The b-chromatic number of some degree splitting graphs

S. K. Vaidya$^a,{}^*$ and Rakhimol V. Isaacb

aDepartment of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, India.

bDepartment of Mathematics, Christ College, Rajkot - 360005, Gujarat, India.

Abstract

A b-coloring of a graph G is a variant of proper coloring in which each color class contains a vertex that has a neighbor in all the other color classes. We investigate some results on b-coloring in the context of degree splitting graph of P_n, B_n, n, S_n and G_n.

Keywords: graph coloring, b-coloring, b-vertex, degree splitting graph.

2010 MSC: 05C15; 05C76.

1 Introduction

In this paper we deal with finite, connected and undirected graph $G = (V(G), E(G))$ without loops and multiple edges. The notations and terminology here are used in the sense of Clark and Holton [1]. A proper k-coloring of a graph G is a function $c : V(G) \to \{1, 2, ..., k\}$ such that $c(u) \neq c(v)$ for all $uv \in E(G)$. The color class c_i is the subset of vertices of G that is assigned to color i. The chromatic number $\chi(G)$ is the minimum number k for which G admits proper k-coloring.

A proper k-coloring c of a graph G is a b-coloring if for every color class c_i, there is a vertex with color i which has at least one neighbor in every other color classes. Such vertex is called a b-vertex. The b-chromatic number of a graph G, denoted by $\phi(G)$, is the largest integer k for which G admits a b-coloring.

The concept of b-coloring was introduced by Irving and Manlove [2]. If G has a b-coloring by k colors for every integer k satisfying $\chi(G) \leq k \leq \phi(G)$ then G is called b-continuous. The b-spectrum $S_b(G)$ of a graph G is the set of integers k such that G has a b-coloring by k colors.

The concept of b-coloring is explored by many researchers. The bounds for the b-chromatic number of a graph is investigated by Kouider and Mahéo [3] while b-chromatic number for Peterson graph and power of a cycle is discussed by Chandrakumar and Nicholas [6]. The b-continuity of chordal graphs is discussed by Faik [7].

Definition 1.1. ([2], [4]) The m-degree of a graph G, denoted by $m(G)$, is the largest integer m such that G has m vertices of degree at least $m - 1$.

Proposition 1.2. ([1]) For any graph G, $\chi(G) \geq 3$ if and only if G has an odd cycle.

Proposition 1.3. ([2]) If G admits a b-coloring with m colors, then G must have at least m vertices with degree at least $m - 1$.

Proposition 1.4. ([3]) $\chi(G) \leq \phi(G) \leq m(G)$.

It is obvious that if $\chi(G) = k$, then every coloring of a graph G by k colors is a b-coloring of G.

*Corresponding author.
E-mail address: samirkvaidya@yahoo.co.in (S. K. Vaidya), rakhiiisaac@yahoo.co.in (Rakhimol V. Isaac).
Proposition 1.5. \((\Box)\) If \(P_n, C_n, K_n, K_{m,n}\) and \(W_n : C_n + K_1\) are respectively path, cycle, complete graph, complete bipartite graph and wheel graph, then

1. \(\chi(C_{2n}) = 2, \chi(C_{2n+1}) = 3\).
2. \(\chi(W_n) = 3, \text{if } n \text{ is odd and } \chi(W_n) = 4, \text{if } n \text{ is even.}\)
3. \(\chi(K_{m,n}) = 2\).
4. \(\varphi(P_n) = 2, \text{if } 1 < n < 5 \text{ and } \varphi(P_n) = 3, \text{if } n \geq 5\).
5. \(\varphi(C_n) = 2, \text{if } n = 4 \text{ and } \varphi(C_n) = 3, \text{if } n \neq 4\).
6. \(\varphi(W_n) = 3, \text{if } n = 4 \text{ and } \varphi(W_n) = 4, \text{if } n \neq 4\).
7. \(\chi(K_n) = \varphi(K_n) = n\).

2 Main Results

Definition 2.1. Let \(G = (V(G), E(G))\) be a graph with \(V(G) = S_1 \cup S_2 \cup \ldots \cup S_t \cup T\) where each \(S_i\) is a set of all vertices of the same degree with at least two elements and \(T = V(G) \setminus \bigcup_{i=1}^{t} S_i\). The degree splitting graph of \(G\), denoted by \(DS(G)\), is obtained from \(G\) by adding vertices \(w_1, w_2, \ldots, w_t\) and joining \(w_i\) to each vertex of \(S_i\) for \(1 \leq i \leq t\).

