Connected vertex-Edge dominating sets and connected vertex-Edge domination polynomials of triangular ladder

V. S. Radhika ${ }^{1 *}$ and A. Vijayan²

Abstract

Let G be a simple connected graph of order n. Let $D_{\text {cye }}(G, i)$ be the family of connected vertex - edge dominating sets of G with cardinality i. The polynomial

$$
D_{c v e}(G, x)=\sum_{i=\gamma_{\text {cve }}(G)}^{n} d_{\mathrm{cve}}(G, i) x^{i}
$$

is called the connected vertex - edge domination polynomial of G where $d_{\text {cve }}(G, i)$ is the number of vertex edge dominating sets of G. In this paper, we study some properties of connected vertex-edge domination polynomials of the Triangular Ladder $T L_{n}$. We obtain a recursive formula for $d_{\text {cve }}\left(T L_{n, i}\right)$. Using this recursive formula, we construct the connected vertex - edge domination polynomial

$$
D_{c v e}\left(T L_{n, x}\right)=\sum_{i=n-2}^{2 n} d_{c v e}\left(T L_{n, i}\right) x^{i}
$$

of $T L_{n}$, where $D_{\text {cve }}\left(T L_{n, i}\right)$ is the number of connected vertex - edge dominating sets of $T L_{n}$ with cardinality i and some properties of this polynomial have been studied.

Keywords

Triangular ladder, Connected vertex - edge dominating set, connected vertex - edge domination number, connected vertex - edge domination polynomial.

AMS Subject Classification
05C38, 05C78.
${ }^{1,2}$ Research Department of Mathematics, Nesamony Memorial Christian College [Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.], Marthandam, Kanyakumari, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ mathiradhika86@gmail.com; ${ }^{2}$ dravijayan@gmail.com
Article History: Received 09 November 2020; Accepted 10 February 2021

Contents

\qquad
1 Introduction 474

2 Connected vertex -Edge dominating sets of Triangu
lar Ladders
.475
3 Connected total domination polynomials of triangu- lar ladders 477
References 479

1. Introduction

Let $G=(V, E)$ be a simple graph of order n. For any vertex $v \in V$, the open neighbourhood of v is the set $N(v)=\{u \in$ $V / u v \in E\}$ and the closed neighbourhood of v is the set $N[v]=$ $N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S)=U_{v \in S} N(V)$ and the closed neighbourhood of S is $N[S]=N(s) \cup S . A$ vertex $u \in V(G)$ vertex-edge dominates (ve-dominates) an edge $v w \in E(G)$ if

1. $u=v$ or $u=w(u$ is incident to $v w)$ or
2. $u v$ or $u w$ is an edge in $G(u$ is incident to an edge that is
adjacent to $v w$).
A vertex - edge dominating set S of G is called a connected vertex - edge dominating set if the induced subgraph $\langle S\rangle$ is connected. The minimum cardinality of a connected vertex - edge dominating set of G is called the connected vertex edge domination number of G and is denoted by $\gamma_{\text {cve }}(G)$. A connected vertex - edge dominating set with cardinality $\gamma_{\text {cve }}(G)$ is called $\gamma_{\text {cve }}-$ set. We denote the set $\{1,2, \ldots, 2 n-$ $1,2 n\}$ by $[2 n]$, throughout this chapter. Also we used the notation $\lceil x\rceil$ for the smallest integer greater than or equal to $\lceil x\rceil$ and $\lfloor x\rfloor$ for the largest integer less than or equal to x.

2. Connected vertex-Edge dominating sets of Triangular Ladders

Consider two paths $u_{1} u_{2} \ldots u_{n}$ and $v_{1} v_{2} \ldots v_{n}$. Join each pair of vertices $u_{i} v_{i}$ and $u_{i+1} v_{i}, i=1,2, \ldots, n$. The resulting graph is a Triangular Ladder. Let $T L_{n}$ be a triangular ladder with $2 n$ vertices. Label the vertices of $T L_{n}$ as given in the following figure.

Figure 1

$$
\begin{aligned}
V\left(T L_{n}\right)= & \{1,2,3, \ldots, 2 n-2,2 n-1,2 n\} \text { and } \\
E\left(T L_{n}\right)= & \{(1,3),(3,5),(5,7) \ldots(2 n-5,2 n-3),(2,4), \\
& (4,6),(6,8), \ldots(2 n-4,2 n-2),(2 n-2,2 n), \\
& (1,2),(3,4),(5,6), \ldots(2 n-3,2 n-2) \\
& (2 n-1,2 n),(2,3),(4,5),(6,7), \ldots \\
& (2 n-4,2 n-3),(2 n-2,2 n-1)\}
\end{aligned}
$$

For the construction of the vertex- edge dominating sets of the Triangular Ladder $T L_{n}$, we need to investigate the connected vertex - edge dominating sets of $T L_{n}-\{2 n\}$. In this section, we investigate the connected vertex- edge dominating sets of $T L_{n}$ with cardinality i. We shall find the recursive formula for $d_{\text {cve }}\left(T L_{n}, i\right)$.

