

https://doi.org/10.26637/MJM0901/0080

Connected vertex–Edge dominating sets and connected vertex–Edge domination polynomials of triangular ladder

V. S. Radhika¹* and A. Vijayan²

Abstract

Let *G* be a simple connected graph of order *n*. Let $D_{cye}(G,i)$ be the family of connected vertex - edge dominating sets of *G* with cardinality *i*. The polynomial

$$D_{cve}(G, x) = \sum_{i=\gamma_{cve}}^{n} d_{cve}(G, i) x^{i}$$

is called the connected vertex – edge domination polynomial of *G* where $d_{\text{CVe}}(G,i)$ is the number of vertex edge dominating sets of *G*. In this paper, we study some properties of connected vertex - edge domination polynomials of the Triangular Ladder TL_n . We obtain a recursive formula for $d_{\text{CVe}}(TL_{n,i})$. Using this recursive formula, we construct the connected vertex - edge domination polynomial

$$D_{cve}\left(TL_{n,x}\right) = \sum_{i=n-2}^{2n} d_{cve}\left(TL_{n,i}\right) x^{i}$$

of TL_n , where D_{cve} ($TL_{n,i}$) is the number of connected vertex - edge dominating sets of TL_n with cardinality *i* and some properties of this polynomial have been studied.

Keywords

Triangular ladder, Connected vertex – edge dominating set, connected vertex – edge domination number, connected vertex – edge domination polynomial.

AMS Subject Classification

05C38, 05C78.

^{1,2} Research Department of Mathematics, Nesamony Memorial Christian College [Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.], Marthandam, Kanyakumari, Tamil Nadu, India. *Corresponding author: ¹mathiradhika86@gmail.com; ²dravijayan@gmail.com

Article History: Received 09 November 2020; Accepted 10 February 2021

©2021 MJM.

Contents

 1
 Introduction
 474

 2
 Connected vertex –Edge dominating sets of Triangular Ladders
 475

 3
 Connected total domination polynomials of triangular ladders
 477

 References
 479

1. Introduction

Let G = (V, E) be a simple graph of order *n*. For any vertex $v \in V$, the open neighbourhood of *v* is the set $N(v) = \{u \in V/uv \in E\}$ and the closed neighbourhood of *v* is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood of *S* is $N(S) = U_{v \in S}N(V)$ and the closed neighbourhood of *S* is $N[S] = N(s) \cup S.A$ vertex $u \in V(G)$ vertex-edge dominates (ve-dominates) an edge $vw \in E(G)$ if

1. u = v or u = w(u is incident to vw) or

2. uv or uw is an edge in G(u is incident to an edge that is

adjacent to vw).

A vertex - edge dominating set *S* of *G* is called a connected vertex - edge dominating set if the induced subgraph $\langle S \rangle$ is connected. The minimum cardinality of a connected vertex - edge dominating set of *G* is called the connected vertex - edge domination number of *G* and is denoted by $\gamma_{cve}(G)$. A connected vertex - edge dominating set with cardinality $\gamma_{cve}(G)$ is called γ_{cve} - set. We denote the set $\{1, 2, \dots, 2n - 1, 2n\}$ by [2n], throughout this chapter. Also we used the notation $\lceil x \rceil$ for the smallest integer greater than or equal to $\lceil x \rceil$ and $\lfloor x \rfloor$ for the largest integer less than or equal to *x*.

2. Connected vertex –Edge dominating sets of Triangular Ladders

Consider two paths $u_1u_2...u_n$ and $v_1v_2...v_n$. Join each pair of vertices u_iv_i and $u_{i+1}v_i$, i = 1, 2, ..., n. The resulting graph is a Triangular Ladder. Let TL_n be a triangular ladder with 2n vertices. Label the vertices of TL_n as given in the following figure.

$$\begin{split} V\left(TL_n\right) =& \{1,2,3,\ldots,2n-2,2n-1,2n\} \text{ and} \\ E\left(TL_n\right) =& \{(1,3),(3,5),(5,7)\ldots(2n-5,2n-3),(2,4), \\ & (4,6),(6,8),\ldots(2n-4,2n-2),(2n-2,2n), \\ & (1,2),(3,4),(5,6),\ldots(2n-3,2n-2) \\ & (2n-1,2n),(2,3),(4,5),(6,7),\ldots \\ & (2n-4,2n-3),(2n-2,2n-1)\} \end{split}$$

For the construction of the vertex- edge dominating sets of the Triangular Ladder TL_n , we need to investigate the connected vertex - edge dominating sets of $TL_n - \{2n\}$. In this section, we investigate the connected vertex- edge dominating sets of TL_n with cardinality *i*. We shall find the recursive formula for d_{cve} (TL_n , *i*).

