Some new Ostrowski type inequalities for functions whose second derivative are h-convexe via Riemann-Liouville fractionnal

B. Meftaha and K. Boukerriouaa,*

aUniversity of Guelma. Guelma, Algeria.

Abstract

A new identity similar to an identity proved in Erhan Set. (2012) \cite{15} for fractional integrals is estab-
lished. By making use of the established identity, some new Ostrowski type inequalities for Riemann–Liouville
fractional integral are obtained.

Keywords: Ostrowski type inequalities, Riemann-Liouville integrals, \((s, m)\) – convex function.

2010 MSC: 26D15, 26D20, 39A12.

1 Introduction

In 1938, A.M. Ostrowski proved an interesting integral inequality, estimating the absolute value of the
derivative of a differentiable function by its integral mean as follows

\textbf{Theorem 1.1.} [13] Let \(f: I \rightarrow \mathbb{R} \), where \(I \subseteq \mathbb{R} \) is an interval, be a mappingin the interior \(I^0 \) of \(I \), and \(a, b \in I^0 \), with \(a < b \).

If \(|f'| \leq M \) for all \(x \in [a, b] \), then

\[\left| f(x) - \frac{1}{b - a} \int_a^b f(t) \, dt \right| \leq M (b - a) \left[\frac{1}{4} + \frac{(x - \frac{a+b}{2})^2}{(b-a)^2} \right], \quad \forall x \in [a, b] \quad (1.1) \]

This is well-know Ostrowski inequality. In recent years, a number of authors have written about general-
izations, extensions and variants of such inequalities (see \cite{1, 2, 3}).

Let us recall definitions of some kinds of convexity as follows.

\textbf{Definition 1.1.} \(\text{We say that} \ f: I \subset \mathbb{R} \rightarrow \mathbb{R} \ (I \neq \phi) \ \text{is convex function if the inequality} \)

\[f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \quad (1.2) \]

\(\text{holds for all} \ x, y \in I, \ \text{and} \ t \in [0,1] \).

\textbf{Definition 1.2.} \[\text{We say that} \ f: I \subset \mathbb{R} \rightarrow \mathbb{R} \ (I \neq \phi) \ \text{is P- function if} \ f \ \text{is non-negative and the inequality} \]

\[f(tx + (1-t)y) \leq f(x) + f(y) \quad (1.3) \]

\(\text{holds for all} \ x, y \in I, \ \text{and} \ t \in [0,1] \).

*Corresponding author.

E-mail address: khaledv2004@yahoo.fr (Khaled Boukerrioua), badrimeftah@yahoo.fr (Badri Meftah).
Definition 1.3. \[8\] We say that \(f : [0, \infty) \rightarrow \mathbb{R} \) is \(s \)-convex function in the second sense, if the inequality
\[
f(t x + (1 - t) y) \leq t^s f(x) + (1 - t)^s f(y)
\]
holds for all \(x, y \in (0, b) \), \(t \in [0, 1] \) and for fixed \(s \in (0, 1] \).

Definition 1.4. \[15\] Let \(h : J \subset \mathbb{R} \rightarrow \mathbb{R} \), be a positive function. We say that \(f : I \subset \mathbb{R} \rightarrow \mathbb{R} (I \neq \emptyset) \) is \(h \)-convex function, if \(f \) is non-negative and
\[
f(t x + (1 - t) y) \leq h(t)f(x) + h(1-t)f(y)
\]
holds for all \(x, y \in I \), and \(t \in [0, 1] \).

Definition 1.5. \[17\] We say that \(f : [0, b] \rightarrow \mathbb{R} \) is said to be \(m \)-convex, where \(m \in (0, 1] \) and \(b > 0 \), if for every \(x, y \in [0, b] \) and \(t \in [0, 1] \), we have
\[
f(t x + m (1 - t) y) \leq t f(x) + m(1-t) f(y)
\]

Definition 1.6. \[12\] We say that \(f : [0, b] \rightarrow \mathbb{R} \) is said to be \((s, m)\)-convex, where \((s, m) \in (0, 1]^2 \) and \(b > 0 \), if for every \(x, y \in [0, b] \) and \(t \in [0, 1] \), we have
\[
f(t x + m (1 - t) y) \leq t^s f(x) + m(1-t)^s f(y)
\]