Lemma 2.1. (i) For every $n \in N$ and $n \geq 4, \gamma_{\text {cve }}\left(T L_{n}\right)=$ $n-1$.
(ii) For every $n \in N$ and $n \geq 5, \gamma_{\text {cve }}\left(T L_{n}-\{2 n\}\right)=n-2$.
(iii) $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi$ iff $i<n-10$ or $i>2 n$.
(iv) $D_{\text {ove }}\left(T L_{m u}-\{2 n\}, i\right)=\varphi$ iff $i<n-2$ or $i>2 n-1$.

Proof. (i) Clearly $\{3,5,7,9, \ldots, 2 n-1\}$ is a minimum connected vertex - edge dominating set for $T L_{n}$. If n is even or odd it contains $n-1$ elements. Hence $* y_{\text {cve }}\left(T L_{n}\right)=$ $n-10$.
(ii) Clearly, $\{3,5,7,9, \ldots, 2 n-3\}$ is a minimum connected vertex - edge dominating set for $T L_{n}-\{2 n\}$. If n is even or odd, it contains $n-2$ elements. Hence, $\gamma_{\text {cve }}\left(T L_{n}-\{2 n\}\right)=n-2$.
(iii) Follows from (i) and the definition of connected vertex - edge dominating set.
(iv) Follows from (ii) and the definition of connected vertex - edge dominating set.

Lemma 2.2. (i) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)=\varphi$,
$D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=\varphi$ and
$D_{\text {cve }}\left(T L_{n-2, i}-1\right)=\varphi$, then $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$
(ii) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$,
$D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=\varphi$ and
$D_{\text {cve }}\left(T L_{n-2, i}-1\right) \neq \varphi$, then $D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$
(iii) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)=\varphi$, and
$D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$ then $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi$
(iv) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$, and
$D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$, then $D_{\text {cve }}\left(T L_{n}, i\right) \neq \varphi$.
(v) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$, and
$D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$, then $D_{\text {cve }}\left(T L_{n}, i\right) \neq \varphi$.
Proof. (i) Since, $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)=\varphi$,
$D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=\varphi$ and
$D_{\text {cve }}\left(T L_{n-2, i}-1\right)=\varphi$, by Lemma 2.1 (iii) and (iv)
We have, $i-1<n-2$ or $i-1>2 n-1$
$i-1<n-3$ or $i-1>2 n-3$
and $i-1<n-3$ or $i-1<2 n-4$.
Therefore $i-1<n-3$ or $i-1>2 n-1$.
Therefore, $i-1<n-2$ or $i-1>2 n-2$ holds. Hence, $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$.
(ii) Since, $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$,
$D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right) \neq \varphi$, and
$D_{\text {cve }}\left(T L_{n}-3, i-1\right) \neq \varphi$, by lemma 2.1 (iii) and (iv), we have, $n-2 \leq i-1 \leq 2 n-1, n-3 \leq i-1 \leq 2 n-3$ and $n-3 \leq i-1 \leq 2 n-4$.
Suppose $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$. Then by Lemma 2.1 (iii), we have $i-1 \leq n-2$ or $i-1>2 n-2$.

If $i-1<n-2$, then $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)=\varphi$, a contradiction. If $i-1>2 n-2$, then $i-1>2 n-3$ holds, which implies $D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=$ φ, a contradiction. Therefore, $D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$.
(iii) Since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)=\varphi$ and
$D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$ by Lemma 2.1 (iii) and (iv), we have, $i-1<n-3$ or $i-1>2 n-1$ and $i-1<$ $n-2$ or $i-1>2 n-2$. Therefore, $i-1<n-2$ or $i-1>2 n-1$. Therefore, $i<n-1$ or $i>2 n$. Hence, $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi$.
(iv) Since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$, by lemma 2.1 (iii) and (iv), we have, $n-2 \leq i 1 \leq 2 n-1$ and $n-2 \leq i-1 \leq 2 n-2$. Suppose $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi$, then by Lemma 2.1 (iii), we have $i<n-1$ or $i>2 n$. Therefore, $i-1<n-2$ or $i-$ $1>2 n-1$ If $i-1<n-2$, then $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=$ φ, a contraction. If $i-1>2 n-1$, then $D_{\text {cve }}\left(T L_{n}-\right.$ $\{2 n\}, i-1)=\varphi$ a contraction. Therefore, $D_{\text {cve }}\left(T L_{n \neq} i\right)$ $\neq \varphi$.
(v) Since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ by lemma 2.1 (iv), we have $n-2 \leq i-1 \leq 2 n-1$. Also, since $D_{\text {cve }}\left(T L_{n-1}\right.$, $i-1)=\varphi$, by Lemma 2.1 (iii), we have $i-1<n-2$ or $i-1>2 n-2$. If $i-1<n-2$, then $D_{\text {cve }}\left(T L_{n}-\{2 n\}\right.$, $i-1)=\varphi$ a contraction.