- **Lemma 2.1.** (*i*) For every $n \in N$ and $n \ge 4$, $\gamma_{cve}(TL_n) = n-1$.
 - (ii) For every $n \in N$ and $n \ge 5$, $\gamma_{cve} (TL_n \{2n\}) = n 2$.
- (*iii*) $D_{cve}(TL_n, i) = \varphi$ iff i < n 10 or i > 2n.
- (iv) $D_{ove} (TL_{mu} \{2n\}, i) = \varphi \text{ iff } i < n-2 \text{ or } i > 2n-1.$
- *Proof.* (i) Clearly $\{3, 5, 7, 9, \dots, 2n-1\}$ is a minimum connected vertex edge dominating set for TL_n . If *n* is even or odd it contains n-1 elements. Hence $_*y_{cve}$ $(TL_n) = n-10$.

- (ii) Clearly, $\{3, 5, 7, 9, \dots, 2n-3\}$ is a minimum connected vertex edge dominating set for $TL_n \{2n\}$. If *n* is even or odd, it contains n-2 elements. Hence, $\gamma_{cve} (TL_n \{2n\}) = n-2$.
- (iii) Follows from (i) and the definition of connected vertex edge dominating set.
- (iv) Follows from (ii) and the definition of connected vertex edge dominating set.

- **Lemma 2.2.** (i) If D_{cve} $(TL_n \{2n\}, i-1) = \varphi$, $D_{cve} (TL_{n-1} - \{2n-2\}, i-1) = \varphi$ and $D_{cve} (TL_{n-2}, i-1) = \varphi$, then $D_{cve} (TL_{n-1}, i-1) = \varphi$
- (*ii*) If D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$, D_{cve} $(TL_{n-1} - \{2n-2\}, i-1) = \varphi$ and D_{cve} $(TL_{n-2}, i-1) \neq \varphi$, then D_{cve} $(TL_{n-1}, i-1) \neq \varphi$
- (iii) If D_{cve} $(TL_n \{2n\}, i-1) = \varphi$, and D_{cve} $(TL_{n-1}, i-1) \neq \varphi$ then D_{cve} $(TL_n, i) = \varphi$
- (iv) If D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$, and D_{cve} $(TL_{n-1}, i-1) \neq \varphi$, then D_{cve} $(TL_n, i) \neq \varphi$.
- (v) If D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$, and D_{cve} $(TL_{n-1}, i-1) = \varphi$, then D_{cve} $(TL_n, i) \neq \varphi$.
- *Proof.* (i) Since, $D_{cve} (TL_n \{2n\}, i-1) = \varphi$, $D_{cve} (TL_{n-1} - \{2n-2\}, i-1) = \varphi$ and $D_{cve} (TL_{n-2}, i-1) = \varphi$, by Lemma 2.1 (iii) and (iv) We have, i-1 < n-2 or i-1 > 2n-1 i-1 < n-3 or i-1 > 2n-3and i-1 < n-3 or i-1 < 2n-4. Therefore i-1 < n-3 or i-1 > 2n-1. Therefore, i-1 < n-2 or i-1 > 2n-2 holds. Hence, $D_{cve} (TL_{n-1}, i-1) = \varphi$.
- (ii) Since, $D_{cve} (TL_n \{2n\}, i-1) \neq \varphi$, $D_{cve} (TL_{n-1} - \{2n-2\}, i-1) \neq \varphi$, and $D_{cve} (TL_n - 3, i-1) \neq \varphi$, by lemma 2.1 (iii) and (iv), we have, $n-2 \leq i-1 \leq 2n-1$, $n-3 \leq i-1 \leq 2n-3$ and $n-3 \leq i-1 \leq 2n-4$. Suppose $D_{cve} (TL_{n-1}, i-1) = \varphi$. Then by Lemma 2.1 (iii), we have $i-1 \leq n-2$ or i-1 > 2n-2. If i-1 < n-2, then $D_{cve} (TL_n - \{2n\}, i-1) = \varphi$, a contradiction. If i-1 > 2n-2, then i-1 > 2n-3holds, which implies $D_{cve} (TL_{n-1} - \{2n-2\}, i-1) = \varphi$, a contradiction. Therefore, $D_{cve} (TL_{n-1}, i-1) \neq \varphi$.
- (iii) Since $D_{cve} (TL_n \{2n\}, i-1) = \varphi$ and $D_{cve} (TL_{n-1}, i-1) = \varphi$ by Lemma 2.1 (iii) and (iv), we have, i-1 < n-3 or i-1 > 2n-1 and i-1 < n-2 or i-1 > 2n-2. Therefore, i-1 < n-2 or i-1 > 2n-1. Therefore, i < n-1 or i > 2n. Hence, $D_{cve} (TL_n, i) = \varphi$.