Definition 1.7. Let \(f \in L_1 [a, b] \). The Riemann-Liouville integrals \(J^a_+ f(x), J^b_- f(x) \) of order \(\alpha > 0 \), with \(a > 0 \) are defined by
\[
J^a_+ f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t)dt, \quad x > a
\]
\[
J^b_- f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t)dt, \quad x < b
\]
and \(J^0_0 f(x) = J^0_+ f(x) = f(x) \)

where
\[
\Gamma(\alpha) = \int_0^{\infty} e^{-t} t^{\alpha-1} dt
\]
noting also
\[
\beta(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
\]

Motivated by the recent results given in \[1, 2, 6, 9\], in the present paper, we provide some companions of Ostrowski type inequalities involving Riemann – Liouville fractional integrals for functions whose second derivatives absolute value are \(h \)-convex.

2 OSTROWSKI TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS

In order to prove our main results we need the following identity.

Lemma 2.1. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a twice differentiable mapping on \((a, b)\) with \(a < b \). If \(f'' \in L_1 [a, b] \), then the following equality for fractional integrals holds for any \(x \in [a, b] \)
\[
L_a(x) = (x-a)^{\alpha+1} (b-x)^{\alpha+1} \left[(a-x) \int_0^1 t^{\alpha+1} f''(tx+(1-t)a) dt + (x-b) \int_0^1 t^{\alpha+1} f''(tx+(1-t)b) dt \right]
\]
\[
= \int_0^1 \frac{d}{dt} \left[(t-a)^{\alpha+1} (b-t)^{\alpha+1} \right] f''(tx+(1-t)a) dt
\]
where
\[L_\alpha(x) = (\alpha + 1)(b - x)^\alpha (x - a)^\alpha (b - a) f(x) - \Gamma(\alpha + 2) \left[(b - x)^{\alpha + 1} \int_a^x f(x) - (x - a)^{\alpha + 1} \int_a^x f(b) \right] \]
(2.13)

Proof. We have

\[
\int_a^x f(t) dt = \frac{1}{\Gamma(\alpha)} \int_a^x (t - a)^{\alpha - 1} f(t) dt
\]
(2.14)

\[
= \frac{1}{\Gamma(\alpha)} \left[(x - a)^\alpha f(x) - \int_a^x (t - a)^\alpha f(t) dt \right]
\]
\[
= \frac{1}{\Gamma(\alpha + 1)} \left[(x - a)^{\alpha + 1} f(x) - \int_a^x (t - a)^{\alpha + 1} f'(t) dt \right]
\]
\[
= \frac{1}{\Gamma(\alpha + 2)} \left[(x - a)^{\alpha + 1} f(x) - (x - a)^{\alpha + 1} f'(x) + \int_a^x (t - a)^{\alpha + 1} f''(t) dt \right],
\]

multiplying both side of (2.14) by \(\Gamma(\alpha + 2) (b - x)^{\alpha + 1}\), we get

\[
\Gamma(\alpha + 2) (b - x)^{\alpha + 1} \int_a^x f(t) dt = \left[(a + 1)(b - x)^{\alpha + 1} (x - a)^\alpha f(x) - (b - x)^{\alpha + 1} (x - a)^{\alpha + 1} f'(x) + (b - x)^{\alpha + 1} (x - a)^{\alpha + 2} \int_0^1 t^{\alpha + 1} f''(tx + (1-t)b) dt \right].
\]
(2.15)

And

\[
\int_a^b (b - t)^{\alpha - 1} f(t) dt = \frac{1}{\Gamma(\alpha)} \int_a^b (b - t)^{\alpha - 1} f(t) dt
\]
(2.16)

\[
= \frac{1}{\Gamma(\alpha)} \left[(b - x)^\alpha f(x) + \int_a^x (b - t)^\alpha f'(t) dt \right]
\]
\[
= \frac{1}{\Gamma(\alpha + 1)} \left[(b - x)^{\alpha + 1} f(x) + \int_a^x (b - t)^{\alpha + 1} f'(t) dt \right]
\]
\[
= \frac{1}{\Gamma(\alpha + 2)} \left[(a + 1)(b - x)^{\alpha + 1} (x - a)^\alpha f(x) - (b - x)^{\alpha + 1} (x - a)^{\alpha + 1} f'(x) + (b - x)^{\alpha + 1} (x - a)^{\alpha + 2} \int_0^1 t^{\alpha + 1} f''(tx + (1-t)b) dt \right],
\]

multiplying both side of (2.16) by \(\Gamma(\alpha + 2) (x - a)^{\alpha + 1}\), we get

\[
\Gamma(\alpha + 2) (x - a)^{\alpha + 1} \int_a^x f(t) dt = \left[(a + 1)(x - a)^{\alpha + 1} (b - x)^\alpha f(x) + (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} f'(x) + (x - a)^{\alpha + 1} (b - x)^{\alpha + 2} \int_0^1 t^{\alpha + 1} f''(tx + (1-t)b) dt \right].
\]
(2.17)

