let S_1 be a minimum m-dominating set of $G \setminus v$. Then S_1 cannot be a minimum m-dominating set of G. Therefore, $d(v,S_1) > 3$. Let $S = S_1 \cup \{v\}$. Let $x \in V(G) \setminus S$ then $x \notin S_1$. Since S_1 is an m-dominating set of $G \setminus v$, x is m-adjacent to some vertex z of S_1 in $G \setminus v$. Then x is m-adjacent to z in G also. Thus S is an m-dominating set of G and $v \notin S$. Note that as mentioned above v is not m-adjacent to any other vertex of S in G. Therefore, $v \in P_{mn}[v,S]$. Let $x \in V(G) \setminus S$ such that x is m-adjacent to v in G. Now, x is m-adjacent to y in S in $G \setminus v$ such that $y \neq v$. Then x is also m-adjacent to y in G. Thus x is m-adjacent to two distinct vertices of S. Therefore, $x \notin P_{mn}[v,S]$ if $x \in V(G) \setminus S$. Thus $P_{mn}[v,S] = \{v\}$.

Conversely, suppose there is a minimum m-dominating set S of G such that $v \in S$ and $P_{mn}[v,S] = \{v\}$. Let $S_1 = S \setminus \{v\}$. Let x be a vertex of $S \setminus v$ such that $x \notin S_1$. Then $x \notin S$. Since S is an m-dominating set of G, x is m-adjacent to some vertex z of S_1 in $G \setminus v$. Then x is m-adjacent to z in G also. Suppose $y = v$. Now $x \notin P_{mn}[v,S]$. Therefore, x is m-adjacent to some vertex z of S in G such that $z \neq v$. Therefore, $d(x,z) \leq 3$. In G let P be a path in G joining x to z. If v is a vertex in this path then it will imply that $d(v,z) \leq 3$ and this implies that v is m-adjacent to z and $z \in S$. This contradicts the fact that $v \notin P_{mn}[v,S]$. Thus, v does not appear in this path. Thus P is a path in $G \setminus v$ joining x to z. Therefore, x is m-adjacent to z in $G \setminus v$ and $z \in S_1$. Thus S_1 is an m-dominating set in $G \setminus v$. Thus, $\gamma_{mn}(G \setminus v) \leq |S_1| < |S| = \gamma_{mn}(G)$.

Corollary 3.15. Let G be a graph and $v \in V(G)$ be such that v is not m-isolated vertex of G. If $\gamma_{mn}(G \setminus v) < \gamma_{mn}(G)$ then there is a minimum m-dominating set S such that $v \notin S$.
Theorem 3.16. Let \(G \) be a graph and \(v \in V(G) \) such that \(v \) is not an m-isolated vertex in \(G \). Then \(\gamma_{mn}(G \setminus v) < \gamma_{mn}(G) \) and if only if there is a minimum m-dominating set \(S \) not containing \(v \) and a vertex \(x \) in \(S \) such that \(P_{mn}[x,S] = \{v\} \).

Proof. Suppose \(\gamma_{mn}(G \setminus v) < \gamma_{mn}(G) \). By theorem 3.14, there is a minimum m-dominating set \(S_1 \) such that \(v \in S_1 \) and \(P_{mn}[v,S_1] = \{v\} \). Let \(x \in V(G) \setminus S_1 \), which is adjacent to \(v \). Let \(S = (S_1 \setminus \{v\}) \cup \{x\} \). Then \(x \in S \) and by the corollary 3.15, \(S \) is a minimum m-dominating set of \(G \) not containing \(v \). Note that \(v \) is not m-adjacent to any vertex of \(S_1 \) because \(v \in P_{mn}[v,S_1] \). Therefore, \(v \) is adjacent to only one vertex of \(S \) namely \(x \). Thus \(v \in P_{mn}[x,S] \). Again \(x \) is m-adjacent to \(v \) and since \(v \notin P_{mn}[v,S_1] \), \(x \) is m-adjacent to some vertex of \(S \) where \(y \neq v \). Therefore, \(x \) is m-adjacent to some vertex of \(S \) and therefore \(x \notin P_{mn}[x,S] \). Let \(z \) be a vertex of \(V(G) \setminus S \) such that \(z \) is m-adjacent to \(x \). Since \(z \notin S_1 \), \(z \) is m-adjacent to some vertex \(w \) of \(S \) because \(S_1 \) is a minimum dominating set of \(G \). Thus, \(z \) is m-adjacent to two distinct vertices of \(S \) namely \(x \) and \(w \). Therefore, \(z \notin P_{mn}[x,S] \). Hence, \(P_{mn}[x,S] = \{v\} \).