- (iv) Since $D_{\text{cve}}(TL_n \{2n\}, i-1) \neq \varphi$ and $D_{\text{cve}}(TL_{n-1}, i-1) \neq \varphi$, by lemma 2.1 (iii) and (iv), we have, $n-2 \leq i \ 1 \leq 2n-1$ and $n-2 \leq i-1 \leq 2n-2$. Suppose $D_{\text{cve}}(TL_n, i) = \varphi$, then by Lemma 2.1 (iii), we have i < n-1 or i > 2n. Therefore, i-1 < n-2 or i-1 > 2n-1 If i-1 < n-2, then $D_{\text{cve}}(TL_{n-1}, i-1) = \varphi$, a contraction. If i-1 > 2n-1, then $D_{\text{cve}}(TL_n - \{2n\}, i-1) = \varphi$ a contraction. Therefore, $D_{\text{cve}}(TL_{n\neq i}) \neq \varphi$.
- (v) Since $D_{cve} (TL_n \{2n\}, i-1) \neq \varphi$ by lemma 2.1 (iv), we have $n-2 \leq i-1 \leq 2n-1$. Also, since $D_{cve} (TL_{n-1}, i-1) = \varphi$, by Lemma 2.1 (iii), we have i-1 < n-2 or i-1 > 2n-2. If i-1 < n-2, then $D_{cve} (TL_n - \{2n\}, i-1) = \varphi$ a contraction.

Lemma 2.3. Suppose that D_{cve} $(TL_n, i) \neq \varphi$, then for every $n \in N$,

- (*i*) D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$ and D_{cve} $(TL_{n-1}, i-1) = \varphi$ iff i = 2n.
- (*ii*) D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$, D_{cve} $(TL_{n-1}, i-1) \neq \varphi$ and D_{cve} $(TL_{n-1} - \{2n-2\}_{win}, 1) = \varphi$ iff i = 2n-1.
- (iii) $D_{cve} (TL_n \{2n\}, i-1) \neq \varphi, D_{cve} (TL_{n-1}, i-1) \neq \varphi$ and $D_{cve} (TL_{n-1} - \{2n-2\}, i-1) \neq \varphi$ and $D_{cve} (TL_{n-2}, i-1) = \varphi$ iff i = 2n-2.

Proof. Assume that D_{cve} $(TL_n, i) \neq \varphi$. Then $n - 1 \le i \le 2n$.

(i) \Leftrightarrow) since D_{cve} $(TL_n - \{2n\}, i-1) \neq \varphi$, by lemma 2.1 (iv), we have $n-2 \leq i-1 \leq 2n-1$. Therefore, $n-1 \leq i \leq 2$.

Also since $D_{cve}(TL_{n-1}, i-1) = \varphi$, by lemma 2.1 we have, i-1 < n-2 or i-1 > 2n-2. If i-1 < n-2, then i < n-1 which implies $D_{cve}(TL_n, i) = \varphi$, a contradiction. Therefore i-1 > 2n-2. Therefore $i-1 \ge 2n-1$. This implies $i \ge 2n$. Therefore, i = 2n. (\Leftrightarrow) follows from Lemma 2.1 (iii) and (iv)

$$(\Leftrightarrow)$$
 since D_{cve} $(TL_n - \{2n\}, i-1) \neq \varphi$, and

 D_{cve} $(TL_{n-1}, i-1) \neq \varphi$ by lemma 2.1 (iii) and (iv), we have $n-2 \leq i-1 \leq 2n-1$ and $n-2 \leq i-1 \leq 2n-1$. Therefore, $n-2 \leq i-1 \leq 2n-2$. Therefore, $n-1 \leq i \leq 2n-2$. Also, since D_{cve} $(TL_{n-1} - \{2n-2\}, i-1) = \varphi$, by lemma 2.1 (iv), we have i-1 < n-3 or i-1 > 2n-3. Therefore, i < n-2 or i > 2n-2 If i < n-2, then i < n-1 holds which implies D_{cve} $(TL_n, i) = \varphi$, a contradiction. Therefore, i < 2n-2 Therefore $\geq 2n-1$. Combining together, we have = 2n-1 (\Leftrightarrow) follows from Lemma 2.1 (iii) and (iv).