Lemma 2.3. Suppose that $D_{\text {cve }}\left(T L_{n}, i\right) \neq \varphi$, then for every $n \in N$,
(i) $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=$ φ iff $i=2 n$.
(ii) $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi, D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}_{\text {win }}, 1\right)=\varphi$ iff $i=2 n-1$.
(iii) $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi, D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-2, i} i-1\right)=\varphi$ iff $i=2 n-2$.

Proof. Assume that $D_{\text {cve }}\left(T L_{n}, i\right) \neq \varphi$. Then $n-1 \leq i \leq 2 n$.
(i) $\Leftrightarrow)$ since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$, by lemma 2.1 (iv), we have $n-2 \leq i-1 \leq 2 n-1$. Therefore, $n-1 \leq$ $i \leq 2$.
Also since $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$, by lemma 2.1 we have, $i-1<n-2$ or $i-1>2 n-2$. If $i-1<n-$ 2 , then $i<n-1$ which implies $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi$, a contradiction. Therefore $i-1>2 n-2$. Therefore $i-1 \geq 2 n-1$. This implies $i \geq 2 n$. Therefore, $i=2 n$. (\Leftrightarrow) follows from Lemma 2.1 (iii) and (iv)
(\Leftrightarrow) since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$, and $D_{\text {cve }}\left(T L_{n-1}, i-1\right) \neq \varphi$ bylemma 2.1 (iii) and (iv), we have $n-2 \leq i-1 \leq 2 n-1$ and $n-2 \leq i-1 \leq 2 n-1$. Therefore, $n-2 \leq i-1 \leq 2 n-2$. Therefore, $n-1 \leq i \leq$ $2 n-2$. Also, since $D_{\text {cve }}\left(T L_{n-1}-\{2 n-2\}, i-1\right)=$ φ, by lemma 2.1 (iv), we have $i-1<n-3$ or $i-1>$ $2 n-3$. Therefore, $i<n-2$ or $i>2 n-2$ If $i<n-2$, then $i<n-1$ holds which implies $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi$, a contradiction. Therefore, $i<2 n-2$ Ther efore $\geq 2 n-1$. Combining together, we have $=2 n-1(\Leftrightarrow)$ follows from Lemma 2.1 (iii) and (iv).
(ii) Since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi, D_{\text {cve }}\left(T L_{n-1}, i-1\right)$ $\neq \varphi$ and $D_{\text {cve }}\left(T L_{n}-\{2 n-2\}, i-1\right) \neq \varphi$ by lemma 2.1 (iii) and (iv), we have $n-2 \leq i-1 \leq 2 n-1, n-2 \leq$ $i-1 \leq 2 n-2$ and $n-3 \leq i-1 \leq 2 n-3$. Therefore, $n-2 \leq i-1 \leq 2 n-3$. Therefore, $n-1 \leq i \leq 2 n-2$.

Also, since $D_{\text {cve }}\left(T L_{n-2}, i-1\right)=\varphi$, by lemma 2.1 (iii), we have, $i-1<n-3$ or $i-1>2 n-4$. If $i-1<n-3$, then $i<n-2$. Therefore, $i<n-2$ holds, which implies $D_{\text {cve }}\left(T L_{n}, i\right)=\varphi_{n}$ a contradiction.
Therefore, $i-1>2 n-4$ Therefore $i>2 n-3$ Therefore $\geq 2 n-2$. Together we have $i=2 n-2(\Leftarrow)$ follows from Lemma 2.1 (iii) and (iv).

Theorem 2.4. For every $n \geq 4$

(i) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}, i-1\right)$ $=\varphi$ then $D_{\text {cve }}\left(T L_{n}, i\right)=\{[2 n]\}$.
(ii) If $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}, i-1\right)$ $\neq \varphi$, then $D_{\text {cve }}\left(T L_{n}, i\right)=\left\{X_{1} \cup\{2 n\}\right.$, if $\left.2 n-1 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{2} \cup\right.$ $\{2 n-2\}$, if $2 n-4$ or
$\left.2 n-3 \in X_{2} / X_{2} \in D_{\text {cve }}\left(T L_{n-1}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-1\}\right.$, if $\left.2 n-2 \in X_{2} / X_{2} \in D_{\text {cve }}\left(T L_{n-1}, i-1\right)\right\}$.