Lemma 2.2. \(\chi(DS(P_n)) = \begin{cases} 2, & n = 3 \\ 3, & n \neq 3. \end{cases}\)

Proof. The path \(P_n\) has two pendant vertices and the remaining \(n - 1\) vertices are of degree two. Thus \(V(P_n) = \{v_i; 1 \leq i \leq n\} = S_1 \cup S_2\) where \(S_1 = \{v_1, v_n\}\) and \(S_2 = \{v_i; 2 \leq i \leq n - 1\}\). For obtaining \(DS(P_n)\) from \(P_n\), add two vertices \(w_1, w_2\) corresponding to \(S_1\) and \(S_2\) respectively. Thus \(V(DS(P_n)) = V(P_n) \cup \{w_1, w_2\}\) and \(E(DS(P_n)) = E(P_n) \cup \{w_1v_1, w_2v_1\} \cup \{v_2v_1, v_{2n}v_1\} \cup \{v_{2k}v_1\} \cup \{v_{2k+1}v_1\} \cup \{v_{2k}v_{2k-1}, v_{2k}v_{2k+1}\}\) where \(k \in \mathbb{N}\). Then by Proposition 1.5, \(\chi(DS(P_n)) = 3\).

Theorem 2.3. \(\varphi(DS(P_n)) = \begin{cases} 2, & n = 3 \\ 3, & n = 2,4 \\ 4, & n \geq 5. \end{cases}\)

Proof. The graphs \(DS(P_2)\) and \(DS(P_3)\) are isomorphic to \(C_3\) and \(C_4\) respectively. Then by Proposition 1.5, \(\varphi(DS(P_2)) = 3\) and \(\varphi(DS(P_3)) = 2\).

In the graph \(DS(P_4)\) there are four vertices of degree 2. Then the m-degree, \(m(DS(P_4)) = 3\). Then by Proposition 1.4, \(\varphi(DS(P_4)) \leq 3\). Moreover \(DS(P_4)\) induces a path of length greater than four, \(\varphi(DS(P_4)) \geq 3\). Hence \(\varphi(DS(P_4)) = 3\).

For \(n \geq 5\), the graph \(DS(P_n)\) has at least four vertices of degree at least 3. Then the m-degree, \(m(DS(P_n)) = 4\). Then by Proposition 1.4, \(\varphi(DS(P_n)) \leq 4\). Moreover \(DS(P_n)\) induces a path of length greater than four, \(\varphi(DS(P_n)) \geq 3\). We suppose that \(DS(P_n)\) has a b-coloring using four colors. By assigning the proper coloring as \(c(w_1) = c(w_2) = 1, c(v_{2k+1}) = 2, c(v_{2k}) = 3; k \in \mathbb{N}\) then \(\chi(DS(P_n)) = 3\).

Definition 2.4. The bistar \(B_{n,n}\) is a graph obtained by joining the center(apex) vertices of two copies of \(K_{1,n}\) by an edge.

Lemma 2.5. For all \(n\), \(\chi(DS(B_{n,n})) = 3\).

Proof. In \(B_{n,n}, V(B_{n,n}) = \{u, v, u_i, v_i; 1 \leq i \leq n\}\) and \(E(B_{n,n}) = \{uu_i, vv_i; 1 \leq i \leq n\} \cup \{uv\}\). The graph bistar \(B_{n,n}\) contains two types of vertices - pendant vertices and vertices of degree \(n + 1\). Thus \(V(B_{n,n}) = S_1 \cup S_2\) where \(S_1 = \{u, v, u, v_i; 1 \leq i \leq n\}\) and \(S_2 = \{u, v\}\). For obtaining \(DS(B_{n,n})\) from \(B_{n,n}\), we add two
vertices \(w_1 \) and \(w_2 \) corresponding to \(S_1 \) and \(S_2 \) respectively. Thus \(V(DS(B_{n,n})) = V(B_{n,n}) \cup \{w_1, w_2\} \) and \(E(DS(B_{n,n})) = E(B_{n,n}) \cup \{u_1w_1, v_1w_1, u_2w_2, v_2w_2\} \). Hence \(|V(DS(B_{n,n}))| = 2n + 4 \) and \(|E(DS(B_{n,n}))| = 4n + 3 \).