(ii) Since $D_{cve} (TL_n - \{2n\}, i-1) \neq \varphi$, $D_{cve} (TL_{n-1}, i-1) \neq \varphi$ and $D_{cve} (TL_n - \{2n-2\}, i-1) \neq \varphi$ by lemma 2.1 (iii) and (iv), we have $n-2 \le i-1 \le 2n-1, n-2 \le i-1 \le 2n-2$ and $n-3 \le i-1 \le 2n-3$. Therefore, $n-2 \le i-1 \le 2n-3$. Therefore, $n-1 \le i \le 2n-2$.

Also, since D_{cve} $(TL_{n-2}, i-1) = \varphi$, by lemma 2.1 (iii), we have, i-1 < n-3 or i-1 > 2n-4. If i-1 < n-3, then i < n-2. Therefore, i < n-2 holds, which implies D_{cve} $(TL_n, i) = \varphi_n$ a contradiction.

Therefore, i-1 > 2n-4 Therefore i > 2n-3 Therefore $\geq 2n-2$. Together we have i = 2n-2 (\Leftarrow) follows from Lemma 2.1 (iii) and (iv).

Theorem 2.4. *For every* $n \ge 4$

- (*i*) If D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$ and D_{cve} $(TL_{n-1}, i-1) = \varphi$ then D_{cve} $(TL_n, i) = \{[2n]\}.$
- (*ii*) If D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$ and D_{cve} $(TL_{n-1}, i-1) \neq \varphi$, then D_{cve} $(TL_n, i) = \{X_1 \cup \{2n\}, if 2n 1 \in X_1/X_1 \in D_{cve}$ $(TL_n \{2n\}, i-1)\} \cup \{X_2 \cup \{2n-2\}, if 2n-4 or$

$$2n-3 \in X_2/X_2 \in D_{cve} \ (TL_{n-1},i-1) \} \cup \{X_2 \cup \{2n-1\},\$$

if
$$2n-2 \in X_2/X_2 \in D_{cve} (TL_{n-1}, i-1)$$
.

- *Proof.* (i) Since D_{cve} $(TL_n \{2n\}, i-1) \neq \varphi$ and D_{cve} $(TL_{n-1}, i-1) = \varphi$, by theorem 2.3 (i), i = 2n. Therefore D_{cve} $(TL_n, i) = \{[2n]\}$.
 - (ii) Let $Y_1 = \{X_1 \cup \{2n\}, \text{ if} \\ 2n 1 \in X_1/X_1 \in D_{\text{cve}} (TL_n \{2n\}, i-1)\} \cup \{X_1 \cup \{2n\},$

if 2n-2 or $2n-1 \in X_1/X_1 \in D_{cve}(TL_n - \{2n\}, i-1)\}$ and $Y_2 = \{X_2 \cup \{2n-2\}, \text{ if } 2n-4 \text{ or } 2n-3 \in X_2/X_2 \in D_{cve}(TL_{n-1}, i-1)\} \cup X_2 \cup \{2n-1\}, \text{ if } 2n-2 \in X_2/X_2 \in D_{cve}(TL_{n-1}, i-1)\}$

Obviously,

$$Y_1 \cup Y_2 \subseteq D_{\text{cve}} (TL_n, i) \tag{2.1}$$

Now, let $Y \in D_{cve}(TL_n, i)$. If $2n \in Y$, then atleast one of the vertices labeled 2n - 2 or 2n - 1 is in Y. In either cases $Y = \{X_1 \cup \{2n\}\}$ for some $X_1 \in D_{cve}(TL_n - \{2n\}, i-1)$. Therefore $Y \in Y_1$. Suppose that $2n - 1 \in Y, 2n \notin Y$, them atleast one of the vertices labeled 2n - 3 or 2n - 2 is in Y. If $2n - 3 \in Y$, then $Y = \{X_1 \cup \{2n-1\}\}$ for some $X_1 \in D_{cve}(TL_n - \{2n\}, i-1)$ If $2n - 1 \in Y$, then $Y = \{X_2 \cup \{2n-1\}\}$ for some $X_2 \in D_{cve}(TL_{n-1}, i-1)$ Therefore $Y \in Y_1$ or $Y \in Y_2$.