Proof. (i) Since $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=\varphi$, by theorem 2.3 (i), $i=2 n$. Therefore $D_{\text {cve }}\left(T L_{n}, i\right)=\{[2 n]\}$.
(ii) Let $Y_{1}=\left\{X_{1} \cup\{2 n\}\right.$, if $\left.2 n-1 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{1} \cup\{2 n\}\right.$, if $2 n-2$ or $\left.2 n-1 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\}$ and $Y_{2}=\left\{X_{2} \cup\{2 n-2\}\right.$, if $2 n-4$ or $2 n-3 \in X_{2} / X_{2} \in$ $\left.D_{\text {cve }}\left(T L_{n-1}, i-1\right)\right\} \cup X_{2} \cup\{2 n-1\}$, if $2 n-2 \in X_{2} / X_{2}$ $\left.\in D_{\text {cve }}\left(T L_{n-1}, i-1\right)\right\}$
Obviously,

$$
\begin{equation*}
Y_{1} \cup Y_{2} \subseteq D_{\mathrm{cve}}\left(T L_{n}, i\right) \tag{2.1}
\end{equation*}
$$

Now, let $Y \in D_{\text {cve }}\left(T L_{n}, i\right)$. If $2 n \in Y$, then atleast one of the vertices labeled $2 n-2$ or $2 n-1$ is in Y. In either cases $Y=$ $\left\{X_{1} \cup\{2 n\}\right\}$ for some $X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)$. Therefore $Y \in Y_{1}$. Suppose that $2 n-1 \in Y, 2 n \notin Y$, them atleast one of the vertices labeled $2 n-3$ or $2 n-2$ is in Y. If $2 n-3 \in Y$, then $Y=\left\{X_{1} \cup\{2 n-1\}\right\}$ for some $X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}\right.$, $i-1)$ If $2 n-1 \in Y$, then $Y=\left\{X_{2} \cup\{2 n-1\}\right\}$ for some $X_{2} \in$ $D_{\text {cve }}\left(T L_{n-1}, i-1\right)$ Therefore $Y \in Y_{1}$ or $Y \in Y_{2}$.

Now, suppose that, $2 n-2 \in Y, 2 n-1 \notin Y, 2 n \notin Y$ then atleast one of the vertices labeled $2 n-4$ or $2 n-3$ is in Y. In either cases, $Y=\left\{X_{2} \cup\{2 n-2\}\right\}$ for some $X_{2} \in D_{\text {cve }}\left(T L_{n-1}\right.$, $i-1)$. Therefore $\quad Y \in Y_{2}$. Hence

$$
\begin{equation*}
D_{\text {ove }}\left(T L_{\mathrm{nu}} i\right) \subseteq Y_{1} \cup Y_{2} \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we have $D_{\text {cve }}\left(T L_{n}, i\right)=\left\{X_{1} \cup\{2 n-1\}\right.$, if $\left.2 n-3 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{1} \cup\{2 n\}\right.$, if $2 n-2$ or $\left.2 n-1 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup$ $\left\{X_{2} \cup\{2 n-2\}\right.$, if $2 n-4$ or $2 n-3 \in X_{2} / X_{2} \in D_{\text {cve }}\left(T L_{n-1}\right.$, $i-1)\} \cup\left\{X_{2} \cup\{2 n-1\}\right.$, if $2 n-2 \in X_{2} / X_{2} \in D_{\text {cve }}\left(T L_{n-1}\right.$, $i-1)\}$.

Theorem 2.5. If $D_{\text {cve }}\left(T L_{n}, i\right)$ is the family of connected vertex edge dominating sets of $T L_{n}$ cardinality i, where $i \geq n-1$, then

$$
\begin{aligned}
d_{c v e}\left(T L_{n}, i\right)= & d_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \\
& +d_{\text {cve }}\left(T L_{n-1}, i-1\right)
\end{aligned}
$$