Conversely, suppose there is a minimum m-dominating set \(S \) such that \(v \notin S \) and for some vertex \(x \) in \(S \), \(P_{mn}[x,S] = \{v\} \). Let \(S_1 = S \setminus \{x\} \). Now, \(x \notin P_{mn}[x,S] \). Therefore, \(x \) is m-adjacent to some vertex of \(S \) in \(G \). Note that \(v \) is not m-adjacent to any vertex of \(S \) except \(x \). Let \(P \) be a path in \(G \) from \(x \) to \(y \) whose length is \(\leq 3 \). If \(v \) is an internal vertex in this path then it would imply that \(d(v,y) \leq 3 \) in \(G \) and this means that \(v \) is m-adjacent to \(y \) in \(G \) and \(y
eq x \). This is a contradiction. Thus \(v \) cannot appear as an internal vertex in the path from \(x \) to \(y \). Therefore, this is a path in \(G \setminus v \) from \(x \) to \(y \) having length \(\leq 3 \). Thus \(x \) is m-adjacent to \(y \) in \(G \setminus v \) and \(v \in S_1 \). Let \(z \) be any vertex of \(G \setminus v \) such that \(z \notin S_1 \) and \(z \neq x \). Then \(z \notin S \). Now, \(z \) is m-adjacent to some vertex of \(S \) in \(G \). If \(w = x \) then there is another vertex \(w' \) in \(S \) such that \(z \) is m-adjacent to \(w' \) in \(G \). By the same reasoning as given above we say that \(z \) is m-adjacent to \(w' \) in \(G \) also. Also \(w' \in S_1 \). Thus, we have proved that \(S_1 \) is an m-dominating set of \(G \). Therefore, \(\gamma_{mn}(G \setminus v) \leq |S_1| < |S| = \gamma_{mn}(G) \). Hence, \(\gamma_{mn}(G \setminus v) < \gamma_{mn}(G) \).

Example 3.17. Consider the path graph \(P_8 \) with vertices \(\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\} \)

![Figure 2. P_8](image)

Here, \(\gamma_{mn}(G) = 2 \) and \(\gamma_{mn}(G \setminus \{v_8\}) = 1 \). Let \(S = \{v_4, v_5\} \). Then \(P_{mn}[v_8, S] = \{v_8\} \).

Corollary 3.18. Let \(G \) be a graph and \(v \in V(G) \) be such that \(d(v,S) = 3 \) for every minimum m-dominating set \(S \) of \(G \). Then \(\gamma_{mn}(G \setminus v) < \gamma_{mn}(G) \).

Proof. If \(\gamma_{mn}(G \setminus v) > \gamma_{mn}(G) \) then \(d(v,S) \leq 2 \) for every minimum m-dominating set \(S \) of \(G \) which is a contradiction. If \(\gamma_{mn}(G \setminus v) < \gamma_{mn}(G) \) then there is a minimum m-dominating set \(S \) of \(G \) such that \(d(v,S) = 0 \) which is again a contradiction. Therefore, \(\gamma_{mn}(G \setminus v) = \gamma_{mn}(G) \).