Now, suppose that, $2n - 2 \in Y$, $2n - 1 \notin Y$, $2n \notin Y$ then at least one of the vertices labeled 2n - 4 or 2n - 3 is in Y. In either cases, $Y = \{X_2 \cup \{2n - 2\}\}$ for some $X_2 \in D_{cve}$ (TL_{n-1} , i - 1). Therefore $Y \in Y_2$. Hence

$$D_{\text{ove}} (TL_{\text{nu}} i) \subseteq Y_1 \cup Y_2.$$
(2.2)

From (2.1) and (2.2), we have $D_{cve}(TL_n, i) = \{X_1 \cup \{2n-1\}, if 2n-3 \in X_1/X_1 \in D_{cve}(TL_n - \{2n\}, i-1)\} \cup \{X_1 \cup \{2n\}, if 2n-2 \text{ or } 2n-1 \in X_1/X_1 \in D_{cve}(TL_n - \{2n\}, i-1)\} \cup \{X_2 \cup \{2n-2\}, if 2n-4 \text{ or } 2n-3 \in X_2/X_2 \in D_{cve}(TL_{n-1}, i-1)\} \cup \{X_2 \cup \{2n-1\}, if 2n-2 \in X_2/X_2 \in D_{cve}(TL_{n-1}, i-1)\}$.

Theorem 2.5. If D_{cve} (TL_n, i) is the family of connected vertex edge dominating sets of TL_n cardinality i, where $i \ge n-1$, then

$$d_{cve} (TL_n, i) = d_{cve} (TL_n - \{2n\}, i-1) + d_{cve} (TL_{n-1}, i-1)$$

Proof. We consider the two cases given in theorem 2.4 Suppose D_{cve} $(TL_n - \{2n\}, i-1) \neq \varphi$ and D_{cve} $(TL_{n-1}, i-1) = \varphi$. Then i = 2n

$$\begin{aligned} d_{\text{cve}} \ (TL_{n,i}) = & d_{\text{cve}} \ (TL_{n,2}2n) = 1 \\ d_{\text{cve}} \ (TL_n - \{2n\}, i-1) = & d_{\text{cve}} \ (TL_n - \{2n\}, 2n-1) = 1 \\ d_{\text{cve}} \ (TL_{n-1}, i-1) = & d_{\text{cve}} \ (TL_{n-1}, 2n-1) = 0. \end{aligned}$$

Therefore,

$$d_{\text{cve}} (TL_n - \{2n\}, i-1) + d_{\text{cve}} (TL_{n-1}, i-1) = 1 + 0 = 1$$

Therefore, in this case

$$d(TL_n, i) = d_{cve} (TL_n - \{2n\}, i-1) + d_{cve} (TL_{n-1}, i-1)$$

holds. By theorem 2.4 (ii) we have, $D_{\text{cve}}(TL_n, i) = \{X_1 \cup \{2n-1\}, \text{ if }$

$$2n-3 \in X_1/X_1 \in D_{\text{cve}} (TL_n - \{2n\}, i-1)\} \cup \{X_1 \cup \{2n\}, i-1\} \cup \{X_1 \cup$$

if 2n-2 or

$$2n-1 \in X_1/X_1 \in D_{\text{cve}} \ (TL_n - \{2n\}, i-1)\} \cup \{X_2 \cup \{2n-2\}, i-1\} \cup \{X_2 \cup \{X_2 \cup \{2n-2\}, i-1\} \cup \{X_2 \cup \{X_$$

if 2n - 4 or

$$2n-3 \in X_2/X_2 \in D_{\text{cve}} \ (TL_{n-1}, i-1) \} \cup X_2 \cup \{2n-1\},$$

if

$$2n-2 \in X_2/X_2 \in D_{\text{cve}}(TL_{n-1}, i-1)\}.$$

Therefore

cve
$$d_{cve}$$
 $(TL_n, i) = d_{cve}$ $(TL_n - \{2n\}, i-1) + d_{cve}$ $(TL_{n-1}, i-1)$.