Proof. We consider the two cases given in theorem 2.4 Suppose $D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) \neq \varphi$ and $D_{\text {cve }}\left(T L_{n-1}, i-1\right)=$ φ. Then $i=2 n$

$$
\begin{aligned}
d_{\mathrm{cve}}\left(T L_{n, i}\right) & =d_{\mathrm{cve}}\left(T L_{n, 2} 2 n\right)=1 \\
d_{\mathrm{cve}}\left(T L_{n}-\{2 n\}, i-1\right) & =d_{\mathrm{cve}}\left(T L_{n}-\{2 n\} 2 n-1\right)=1 \\
d_{c v e}\left(T L_{n-1}, i-1\right) & =d_{\mathrm{cve}}\left(T L_{n-1}, 2 n-1\right)=0 .
\end{aligned}
$$

Therefore,

$$
d_{\mathrm{cve}}\left(T L_{n}-\{2 n\}, i-1\right)+d_{\mathrm{cve}}\left(T L_{n-1}, i-1\right)=1+0=1
$$

Therefore, in this case

$$
\begin{aligned}
d\left(T L_{n}, i\right)= & d_{\mathrm{cve}}\left(T L_{n}-\{2 n\}, i-1\right) \\
& +d_{\mathrm{cve}}\left(T L_{n-1}, i-1\right)
\end{aligned}
$$

holds. By theorem 2.4 (ii) we have, $D_{\text {cve }}\left(T L_{n}, i\right)=\left\{X_{1} \cup\{2 n-1\}\right.$, if

$$
\left.2 n-3 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{1} \cup\{2 n\}\right.
$$

if $2 n-2$ or

$$
\left.2 n-1 \in X_{1} / X_{1} \in D_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right)\right\} \cup\left\{X_{2} \cup\{2 n-2\},\right.
$$

if $2 n-4$ or

$$
\left.2 n-3 \in X_{2} / X_{2} \in D_{\mathrm{cve}}\left(T L_{n-1}, i-1\right)\right\} \cup X_{2} \cup\{2 n-1\}
$$

if

$$
\left.2 n-2 \in X_{2} / X_{2} \in D_{\mathrm{cve}}\left(T L_{n-1}, i-1\right)\right\}
$$

Therefore

$$
\operatorname{cve} d_{\mathrm{cve}}\left(T L_{n}, i\right)=d_{\mathrm{cve}}\left(T L_{n}-\{2 n\}, i-1\right)+d_{\mathrm{cve}}\left(T L_{n-1}, i-1\right)
$$

3. Connected total domination polynomials of triangular ladders

Theorem 3.1. Let $D_{\text {cve }}\left(T L_{n}, i\right)$ be the family of connected vertex edge dominating sets of $T L_{n}$ with cardinality i and let $d_{\text {cve }}\left(T L_{n}, i\right)=\left|D_{\text {cve }}\left(T L_{n}, i\right)\right|$. Then the connected vertex edge domination polynomial $D_{\text {cve }}\left(T L_{n}, x\right)$ of $T L_{n}$ is defined as,

$$
D_{c v e}\left(T L_{n}, x\right)=\sum_{i=\gamma_{c v e}\left(T L_{n}\right)}^{2 n} d_{\text {cve }}\left(T L_{n}, i\right) x^{i}
$$

Theorem 3.2. For every $n \geq 4$,

$$
D_{c v e}\left(T L_{n}, x\right)=x\left[D_{c v e}\left(T L_{n}-\{2 n\}, x\right)+D_{c v e}\left(T L_{n-1}, x\right)\right]
$$

with initial values

$$
\begin{aligned}
D_{\text {cve }}\left(T L_{2}-\{4\}, x\right)= & 3 x^{2}+x^{3} \\
D_{\text {cve }}\left(T L_{2}, x\right)= & 5 x^{2}+4 x^{3}+x^{4} \\
D_{\text {cve }}\left(T L_{3}-\{6\}, x\right)= & 7 x^{2}+8 x^{3}+5 x^{4}+x^{5} \\
D_{\text {cue }}\left(T L_{3}, x\right)= & 7 x^{2}+12 x^{3}+12 x^{4}+6 x^{5}+x^{6} \\
D_{\text {cue }}\left(T L_{4}-\{8\}, x\right)= & 5 x^{2}+14 x^{3}+20 x^{4}+17 x^{5}+7 x^{6}+x^{7} \\
D_{\text {cre }}\left(T L_{4}, x\right)= & 3 x^{2}+12 x^{3}+26 x^{4}+32 x^{5}+23 x^{6} \\
& +8 x^{7}+x^{8} \\
D_{\text {cue }}\left(T L_{5}-\{10\}, x\right)= & x^{2}+8 x^{3}+26 x^{4}+46 x^{5}+49 x^{6} \\
& +30 x^{7}+9 x^{8}+x^{9}
\end{aligned}
$$