As the graph \(DS(B_{n,n}) \) contains a \(C_3 \), \(\chi(DS(B_{n,n})) \geq 3 \). If we assign the proper coloring as \(c(w_2) = 1, c(u) = 2, c(v) = 3, c(v_1) = 2, c(v_i) = c(v_1), \) for \(i = 1, 2, ..., n \), then \(\chi(DS(B_{n,n})) = 3 \) for all \(n \).

Theorem 2.6. For all \(n \), \(\varphi(DS(B_{n,n})) = 3 \).

Proof. By Lemma 2.5, \(\varphi(DS(B_{n,n})) \geq \chi(DS(B_{n,n})) = 3 \). The graph \(DS(B_{n,n}) \) has at least three vertices of degree at least two. Then \(m(DS(B_{n,n})) = 3 \) and hence by Proposition 1.4, \(\varphi(DS(B_{n,n})) \leq 3 \). Thus \(\varphi(DS(B_{n,n})) = 3 \) for all \(n \).

Definition 2.7. A shell \(S_n \) is the graph obtained by taking \(n - 3 \) concurrent chords in cycle \(C_n \). That is, \(S_n = P_{n-1} \cup K_1 \).

Lemma 2.8. \(\chi(DS(S_n)) = \begin{cases} 4, & n = 3 \\ 3, & n \neq 3. \end{cases} \)

Proof. In the shell graph \(S_n \), \(V(S_n) = \{u, v_1, v_2, ..., v_{n-1}\} \) where \(u \) is the apex vertex and \(E(S_n) = \{uv_i \mid 1 \leq i \leq n - 1\} \cup \{v_iv_{i+1} \mid 1 \leq i \leq n - 2\} \). Clearly \(|V(S_n)| = n \) and \(|E(S_n)| = 2n - 3 \).

There are three types of vertices

(i) vertices of degree 2,

(ii) vertices of degree 3,

(iii) a vertex of degree \(n - 1 \).

Thus \(V(S_n) = \{u, v_1, v_2, ..., v_{n-1}\} = S_1 \cup S_2 \cup T \) where \(S_1 = \{v_1, v_{n-1}\}, S_2 = \{v_i \mid 2 \leq i \leq n - 2\} \) and \(T = \{u\} = V(S_n) \setminus \bigcup_{i=1}^{2} S_i \). For obtaining \(DS(S_n) \) from \(S_n \), we add two vertices \(w_1 \) and \(w_2 \) corresponding to \(S_1 \) and \(S_2 \) respectively. Thus \(V(DS(S_n)) = V(S_n) \cup \{w_1, w_2\} \) and \(E(DS(S_n)) = E(S_n) \cup \{w_1v_1, v_{n-1}w_1\} \cup \{v_iw_2 \mid 2 \leq i \leq n - 2\} \).

When \(n = 3 \), the graph \(DS(DS(S_3)) \) is isomorphic to \(K_4 \). Then by Proposition 1.5, \(\chi(DS(S_3)) = 4 \). But when \(n \neq 3 \), \(DS(S_n) \) contains a \(C_3 \), then by Proposition 1.2, \(\chi(DS(S_n)) \geq 3 \). If we assign the colors as \(c(w_1) = c(w_2) = c(u) = 1, c(v_k) = 2, c(v_{2k}) = 3, k \in \mathbb{N} \), then \(\chi(DS(S_n)) = 3 \).

Theorem 2.9. \(\varphi(DS(S_n)) = \begin{cases} 3, & n = 4 \\ 4, & n \neq 4. \end{cases} \)

Proof. When \(n = 3 \), the graph \(DS(DS(S_3)) \) is isomorphic to \(K_4 \), by Proposition 1.5, \(\varphi(DS(S_3)) = 4 \).

When \(n = 4 \), the graph \(DS(DS(S_4)) \) has four vertices of degree at least three. Then \(m(DS(DS(S_4))) = 4 \). Then by Proposition 1.4, \(\varphi(DS(DS(S_4))) \leq 4 \). Suppose that \(DS(DS(S_4)) \) does have a \(b \)-chromatic 4-coloring. By assigning the proper coloring as \(c(u) = 1, c(v_1) = 2, c(v_2) = 3, c(v_3) = 4 \) which in turn forces to assign \(c(w_1) \) is either by the color 1 or 3 and \(c(w_2) \) is either by the color 2 or 4. This proper coloring gives the \(b \)-vertices for the color classes 1 and 3 but not for 2 and 4. Similarly all other proper coloring using 4 colors will generate \(b \)-vertices at most for two color classes only. Hence \(\varphi(DS(DS(S_4))) \neq 4 \). Thus \(\varphi(DS(DS(S_4))) \leq 3 \). Also by Lemma 2.8, \(\varphi(DS(DS(S_4))) \geq 3 \). Hence \(\varphi(DS(DS(S_4))) = 3 \).