3. Connected total domination polynomials of triangular ladders

Theorem 3.1. Let D_{cve} (TL_n, i) be the family of connected vertex edge dominating sets of TL_n with cardinality *i* and let d_{cve} $(TL_n, i) = |D_{cve} (TL_n, i)|$. Then the connected vertex edge domination polynomial $D_{cve} (TL_n, x)$ of TL_n is defined as,

$$D_{cve} (TL_n, x) = \sum_{i=\gamma_{cve}}^{2n} d_{cve} (TL_n, i) x^i.$$

Theorem 3.2. *For every* $n \ge 4$ *,*

$$D_{cve}(TL_n, x) = x[D_{cve}(TL_n - \{2n\}, x) + D_{cve}(TL_{n-1}, x)]$$

with initial values

$$D_{cve} (TL_2 - \{4\}, x) = 3x^2 + x^3$$

$$D_{cve} (TL_2, x) = 5x^2 + 4x^3 + x^4$$

$$D_{cve} (TL_3 - \{6\}, x) = 7x^2 + 8x^3 + 5x^4 + x^5$$

$$D_{cue} (TL_3, x) = 7x^2 + 12x^3 + 12x^4 + 6x^5 + x^6$$

$$D_{cue} (TL_4 - \{8\}, x) = 5x^2 + 14x^3 + 20x^4 + 17x^5 + 7x^6 + x^7$$

$$D_{cre} (TL_4, x) = 3x^2 + 12x^3 + 26x^4 + 32x^5 + 23x^6$$

$$+ 8x^7 + x^8$$

$$D_{cue} (TL_5 - \{10\}, x) = x^2 + 8x^3 + 26x^4 + 46x^5 + 49x^6$$

$$+ 30x^7 + 9x^8 + x^9$$

Proof. We have,

$$d_{\text{cve}}(TL_n, i) = d_{\text{cve}}(TL_n - \{2n\}, i-1) + d_{\text{cve}}(TL_{n-1}, i-1).$$

Therefore,

$$d_{cve} (TL_n, i) x^i = d_{cve} (TL_n - \{2n\}, i-1) x^i + d_{cve} (TL_{n-1}, i-1) x^i$$

$$\sum_{i=n-1}^{2n} d_{cve} (TL_n, i) = \sum_{i=n-1}^{2n} d_{cve} (TL_n - \{2n\}, i-1) x^i + \sum_{i=n-1}^{2n} d_{cve} (TL_{n-1}, i-1) x^i = x \sum_{i=n-2}^{2n} d_{cve} (TL_n - \{2n\}, i-1) x^{i-1} + x \sum_{i=n-2}^{2n} d_{cve} (TL_{n-1}, i-1) x^{i-1} = x D_{cve} (TL_n - \{2n\}, x) + x D_{cve} (TL_{n-1}, x) + x [D_{cve} (TL_n - \{2n\}, x) + D_{cve} TL_{n-1}, x]$$

Therefore,

$$D_{\text{cve}}(TL_n, x) = x[D_{\text{cve}}(TL_n - \{2n\}, x) + D_{\text{cve}}(TL_{n-1}, x)].$$

With initial values,

$$\begin{split} D_{cv_{\theta}} \left(TL_2 - \{4\}, x \right) = & 3x^2 + x^3 \\ D_{cve} \left(TL_2, x \right) = & 5x^2 + 4x^3 + x^4 \\ D_{cv\theta} \left(TL_3, \{6\}, x \right) = & 7x^2 + 8x^3 + 5x^4 + x^5 \\ D_{cve} \left(TL_3, x \right) = & 7x^2 + 12x^3 + 12x^4 + 6x^5 + x^6 \\ D_{cve} \left(TL_4, \{8\}, x \right) = & 5x^2 + 14x^3 + 20x^4 + 17x^5 + 7x^6 + x^7 \\ D_{cve} \left(TL_4, x \right) = & 3x^2 + 12x^3 + 26x^4 + 32x^5 + 23x^6 \\ & + & 8x^7 + x^8 \\ D_{cve} \left(TL_5 - \{10\}, x \right) = & x^2 + 8x^3 + 26x^4 + 46x^5 + 49x^6 \\ & + & 30x^7 + 9x^8 + x^9 \end{split}$$