Proof. We have,

$$
d_{\mathrm{cve}}\left(T L_{n}, i\right)=d_{\mathrm{cve}}\left(T L_{n}-\{2 n\}, i-1\right)+d_{\mathrm{cve}}\left(T L_{n-1}, i-1\right)
$$

Therefore,

$$
d_{\text {cve }}\left(T L_{n}, i\right) x^{i}=d_{c v e}\left(T L_{n}-\{2 n\}, i-1\right) x^{i}+d_{c v e}\left(T L_{n-1}, i-1\right) x^{i}
$$

$$
\begin{aligned}
\sum_{i=n-1}^{2 n} d_{c v e}\left(T L_{n}, i\right)= & \sum_{i=n-1}^{2 n} d_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) x^{i} \\
& +\sum_{i=n-1}^{2 n} d_{\text {cve }}\left(T L_{n-1}, i-1\right) x^{i} \\
= & x \sum_{i=n-2}^{2 n} d_{\text {cve }}\left(T L_{n}-\{2 n\}, i-1\right) x^{i-1} \\
& +x \sum_{i=n-2}^{2 n} d_{\text {cve }}\left(T L_{n-1}, i-1\right) x^{i-1} \\
= & x D_{\text {cve }}\left(T L_{n}-\{2 n\}, x\right)+x D_{\text {cve }}\left(T L_{n-1}, x\right) \\
& +x\left[D_{\text {cve }}\left(T L_{n}-\{2 n\}, x\right)+D_{\text {cve }} T L_{n-1}, x\right]
\end{aligned}
$$

Therefore,

$$
D_{\mathrm{cve}}\left(T L_{n}, x\right)=x\left[D_{\mathrm{cve}}\left(T L_{n}-\{2 n\}, x\right)+D_{\mathrm{cve}}\left(T L_{n-1}, x\right)\right]
$$

With initial values,

$$
\begin{aligned}
D_{c v_{\theta}}\left(T L_{2}-\{4\}, x\right)= & 3 x^{2}+x^{3} \\
D_{c v e}\left(T L_{2}, x\right)= & 5 x^{2}+4 x^{3}+x^{4} \\
D_{c v \theta}\left(T L_{3},\{6\}, x\right)= & 7 x^{2}+8 x^{3}+5 x^{4}+x^{5} \\
D_{c v e}\left(T L_{3}, x\right)= & 7 x^{2}+12 x^{3}+12 x^{4}+6 x^{5}+x^{6} \\
D_{\text {cve }}\left(T L_{4},\{8\}, x\right)= & 5 x^{2}+14 x^{3}+20 x^{4}+17 x^{5}+7 x^{6}+x^{7} \\
D_{\text {cve }}\left(T L_{4}, x\right)= & 3 x^{2}+12 x^{3}+26 x^{4}+32 x^{5}+23 x^{6} \\
& +8 x^{7}+x^{8} \\
D_{c v e}\left(T L_{5}-\{10\}, x\right)= & x^{2}+8 x^{3}+26 x^{4}+46 x^{5}+49 x^{6} \\
& +30 x^{7}+9 x^{8}+x^{9}
\end{aligned}
$$

Table 1

$\downarrow n$ n $\rightarrow i$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$T L_{2}-\{4\}$	3	1															
$T L_{2}$	5	4	1														
$T L_{3}-\{6\}$	7	8	5	1													
$T L_{3}$	7	12	12	6	1												
$T L_{4}-\{8\}$	5	14	20	17	7	1											
$T L_{4}$	3	12	26	32	23	8	1										
$T L_{5}-\{10\}$	1	8	26	46	49	30	9	1									
$T L_{5}$	0	4	20	52	78	72	38	10	1								
$T L_{6}-\{12\}$	0	1	12	46	98	127	102	47	11	1							
$T L_{6}$	0	0	5	32	98	176	199	140	57	12	1						
$T L_{7}-\{14\}$	0	0	1	17	78	196	303	301	187	68	13	1					
$T L_{7}$	0	0	0	6	49	176	372	502	441	244	80	14	1				
$T L_{8}-\{16\}$	0	0	0	1	23	127	372	675	803	628	312	93	15	1			
$T L_{8}$	0	0	0	0	7	72	303	744	1377	1244	872	392	107	16	1		
$T L_{9}-\{18\}$	0	0	0	0	1	30	199	675	1419	2180	1872	1191	485	122	17	1	
$T L_{9}$	0	0	0	0	0	8	102	502	1419	2796	3424	2744	1583	592	138	18	1

Example 3.3.