Summing (2.15) and (2.17), we obtain

\[
\Gamma(\alpha + 2) (b - x)^{\alpha + 1} \int_a^x f(t) dt + \Gamma(\alpha + 2) (x - a)^{\alpha + 1} \int_a^x f(t) dt =
\]
\[
(a + 1)(b - a) (x - a)^\alpha (b - x)^\alpha f(x) +
\]
\[
(x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[(x - a) \int_0^1 t^{\alpha + 1} f''(tx + (1-t)a) dt + (b - x) \int_0^1 t^{\alpha + 1} f''(tx + (1-t)b) dt \right]
\]
(2.18)
we can rewrite (2.18) as follows

\[(a + 1) (b - a) (x - a)^{\alpha} (b - x)^{\alpha} f(x) - \left[\Gamma(a + 2) (b - x)^{\alpha+1} \int_{x}^{b} f(t) dt + \Gamma(a + 2) (x - a)^{\alpha+1} \int_{a}^{x} f(t) dt \right] \]

and thus (2.19) implies (2.12).

Theorem 2.1. Let \(f : I \to \mathbb{R} \) be a twice differentiable mapping on \(I \) such that \(|f''| \in L_{1} [a, b] \), where \(a, b \in I \), with \(a < b \).

If \(|f''| \) is convex function on \([a, b] \), and \(f'' \) is bounded, i.e., \(\|f''\|_{\infty} = \sup_{x \in [a, b]} |f''| < \infty \) for any \(x \in [a, b] \), then the following inequality holds

\[|L_{a}(x)| \leq \frac{(x - a)^{\alpha+1} (b - x)^{\alpha+1} (b - a)}{(\alpha + 2)} \|f''\|_{\infty} \] \hspace{1cm} (2.20)

Proof. By lemma 2.1 and Under the given assumptions on \(f'' \) we have

\[
|L_{a}(x)| = \left| (x - a)^{\alpha+1} (b - x)^{\alpha+1} \left[(a - x) \int_{0}^{1} t^{\alpha+1} f''(tx + (1 - t) a) dt + (x - b) \int_{0}^{1} t^{\alpha+1} f''(tx + (1 - t) b) dt \right] \right|
\]

\[\leq \frac{(x - a)^{\alpha+1} (b - x)^{\alpha+1}}{(\alpha + 2)} \left[(x - a) \int_{0}^{1} t^{\alpha+1} |f''(x)| dt + (b - x) \int_{0}^{1} t^{\alpha+1} |f''(x)| dt \right] \]

\[\leq \|f''\|_{\infty} (x - a)^{\alpha+1} (b - x)^{\alpha+1} (b - x + x - a) \int_{0}^{1} t^{\alpha+1} dt = \frac{(x - a)^{\alpha+1} (b - x)^{\alpha+1} (b - a)}{(\alpha + 2)} \|f''\|_{\infty} \]

Remark 2.1. Under the same hypotheses of Theorem 2.1, at the exception of the convexity of \(f'' \) the inequality (2.20) remains valid.

Corollary 2.1. With the assumptions in Theorem 2.1 in the case where \(\alpha = 1 \), one has the inequality

\[\left| f\left(\frac{a + b}{2} \right) - \frac{1}{(b - a)} \int_{a}^{b} f(t) dt \right| \leq \frac{(b - a)^{2}}{24} \|f''\|_{\infty} \] \hspace{1cm} (2.21)

Proof. Choose \(x = \frac{a + b}{2} \) and \(\alpha = 1 \) in (2.9), we get

\[\frac{(b - a)^{3}}{2} \left| f\left(\frac{a + b}{2} \right) - \frac{1}{(b - a)} \int_{a}^{b} f(t) dt \right| \leq \frac{(b - a)^{5}}{48} \|f''\|_{\infty} \] \hspace{1cm} (2.22)

dividing both side of (2.22) by \(\frac{(b - a)^{3}}{2} \) we obtain (2.21).