T. I. I. A

								Та	ble 1								
$\downarrow n \rightarrow i$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$TL_2 - \{4\}$	3	1															
TL_2	5	4	1														
$TL_3 - \{6\}$	7	8	5	1													
TL_3	7	12	12	6	1												
$TL_4 - \{8\}$	5	14	20	17	7	1											
TL_4	3	12	26	32	23	8	1										
$TL_5 - \{10\}$	1	8	26	46	49	30	9	1									
TL_5	0	4	20	52	78	72	38	10	1								
$TL_6 - \{12\}$	0	1	12	46	98	127	102	47	11	1							
TL_6	0	0	5	32	98	176	199	140	57	12	1						
$TL_7 - \{14\}$	0	0	1	17	78	196	303	301	187	68	13	1					
TL_7	0	0	0	6	49	176	372	502	441	244	80	14	1				
$TL_8 - \{16\}$	0	0	0	1	23	127	372	675	803	628	312	93	15	1			
TL_8	0	0	0	0	7	72	303	744	1377	1244	872	392	107	16	1		
$TL_9 - \{18\}$	0	0	0	0	1	30	199	675	1419	2180	1872	1191	485	122	17	1	
TL_9	0	0	0	0	0	8	102	502	1419	2796	3424	2744	1583	592	138	18	1

Example 3.3.

$$D_{cve} (TL_5, x) = 4x^3 + 20x^4 + 52x^5 + 78x^6 + 72x^7 + 38x^8 + 10x^9 + x^{10}$$
$$D_{cve} (TL_6 - \{12\}, x) = x^3 + 12x^4 + 46x^5 + 98x^6 + 127x^9 + 102x^8 + 47x^9 + 11x^{10} + x^{11}$$

By theorem 3.2, we have

$$D_{cve} (TL_6, x) = x \left[4x^3 + 20x^4 + 52x^5 + 78x^6 + 72x^7 + 38x^8 + 10x^9 + x^{10}x^3 + 12x^4 + 46x^5 + 98x^6 + 127x^7 + 102x^8 + 47x^9 + 11x^{10} + x^{11} \right]$$

= $5x^4 + 32x^5 + 98x^6 + 176x^7 + 199x^8 + 140x^9 + 57x^{10} + 12x^{11} + x^{12}$

We obtain, d_{cve} (TL_n, i) and d_{cve} $(TL_n - \{2n\}, i)$ for $2 \le n \le 9$ as shown in table 1.

In the following theorem we obtain some properties of d_{cve} (TL_n, i) .

Theorem 3.4. The following properties hold for the coefficients of D_{cve} (TL_n, x) and D_{cve} $(TL_n - \{2n\}, x)$ for all n.

(i)
$$d_{cve} (TL_n, 2n) = 1$$
 for all $n \ge 2$.
(ii) $d_{cve} (TL_n, 2n-1) = 2n$ for all $n \ge 2$.
(iii) $d_{cve} (TL_n - \{2n\}, 2n-1) = 1$ for all $n \ge 2$
(iv) $d_{cve} (TL_n - \{2n\}, 2n-2) = 2n-1$ for all $n \ge 2$
(v) $d_{cve} (TL_n, 2n-2) = 2n^2 - 3n + 3$ for all $n \ge 2$

(vi)
$$d_{cve} (TL_n - \{2n\}, 2n-3) = 2n^2 - 5n + 5 \text{ for all } n \ge 3$$

(vii) $d_{cve} (TL_n - \{2n\}, n-3) = 1$ for all $n \ge 5$

(viii) d_{cve} $(TL_n, n-2) = n-1$ for all $n \ge 4$

- *Proof.* (i) Since $D_{cve}(TL_n, 2n) = \{[2n]\}$, we have the result.
 - (ii) Since, $D_{cve}(TL_n, 2n-1) = \{[2n] \{x\}/x \in \{[2n]\}\},\$ we have $d_{cve}(TL_n, 2n-1) = 2n$
- (iii) Since, $D_{cve} (TL_n \{2n\}, 2n-1) = \{[2n-1]\}$, we have the result.
- (iv) To prove d_{cve} $(TL_n \{2n\}, 2n-2) = 2n-1$, for every $n \ge 2$, we apply induction on n.

When n = 2. L.H.S = $d_{cve} (TL_2 - \{4\}, 2) = 3$ (From table : 1) and R.H.S = $2 \times 2 - 1 = 3$.

Therefore, the result is true for n = 2 Now, suppose that the result is true for all natural numbers less than n and we prove it for n. By theorem 2.5, we have,

$$d_{cve} (TL_n - \{2n\}, 2n-2) = d_{cve} (TL_{n-1}, 2n-3) + d_{cve} (TL_{n-1}, \{2n-2\}, 2n-3) = 2(n-1) + 1$$

That is, $d_{\text{cve}}(TL_n, \{2n\}, 2n-2) = 2n-1$. Hence, the result is true for all *n*.

(v) To prove $d_{cve}(TL_n, 2n-2) = 2n^2 - 3n + 3$, for every $n \ge 2$, we apply induction on n.