When \(n = 5 \) and 6, the graph \(DS(DS(S_n)) \) has the \(m \)-degree four. Thus \(\varphi(DS(DS(S_5))) \leq 4 \). Suppose that \(DS(DS(S_5)) \) does have a \(b \)-chromatic 4-coloring. By assigning the proper coloring as \(c(u) = 1, c(v_1) = c(v_4) = 2, c(v_2) = 3, c(v_3) = c(v_1) = 4 \) which gives the \(b \)-vertices \(u, v_1, v_2, v_3 \) for the color classes 1, 2, 3, and 4 respectively. Thus \(\varphi(DS(DS(S_5))) = 4 \).

When \(n \geq 7 \), the graph \(DS(DS(S_n)) \) has the \(m \)-degree five. Thus \(\varphi(DS(DS(S_n))) \leq 5 \). Suppose that \(DS(DS(S_n)) \) does have a \(b \)-chromatic 5-coloring. By assigning the proper coloring as \(c(v_2) = 1, c(v_1) = 2, c(u) = 4, c(v_3) = 5, c(w_2) = 3, c(v_4) = 2 \) which in turn forces to assign \(c(v_5) = 1 \). This proper coloring gives the \(b \)-vertices for the color classes 1, 2 and 5 but not for 3 and 4. Similarly all other proper coloring with 5 colors will generate \(b \)-vertices at most for three color classes only. Hence \(\varphi(DS(DS(S_n))) \neq 5 \). Thus \(\varphi(DS(DS(S_n))) \leq 4 \). If we assign the colors as \(c(w_1) = c(w_2) = 1, c(v_{3k-2}) = 2, c(v_{3k-1}) = 3, c(v_{3k}) = 4, k \in \mathbb{N} \) gives the \(b \)-vertices \(u, v_2, v_3, v_4 \) for the color classes 1, 3, 4 and 2 respectively. Thus \(\varphi(DS(DS(S_n))) = 4 \).
Definition 2.10. The gear Graph, G_n, is obtained from the wheel by subdividing each of its rim edge.

That is, let $W_n = C_n + K_1$ be the wheel graph with apex vertex v and the rim vertices $v_1, v_2, ..., v_n$. To obtain the gear graph G_n, subdivide each rim edge of wheel W_n by the vertices $u_1, u_2, ..., u_n$ where each u_i subdivides the edge $v_i v_{i+1}$ for $i = 1, 2, ..., n - 1$ and u_n subdivides the edge $v_1 v_n$. Then $|V(G_n)| = 2n + 1$ and $|E(G_n)| = 3n$.

Lemma 2.11. $\chi(DS(G_n)) = \begin{cases} 5, & n = 3 \\ 4, & n \neq 3 \end{cases}$

Proof. The gear graph G_n has three types of vertices

(i) vertices of degree 2

(ii) vertices of degree 3

(iii) a vertex of degree n.

Thus $V(G_n) = \{v_i, u_i, v\} = S_1 \cup S_2 \cup T$ where $S_1 = \{v_i\}$, $S_2 = \{u_i\}$, $T = \{v\} = V(G_n) \setminus \bigcup_{i=1}^{2} S_i$. For obtaining $DS(G_n)$ from G_n, we add two vertices w_1 and w_2 corresponding to S_1 and S_2 respectively. Thus $V(DS(G_n)) = V(G_n) \cup \{w_1, w_2\}$ and $E(DS(G_n)) = E(G_n) \cup \{v_i w_1, u_i w_2\}$.

When $n = 3$, $DS(G_3)$ contains a K_3 (formed by the vertices v, w_1 and w_2), $\chi(DS(G_3)) \geq 3$. If we assign the colors as $c(v) = 1$, $c(w_1) = 2$, $c(w_2) = 3$, $c(u_1) = 2$, $c(u_2) = 3$, $c(v_1) = 3$ for $i = 1, 2, ..., n$ gives the proper coloring using 3 colors. Thus $\chi(DS(G_3)) = 3$. But when $n \neq 3$, $DS(G_n)$ contains no odd cycles and it is a bipartite graph. Hence by Proposition 1.5, $\chi(DS(G_n)) = 2$.