Proposition 3.19. Let \(G \) be a graph and \(F \) be a set of edges of \(G \). Then \(\gamma_{mn}(G \setminus F) \geq \gamma_{mn}(G) \).

Proof. Let \(S \) be a minimum m-dominating set of \(G \setminus F \). Let \(x \in V(G) \setminus S \). Now, \(x \) is m-adjacent to some vertex of \(S \) in \(G \setminus F \). Therefore, there is an edge \(e \) in the graph \(G \setminus F \) which m-dominates both \(x \) and \(y \). Therefore, \(e \) m-dominates \(x \) and \(y \) in \(G \) also. Therefore, \(x \) and \(y \) are m-adjacent in \(G \) also. Thus, \(x \) is m-adjacent to some vertex \(y \) of \(S \) in \(G \). Therefore, \(\gamma_{mn}(G \setminus F) \geq |S| = \gamma_{mn}(G) \).

Proposition 3.20. Let \(G \) be a graph and \(v \in V(G) \). Then \(\gamma_{mn}(G \setminus \{v\}) \geq \gamma_{mn}(G) \).

Proof. Note that \(G \setminus \{v\} \) is obtained by removing those edges of \(G \) which m-dominate \(v \) but which are not incident to \(v \). These are the edges of \(G \setminus v \). Let \(F \) be the set of these edges. Then by the proposition 3.19, \(\gamma_{mn}(G \setminus \{v\}) = \gamma_{mn}(G \setminus F) \geq \gamma_{mn}(G) \).

Proposition 3.21. Let \(G \) be a graph and \(v \in V(G) \) be a non-isolated vertex of \(G \). Then \(\gamma_{mn}(G \setminus \{v\}) \geq \gamma_{mn}(G) \).

Proof. Let \(T \) be a minimum m-dominating set of \(G \setminus \{v\} \). Then \(T \) contains all m-isolated vertices of \(G \setminus \{v\} \). Now every neighbour of \(v \) is an m-isolated vertex of \(G \setminus \{v\} \). Therefore, every neighbour of \(v \) is an element of \(T \). Thus \(T \) is a minimum dominating set of \(G \). Therefore, \(\gamma_{mn}(G) \leq |T| = \gamma_{mn}(G \setminus \{v\}) \).

Theorem 3.22. Let \(G \) be a graph and \(v \in V(G) \) be such that \(d(v) \geq 2 \). Then \(\gamma_{mn}(G \setminus \{v\}) \geq \gamma_{mn}(G) \).

Proof. Suppose \(S \) is a minimum m-dominating set of \(G \setminus \{v\} \). Let \(S_1 = S \setminus (N(v) \setminus \{v\}) \). Then \(|S_1| < |S| \). Let \(x \) be any vertex of \(G \) such that \(x \notin S_1 \). If \(x \in N(v) \) then \(x \) is adjacent to \(v \) and of course \(v \in S_1 \). Suppose, \(x \notin N(v) \). Then \(x \notin S \) and also \(x \neq v \). Thus \(x \) is a vertex of \(G \setminus \{v\} \) and \(x \notin S \). Therefore, \(x \) is m-adjacent to some vertex \(y \) of \(S \). Therefore, \(d(x,y) \leq 3 \).
in \(G \setminus \{v\} \). Since elements of \(N(v) \) are isolated vertices in \(G \setminus \{v\} \), \(y \notin N(v) \) and hence \(y \in S_1 \). Also \(d(x,y) \leq 3 \) in \(G \). Thus, \(x \) is \(m \)-adjacent to \(y \) where \(y \in S_1 \). Thus, \(S_1 \) is an \(m \)-dominating set in \(G \). Therefore, \(\gamma_{mv}(G) \leq |S_1| < |S| = \gamma_{mv}(G \setminus \{v\}) \).