When n = 2, L.H.S = d_{cve} ($TL_2, 2$) = 5(from table 1) and R.H.S = $2 \times 4 - 3 \times 2 + 3 = 5$.

Therefore, the result is true for n = 2. Now, suppose that the result is true for all numbers less than '*n*' and we prove it for

n. By theorem 2.5, we have

$$\begin{aligned} &d_{cve}\left(TL_{n}, 2n-2\right) \\ &= d_{cve}\left(TL_{n} - \{2n\}, 2n-3\right) + d_{cve}\left(TL_{n-1}, 2n-3\right) \\ &= d_{cve}\left(TL_{n-1}, 2n-4\right) + d_{cve}\left(TL_{n-1} - \{2n-2\}, 2n-4\right) \\ &+ d_{cve}\left(TL_{n-1}, 2n-3\right) \\ &= 2(n-1)^{2} - 3(n-1) + 3 + 2(n-1) - 1 + 2(n-1) \\ &= 2\left(n^{2} - n + 1\right) - 3n + 3 + 3 + 2n - 2 - 1 + 2n - 2 \\ &= 2n^{2} - 4n + 2 + n + 1 \\ &= 2n^{2} - 3n + 3 \end{aligned}$$

Hence the result is true for all n.

(vi) To prove d_{cve} $(TL_n - \{2n\}, 2n-3) = 2n^2 - 5n + 5$, for every $n \ge 3$, we apply induction on.

When n = 3, L.H.S = $d_{cve} (TL_3 - \{6\}, 3) = 8$ (From table 1) R.H.S = $2 \times 9 - 5 \times 3 + 5 = 8$.

Therefore, the result is true for n = 3. Now, suppose that the result is true for all numbers less than *n* and prove it for *n*. By theorem 2.5, we have

$$d_{cve} (TL_3 - \{2n\}, 2n - 3)$$

= $d_{cve} (TL_{n-1}, 2n - 4) + d_{cv\theta} (TL_{n-1}, \{2n - 2\}, 2n - 4)$
= $2(n - 1)^2 - 3(n - 1) + 3 + 2(n - 1) - 1$
= $2(n^2 - 2n + 1) - 3n + 3 + 2n - 2 - 1$
= $2n^2 - 4n + 2 - n + 3$

$$d_{cve}(TL_n - \{2n\}, 2n-3) = 2n^2 - 5n + 5$$

Hence, the result is true for all n.

- (vii) Since, $D_{cve} (TL_n \{2n\}, n-3) = \{3, 5, 7, 9, \dots, 2n 1\}$, we have the result.
- (viii) To prove $d_{cve} (TL_n, n-2) = n-1$ for all $n \ge 4$, we apply induction on n. When, n = 4, $d_{cve} (TL_4, 2) = 3$ R.H.S = n - 1 = 4 - 1 = 3. Therefore, the result is true for n = 4 By theorem 2.5, we have,

$$d_{cve} (TL_n, n-2) = d_{cve} (TL_n - \{2n\}, n-3) + d_{cve} (TL_{n-1}, n-3) = 1 + n - 2 = n - 1$$

Hence, the result is true for all n by mathematical induction.

References

- [1] S. Alikani and Y.H. Peng, Domination sets and Domination Polynomials of Cycles, *Global Journal of pure and Applied Mathematics*, 4(2)(2008).
- S. Alikani and Y.H Peng, *Introduction to Domination Polynomial of a graph*, ar Xiv: 0905.225[V] [math .10] 2009.
- ^[3] G. Chartrand and P. Zhamg, *Introduction to Graph Theory*, McGraw- Hill, Boston, Mass, USA, 2005.
- [4] A. Vijayan and T. Anitha Baby, Connected Total Dominating sets and Connected Total Domination Polynomials of Square of paths, *International Journal of Mathematics Trends and Technology*, 11(1)(2014).
- ^[5] A. Vijayan and T. Nagarajan Vertex -Edge Dominating Sets and Vertex - Edge domination polynomials of Paths, *International Journal of Mathematics Trends and Technology*, 4(11), 266-279.
- [6] A. Vijayan and T. Nagarajan, Vertex Edge Dominating sets and vertex - edge Domination Polynomials of Wheels, *IOSR Journal of Mathematics*, 10(5)(2014), 14-21.
- [7] A. Vijayan and J. SherinBeula, Edge vertex Dominating sets and Edge- Vertex Domination Polynomials of Cycles, *Open journal of Discrete Mathematics*, 5(2015), 74-87.