$$
\begin{aligned}
D_{\text {cve }}\left(T L_{5}, x\right)= & 4 x^{3}+20 x^{4}+52 x^{5}+78 x^{6}+72 x^{7} \\
& +38 x^{8}+10 x^{9}+x^{10} \\
D_{\text {cve }}\left(T L_{6}-\{12\}, x\right)= & x^{3}+12 x^{4}+46 x^{5}+98 x^{6}+127 x^{9} \\
& +102 x^{8}+47 x^{9}+11 x^{10}+x^{11}
\end{aligned}
$$

By theorem 3.2, we have

$$
\begin{aligned}
D_{\text {cve }}\left(T L_{6}, x\right)= & x\left[4 x^{3}+20 x^{4}+52 x^{5}+78 x^{6}+72 x^{7}\right. \\
& +38 x^{8}+10 x^{9}+x^{10} x^{3}+12 x^{4}+46 x^{5}+98 x^{6} \\
& \left.++127 x^{7}+102 x^{8}+47 x^{9}+11 x^{10}+x^{11}\right] \\
= & 5 x^{4}+32 x^{5}+98 x^{6}+176 x^{7}+199 x^{8}+140 x^{9} \\
& +57 x^{10}+12 x^{11}+x^{12}
\end{aligned}
$$

We obtain, $d_{\text {cve }}\left(T L_{n}, i\right)$ and $d_{\text {cve }}\left(T L_{n}-\{2 n\}, i\right)$ for $2 \leq n \leq 9$ as shown in table 1.

In the following theorem we obtain some properties of $d_{\text {cve }}\left(T L_{n}, i\right)$.

Theorem 3.4. The following properties hold for the coefficients of $D_{\text {cve }}\left(T L_{n}, x\right)$ and $D_{\text {cve }}\left(T L_{n}-\{2 n\}, x\right)$ for all n.
(i) $d_{\text {cve }}\left(T L_{n}, 2 n\right)=1$ for all $n \geq 2$.
(ii) $d_{\text {cve }}\left(T L_{n}, 2 n-1\right)=2 n$ for all $n \geq 2$.
(iii) $d_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-1\right)=1$ for all $n \geq 2$
(iv) $d_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-2\right)=2 n-1$ for all $n \geq 2$
(v) $d_{\text {cve }}\left(T L_{n}, 2 n-2\right)=2 n^{2}-3 n+3$ for all $n \geq 2$
(vi) $d_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-3\right)=2 n^{2}-5 n+5$ for all $n \geq 3$
(vii) $d_{\text {cve }}\left(T L_{n}-\{2 n\}, n-3\right)=1$ for all $n \geq 5$
(viii) $d_{\text {cve }}\left(T L_{n}, n-2\right)=n-1$ for all $n \geq 4$

Proof. (i) Since $D_{\text {cve }}\left(T L_{n}, 2 n\right)=\{[2 n]\}$, we have the result.
(ii) Since, $D_{\text {cve }}\left(T L_{n}, 2 n-1\right)=\{[2 n]-\{x\} / x \in\{[2 n]\}\}$, we have $d_{\text {cve }}\left(T L_{n}, 2 n-1\right)=2 n$
(iii) Since, $D_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-1\right)=\{[2 n-1\}$, we have the result.
(iv) To prove $d_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-2\right)=2 n-1$, for every $n \geq 2$, we apply induction on n.
When $n=2$.
L.H.S $=d_{\text {cve }}\left(T L_{2}-\{4\}, 2\right)=3$ (From table : 1) and R.H.S $=2 \times 2-1=3$.

Therefore, the result is true for $n=2$ Now, suppose that the result is true for all natural numbers less than n and we prove it for n. By theorem 2.5, we have,

$$
\begin{aligned}
& d_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-2\right) \\
& =d_{\text {cve }}\left(T L_{n-1}, 2 n-3\right)+d_{\text {cve }}\left(T L_{n-1},\{2 n-2\}, 2 n-3\right) \\
& =2(n-1)+1
\end{aligned}
$$

That is, $d_{\text {cve }}\left(T L_{n},\{2 n\}, 2 n-2\right)=2 n-1$.
Hence, the result is true for all n.
(v) To prove $d_{\text {cve }}\left(T L_{n}, 2 n-2\right)=2 n^{2}-3 n+3$, for every $n \geq 2$, we apply induction on n.

When $n=2$, L.H.S $=d_{\text {cve }}\left(T L_{2}, 2\right)=5($ from table 1$)$ and R.H.S $=2 \times 4-3 \times 2+3=5$.