Remark 2.2. The inequality (2.21) is obtained in [9], choose \(x = \frac{a + b}{2} \) in theorem 2.2.
Corollary 2.2. With the assumptions in Theorem 1.1 in the case where \(\alpha = 1 \), one has the inequality.

\[
\left| f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) - \frac{1}{b-a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{96} \|f''\|_\infty
\]

(2.23)

Proof. Apply Theorem 1.1 a faith on the interval \([a, a+b/2]\), taking \(\alpha = 1 \) in (2.9), and replace \(x \) by \(\frac{3a+b}{4} \), we get

\[
\frac{(b-a)^3}{16} \left| f\left(\frac{3a+b}{4}\right) - \frac{b-a}{2a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^5}{1536} \|f''\|_\infty
\]

(2.24)

(2.24) implies

\[
\left| f\left(\frac{3a+b}{4}\right) - \frac{b-a}{2a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{96} \|f''\|_\infty
\]

(2.25)

Apply Theorem 1.1 another faith on the interval \([a+b/2, b]\), taking \(\alpha = 1 \) in (2.9), and replace \(x \) by \(\frac{a+3b}{4} \), we get

\[
\left| f\left(\frac{a+3b}{4}\right) - \frac{b-a}{2a} \int_a^b f(t) dt \right| \leq \frac{(b-a)^2}{96} \|f''\|_\infty
\]

(2.26)

summing (2.25) and (2.26), dividing the result by 2 we obtain (2.23). \qed

Remark 2.3. The inequality (2.23) is obtained in [9] corollary 2.3

Corollary 2.3. Let \(f : I \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I^c \) such that \(|f''| \in L_1[a, b] \), where \(a, b \in I \), with \(a < b \).

If \(|f''| \) is convex function on \([a, b]\), \(p, q \geq 1, \frac{1}{p} + \frac{1}{q} = 1 \) and and \(f'' \) is bounded, i.e., \(\|f''\|_\infty = \sup_{x \in [a, b]} |f''| < \infty \), for any \(x \in [a, b] \),

then the following inequality holds

\[
|L_\alpha(x)| \leq (x-a)^{a+1} (b-x)^{a+1} (b-a) \left(\frac{1}{(a+1)^p + 1} \right)^{\frac{1}{p}} \|f''\|_\infty
\]

(2.27)

Proof. under the assumptions given on \(f'' \) and using the well-known Hölder’s inequality for lemma 2.1 we get

\[
|L_\alpha(x)| = \left| (x-a)^{a+1} (b-x)^{a+1} \left[(a-x) \int_0^{a+1} f''(tx + (1-t) a) dt + (x-b) \int_0^{a+1} f''(tx + (1-t) b) dt \right] \right|
\]

\[
\leq (x-a)^{a+1} (b-x)^{a+1} \left[(a-x) \int_0^{a+1} |f''(tx + (1-t) a)| dt + (x-b) \int_0^{a+1} |f''(tx + (1-t) b)| dt \right]
\]

\[
\leq (x-a)^{a+1} (b-x)^{a+1} \left[(x-a) \left(\frac{1}{0} \int_0^{(a+1)p} f''(tx + (1-t) a) dt \right)^{\frac{1}{p}} + \left(\frac{1}{0} \int_0^{(a+1)p} f''(tx + (1-t) b) dt \right)^{\frac{1}{q}} \right]
\]

\[
\leq (x-a)^{a+1} (b-x)^{a+1} \left[(b-x) \left(\frac{1}{0} \int_0^{(a+1)p} f''(tx + (1-t) a) dt \right)^{\frac{1}{p}} + \left(\frac{1}{0} \int_0^{(a+1)p} f''(tx + (1-t) b) dt \right)^{\frac{1}{q}} \right]
\]
Corollary 2.5.

Proof.

Corollary 2.6.

Theorem 2.2. Let $f : I \subset [0, \infty) \to \mathbb{R}$ be a twice differentiable mapping on I^0 such that $|f''| \in L_1[a, b]$, where $a, b \in I$, with $a < b$.