Theorem 2.12. $\varphi(DS(G_n)) = \begin{cases} 5, & n = 3 \\ 4, & n \neq 3 \end{cases}$

Proof. When $n = 3$, the graph $DS(G_3)$ contains five vertices of degree 4. Consequently $m(DS(G_3)) = 5$. Then by Proposition 1.4, $\varphi(DS(G_3)) \leq 5$. Suppose that $DS(G_3)$ does have a b-chromatic 5-coloring. By assigning the proper coloring as $c(u_1) = 1$, $c(u_2) = 2$, $c(u_3) = 2$, $c(v_1) = 3$, $c(v_2) = 2$, $c(v_3) = 1$, $c(v) = 4$, $c(w_2) = 4$, $c(w_1) = 5$ then the vertices v, v_1, v_2, v_3 and v_1 are the b-vertices for the color classes 1, 2, 3, 4 and 5 respectively. Thus $\varphi(DS(G_3)) = 5$.

When $n \neq 3$, the graph $DS(G_n)$ contains at least five vertices of degree 4. Then $m(DS(G_n)) = 5$. Then by Proposition 1.4, $\varphi(DS(G_n)) \leq 5$. Suppose that $DS(G_n)$ does have a b-chromatic 5-coloring. By assigning the proper coloring as $c(v) = 1$, $c(v_1) = 2$, $c(v_2) = 3$, $c(v_3) = 4$, $c(v_4) = 5$ gives the b- vertex v for the color class 1. Again assume that $c(u_1) = 4$ and $c(u_2) = 3$ which in turn forces to assign $c(w_1) = 5$ which is not possible as the adjacent vertices w_1 and v_1 will receive the same color. Thus v_1 is not a b-vertex for the color class 2. Similarly we can prove that no v_i’s are b-vertices when five colors are used for b-coloring. Hence $\varphi(DS(G_n)) \neq 5$. But if we assign the colors as $c(v) = 1$, $c(v_{3k-2}) = 2$, $c(v_{3k-1}) = 3$, $c(v_{3k}) = 4$, $k \in \mathbb{N}$ which gives the b- vertices v, v_1, v_2 and v_3 for the color classes 1, 2, 3 and 4 respectively. Thus $\varphi(DS(G_n)) = 4$. Hence the result.

We have the following obvious result stating the b-spectrum of $DS(G_n)$ as any proper coloring with $\chi(G)$ colors is a b-coloring.

Corollary 2.13. $S_b(DS(G_n)) = \begin{cases} \{3, 4, 5\}, & n = 3 \\ \{2, 3, 4\}, & n \neq 3 \end{cases}$ and $DS(G_n)$ is b-continuous.

Proof. When $n = 3$, by assigning the colors as $c(v) = 1$, $c(v_1) = 2$, $c(v_2) = 3$, $c(v_3) = 4$, $c(w_1) = c(w_2) = 4$ and $c(u_i) = 1$ for $i = 1, 2$ and 3, the graph $DS(G_3)$ has the b-chromatic 4-coloring. But when $n \neq 3$, by assigning the colors as $c(v) = c(w_1) = c(w_2) = 1$, $c(v_1) = 2$, $c(u_i) = 3$ for $i = 1, 2, ..., n$, $DS(G_n)$ has the b-chromatic 3-coloring. Thus by Lemma 2.11 and Theorem 2.12, $DS(G_n)$ is b-continuous and the b-spectrum $S_b(DS(G_n)) = \begin{cases} \{3, 4, 5\}, & n = 3 \\ \{2, 3, 4\}, & n \neq 3. \end{cases}$
3 Concluding Remarks

The study of b-coloring is important due to its applications in many real life problems like scheduling problem, channel assignment problem, routing networks etc. Here we investigate b-chromatic number and related parameters for the degree splitting graph of some graphs. We show that the degree splitting graph of G_n is b-continuous. The degree splitting graph of P_n, $B_{n,n}$ and S_n are obviously b-continuous as any proper coloring with $\chi(G)$ colors is a b-coloring.

References

Received: March 14, 2014; Accepted: April 6, 2014