Therefore, the result is true for $n=2$. Now, suppose that the result is true for all numbers less than ' n ' and we prove it for
n. By theorem 2.5, we have

$$
\begin{aligned}
& d_{c v e}\left(T L_{n}, 2 n-2\right) \\
= & d_{c v e}\left(T L_{n}-\{2 n\}, 2 n-3\right)+d_{c v e}\left(T L_{n-1}, 2 n-3\right) \\
= & d_{c v e}\left(T L_{n-1}, 2 n-4\right)+d_{c v e}\left(T L_{n-1}-\{2 n-2\}, 2 n-4\right) \\
& +d_{c v e}\left(T L_{n-1}, 2 n-3\right) \\
= & 2(n-1)^{2}-3(n-1)+3+2(n-1)-1+2(n-1) \\
= & 2\left(n^{2}-n+1\right)-3 n+3+3+2 n-2-1+2 n-2 \\
= & 2 n^{2}-4 n+2+n+1 \\
= & 2 n^{2}-3 n+3
\end{aligned}
$$

Hence the result is true for all n.
(vi) To prove $d_{\text {cve }}\left(T L_{n}-\{2 n\}, 2 n-3\right)=2 n^{2}-5 n+5$, for every $n \geq 3$, we apply induction on.

When $n=3$, L.H.S $=d_{\text {cve }}\left(T L_{3}-\{6\}, 3\right)=8($ From table 1$)$ R.H.S $=2 \times 9-5 \times 3+5=8$.

Therefore, the result is true for $n=3$. Now, suppose that the result is true for all numbers less than n and prove it for n. By theorem 2.5, we have

$$
\begin{aligned}
& d_{\text {cve }}\left(T L_{3}-\{2 n\}, 2 n-3\right) \\
& \quad=d_{\text {cve }}\left(T L_{n-1}, 2 n-4\right)+d_{c v \theta}\left(T L_{n-1},\{2 n-2\}, 2 n-4\right) \\
& =2(n-1)^{2}-3(n-1)+3+2(n-1)-1 \\
& =2\left(n^{2}-2 n+1\right)-3 n+3+2 n-2-1 \\
& =2 n^{2}-4 n+2-n+3
\end{aligned}
$$

$$
d_{c v e}\left(T L_{n}-\{2 n\}, 2 n-3\right)=2 n^{2}-5 n+5
$$

Hence, the result is true for all n.
(vii) Since, $D_{\text {cve }}\left(T L_{n}-\{2 n\}, n-3\right)=\{3,5,7,9, \ldots, 2 n-$ $1\}$, we have the result.
(viii) To prove $d_{\text {cve }}\left(T L_{n}, n-2\right)=n-1$ for all $n \geq 4$, we apply induction on n.
When, $n=4, d_{\text {cve }}\left(T L_{4}, 2\right)=3$
R.H.S $=n-1=4-1=3$.

Therefore, the result is true for $n=4$ By theorem 2.5, we have,

$$
\begin{aligned}
d_{\text {cve }}\left(T L_{n}, n-2\right)= & d_{\text {cve }}\left(T L_{n}-\{2 n\}, n-3\right) \\
& +d_{\text {cve }}\left(T L_{n-1}, n-3\right) \\
= & 1+n-2 \\
= & n-1
\end{aligned}
$$

Hence, the result is true for all n by mathematical induction.

References

${ }^{\text {[1] }}$ S. Alikani and Y.H. Peng, Domination sets and Domination Polynomials of Cycles, Global Journal of pure and Applied Mathematics, 4(2)(2008).
${ }^{[2]}$ S. Alikani and Y.H Peng, Introduction to Domination Polynomial of a graph, ar Xiv : 0905.225[V] [math .10] 2009.
${ }^{\text {[3] }}$ G. Chartrand and P. Zhamg, Introduction to Graph Theory, McGraw- Hill, Boston, Mass, USA, 2005.
${ }^{[4]}$ A. Vijayan and T. Anitha Baby, Connected Total Dominating sets and Connected Total Domination Polynomials of Square of paths, International Journal of Mathematics Trends and Technology, 11(1)(2014).
${ }^{[5]}$ A. Vijayan and T. Nagarajan Vertex -Edge Dominating Sets and Vertex - Edge domination polynomials of Paths, International Journal of Mathematics Trends and Technology, 4(11), 266-279.
[6] A. Vijayan and T. Nagarajan, Vertex - Edge Dominating sets and vertex - edge Domination Polynomials of Wheels, IOSR Journal of Mathematics, 10(5)(2014), 1421.
${ }^{[7]}$ A. Vijayan and J. SherinBeula, Edge - vertex Dominating sets and Edge- Vertex Domination Polynomials of Cycles, Open journal of Discrete Mathematics, 5(2015), 74-87.

$$
\operatorname{ISSN}(\mathrm{P}): 2319-3786
$$

Malaya Journal of Matematik
ISSN(O): $2321-5666$