Definition 3.23. Let \(G \) be a graph, \(S \subseteq V(G) \) and \(v \in S \). Then the external private \(m \)-neighbourhood of \(v \) with respect to \(S \) is \(E_P[m, n][v, S] = \{w \in V(G) \setminus S \mid w \text{ is } m \text{-adjacent to } v \text{ in } G \text{ but } w \text{ is not } m \text{-adjacent to any other member of } S\} \).

Theorem 3.24. Let \(G \) be a graph, \(v \) be a pendant vertex of \(G \) and \(u \) be its neighbour. Then \(\gamma_{mv}(G \setminus \{v\}) = \gamma_{mv}(G) \) if and only if there is a minimum \(m \)-dominating set \(S \) of \(G \) such that \(u \in S, v \notin S \) and \(E_P[m, n][u, S] \subseteq \{v\} \).

Proof. It is already true that \(\gamma_{mv}(G \setminus \{v\}) \geq \gamma_{mv}(G) \). Suppose there is a minimum \(m \)-dominating set \(S \) of \(G \) such that \(u \in S, v \notin S \) and the condition is satisfied. Let \(x \) be a vertex of \(G \setminus \{v\} \) such that \(x \notin S \). Now \(x \) is \(m \)-adjacent to some vertex \(y \) of \(S \) in \(G \). If \(y = u \) then \(x \) is not \(m \)-adjacent to \(u \) in \(G \setminus \{v\} \). Since the condition is satisfied, \(x \) is \(m \)-adjacent to some vertex \(z \) of \(S \) such that \(z \neq u \). If \(x \) is not \(m \)-adjacent to \(u \) then \(x \) is \(m \)-adjacent in \(G \) to some vertex \(w \) in \(S \) such that \(w \neq u \). Then \(x \) is \(m \)-adjacent to \(w \) in \(G \setminus \{v\} \) also. The path joining \(x \) and \(w \) cannot contain \(u \) as \(x \) is not \(m \)-adjacent to \(u \). Thus from both the above cases it follows that \(S \) is an \(m \)-dominating set in \(G \setminus \{v\} \). Thus, \(\gamma_{mv}(G \setminus \{v\}) \leq |S| = \gamma_{mv}(G) \). Hence, \(\gamma_{mv}(G \setminus \{v\}) = \gamma_{mv}(G) \).

Conversely, suppose \(\gamma_{mv}(G \setminus \{v\}) = \gamma_{mv}(G) \). Let \(S \) be a minimum \(m \)-dominating set of \(G \setminus \{v\} \). Since \(u \) is an isolated vertex in \(G \setminus \{v\} \), \(u \in S \). Obviously, \(v \notin S \). Let \(z \) be a vertex such that \(z \notin S \) and \(z \neq v \). Suppose, \(z \) is \(m \)-adjacent to \(u \) in \(G \). Since \(S \) is an \(m \)-dominating set of \(G \setminus \{v\} \), \(z \) is \(m \)-adjacent in \(G \setminus \{v\} \) to some vertex \(u' \) of \(S \). Note that \(u' \neq u \) because \(u \) is an isolated vertex in \(G \setminus \{v\} \). Now \(d(z,u') \leq 3 \) in \(G \setminus \{v\} \). Therefore, \(d(z,u') \leq 3 \) in \(G \). Thus we have proved that \(z \in V(G) \setminus S, z \neq v \) and if \(z \) is \(m \)-adjacent to \(u \) in \(G \) then \(z \) is also \(m \)-adjacent to some other vertex \(u' \) of \(S \) in \(G \setminus \{v\} \). Note that \(S \) is an \(m \)-dominating set in \(G \) also. Since \(\gamma_{mv}(G \setminus \{v\}) = \gamma_{mv}(G), S \) is a minimum \(m \)-dominating set of \(G \) and the condition is satisfied. \(\square \)

Acknowledgment

The work for the second author is financially supported by INSPIRE Fellowship of the “Department of Science and Technology” of Government of India.

References