		$\overline{\text { Q }}$
Malaya Journal of Matematik	$\mathcal{M J J M}$ an international journal of mathematical sciences with computer applications...	

On null sets in measure spaces

Asiyeh Erfanmanesh *
Faculty of Iranian Academic Center for Education Calture and Research, Ahvaz, Iran

Abstract

In this short work, first, we have a review on null sets in measure spaces. Next, we present an interesting example of a null set.

Keywords: Null set, Measure space, Sard's lemma.
2010 MSC: 28C20.
(C) 2012 MJM. All rights reserved.

1 Introduction

In the section, we have a brief review on some properties of null sets.
In mathematics, a null set is a set that is negligible in some sense. In measure theory, any set of measure 0 is called a null set (or simply a measure-zero set). More generally, whenever an ideal is taken as understood, then a null set is any element of that ideal.
Null sets play a key role in the definition of the Lebesgue integral: if functions f and g are equal except on a null set, then f is integrable if and only if g is, and their integrals are equal. Indeed, via null sets we give a sufficient and necessary condition for integrability of a bounded real function:

Theorem 1.1. If $f(x)$ is bounded in $[a, b]$, then a necessary and sufficient condition for the existence of $\int_{a}^{b} f(x) d x$ is that the set of discontinuities have measure zero [1].

A measure in which all subsets of null sets are measurable is complete. Any non-complete measure can be completed to form a complete measure by asserting that subsets of null sets have measure zero. Lebesgue measure is an example of a complete measure; in some constructions, it^{\prime} 's defined as the completion of a noncomplete Borel measure.
A famous example for a null set is given by Sard's lemma.
Example 1.1 (Sard's lemma). The set of critical values of a smooth function has measure zero [2].
In the following, we present some another examples of null sets.
Example 1.2. Any countable set has zero measure [1].
Example 1.3. All the subsets of \mathbb{R}^{n} whose dimension is smaller than n have null Lebesgue measure in \mathbb{R}^{n}.
Note that it may possible an uncountable set has zero measure; For instance, the standard construction of the Cantor set is an example of a null uncountable set in \mathbb{R}; however other constructions are possible which assign the Cantor set any measure whatsoever.
It is well-known and easy to show that a subset of a set of measure zero also has measure zero and a countable union of sets of measure zero also has measure zero.

[^0]Remark 1.1. Isomorphic sets may have different measures; In the other hand, a measure is not preserved by bijections. The most famous example would be the Cantor set \mathbf{C}. One can show that \mathbf{C} has measure zero, yet there exists a bijection between \mathbf{C} and $[0,1]$, which does not have measure zero.

Let's end with an interesting example showing that a sum of two measure zero sets may has positive measure.

Example 1.4. Let \mathbf{C} be the Cantor set. Define

$$
\mathbf{C}+\mathbf{C}=\{a+b: a, b \in \mathbf{C}\}
$$

It can be seen easily that $\mathbf{C}+\mathbf{C}=[0,2]$. Hence we have a sum of two measure zero sets which has positive measure.
Another properties of null sets and measurable spaces can be found in [3, 4].

2 An interesting Null Set

In the following theorem, we have presented a null set.
Theorem 2.2. Let X be a nonempty set and $\mu: 2^{X} \rightarrow[0, \infty)$ an outer measure. Suppose that $\left(A_{n}\right)$ be a sequence of subsets in 2^{X} such that $\sum_{n} \mu\left(A_{n}\right)<\infty$. Consider the set $F=\left\{x \in X: x\right.$ belong to infinitely many of $\left.A_{k}^{\prime} s\right\}$. Then $\mu(F)=0$.

Proof. By Example 1.2, it is enough to prove that F is countable. Evidently, for each $x \in F$, there is $n_{x} \in \mathbb{N}$ so that $x \in \bigcap_{k=n_{x}}^{\infty} A_{k}$. Define the relation \sim on X as follow:

$$
x \sim y \Leftrightarrow n_{x}=n_{y}
$$

It is easy to verify that \sim is an equivalence relation on F. Set $N_{F}:=\left\{n_{x}: x \in F\right\}$. Clearly $N_{F} \subset \mathbb{N}$. Now, define the function $f: E \mathbf{C}(F) \rightarrow N_{F}$ by $f([x])=n_{x}$, where $E \mathbf{C}(F)$ denotes the set of all equivalent classes of F. Since equivalence classes partite F, so f is well-defined. Obviously, f is onto. Let $n_{x}=n_{y}$. This implies that $x \sim y$, i.e., $x \in[y]$. Also, it follows that $y \in[x]$. Therefore, $x=y$. Thus f is an one to one corresponding. Hence $E \mathbf{C}(F)$ is a countable set. Finally, by defining the function $g: E \mathbf{C}(F) \rightarrow F, g([x])=x$, we conclude that F is countable, as desired.

References

[1] Charalambos D. Aliprantis, Principles of Real Analysis, Academic Press, 3 Ed, ISBN: 0120502577,451 pages, 2008.
[2] A. Sard, The measure of the critical values of differentiable maps, Bulletin of the American Mathematical Society, 48(12)(1942), 883-890.
[3] A.N. Kolmogrov and S.V. Fomin, Measure, Lebesgue Integrals, and Hilbert Space, Academic Press INC., New York, 1960.
[4] C. Swartz, Measure, Integration and Function Spaces, World Scientific Publishing Co.Pvt.Ltd., Singapore, 1994.

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: erfanmaneshasy@gmail.com (Asiyeh Erfanmanesh).