If $|f''|$ is P-convex on $[a, b]$, and and f'' is bounded, i.e., $\|f''\|_{\infty} = \sup_{x \in [a, b]} |f''| < \infty$, for any $x \in [a, b]$, then the following inequality holds

$$\|L_\alpha(x)\| \leq \frac{2}{(a + 2)} \|f''\|_{\infty} \tag{2.28}$$

Proof. by lemma 2.1 and Under the given assumptions on f'', we have

$$\|L_\alpha(x)\| = \left| (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[(a - x) \int_0^1 t^{\alpha + 1} f'' (tx + (1 - t)a) dt + (x - b) \int_0^1 t^{\alpha + 1} f'' (tx + (1 - t)b) dt \right] \right|$$

$$\leq (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[(x - a) \int_0^1 t^{\alpha + 1} (|f''(x)| + |f''(a)|) dt + (x - b) \int_0^1 t^{\alpha + 1} (|f''(x)| + |f''(b)|) dt \right]$$

$$= 2 \|f''\|_{\infty} (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} (b - a) \int_0^1 t^{\alpha + 1} dt = \frac{2}{(a + 2)} \frac{2}{(x - a)^{\alpha + 1} (b - x)^{\alpha + 1} (b - a)} \|f''\|_{\infty} \tag{2.29}$$

Proof. just take in (2.28), $\alpha = 1, x = \frac{a + b}{2}$ and dividing both side of the result by $\frac{(b - a)^3}{2}$ we obtain (2.29).

Corollary 2.4. With the assumptions in Theorem 2.2 in the case where $\alpha = 1$, one has the inequality

$$\left| f\left(\frac{a + b}{2}\right) - \frac{1}{(b - a)} \int_a^b f(t) dt \right| \leq \frac{(b - a)^2}{12} \|f''\|_{\infty} \tag{2.29}$$

Proof. just take in (2.28), $\alpha = 1, x = \frac{a + b}{2}$ and dividing both side of the result by $\frac{(b - a)^3}{2}$ we obtain (2.29).

Corollary 2.5. With the assumptions in Theorem 2.2 in the case where $\alpha = 1$, one has the inequality

$$\left| f\left(\frac{\alpha + b}{4}\right) + f\left(\frac{\alpha + 3b}{4}\right) - \frac{1}{b - a} \int_a^b f(t) dt \right| \leq \frac{(b - a)^2}{48} \|f''\|_{\infty} \tag{2.30}$$

Proof. The steps of the proof are similar to that of Corollary 2.2, we start by applying Theorem 2.2 a faith on the interval $\left[\frac{\alpha + b}{4}, \frac{\alpha + 3b}{4}\right]$, taking $\alpha = 1$ and $x = \frac{3a + b}{4}$, and a second time on the interval $[\frac{\alpha + b}{2}, b]$ for $\alpha = 1$ and $x = \frac{a + 3b}{4}$, make the sum and dividing the results by 2, we obtain (2.30).

Corollary 2.6. Let $f : I \subset [0, \infty) \to \mathbb{R}$ be a twice differentiable mapping on I^0 such that $|f''| \in L_1[a, b]$, where $a, b \in I$, with $a < b$.
If \(|f''| \) is P-convex on \([a,b] \), \(p, q \geq 1, \frac{1}{p} + \frac{1}{q} = 1 \) and and \(f'' \) is bounded, i.e., \(\|f''\|_{\infty} = \sup_{x \in [a,b]} |f''| < \infty \), for any \(x \in [a,b] \),

then the following inequality holds

\[
|L_a(x)| \leq 2^{\frac{1}{q}} (b - a) (x - a)^{a+1} (b - x)^{a+1} \left(\frac{1}{(a + 1) p + 1} \right)^{\frac{1}{p}} \|f''\|_{\infty} \tag{2.31}
\]

Proof. by lemma 2.1, the assumptions given on \(f'' \) and using the well-known Hölder’s inequality, we have

\[
|L_a(x)| \leq (x - a)^{a+1} (b - x)^{a+1} \left[\int_0^1 |f''(tx + (1 - t) a)| dt + \int_0^1 |f''(tx + (1 - t) b)| dt \right] \leq 2^{\frac{1}{q}} (b - a) (x - a)^{a+1} (b - x)^{a+1} \left(\frac{1}{(a + 1) p + 1} \right)^{\frac{1}{p}} \|f''\|_{\infty}
\]

\[
|L_a(x)| \leq (b - a) (x - a)^{a+1} (b - x)^{a+1} \left[\alpha + \beta (a + 2, s + 1) \right] \|f''\|_{\infty} \tag{2.32}
\]

Theorem 2.3. Let \(f: I \subset [0, \infty) \to \mathbb{R} \) be a twice differentiable mapping on \(I^0 \) such that \(f'' \in L_1 [a,b] \), where \(a, b \in I \), with \(a < b \).

If \(|f''| \) is s-convex on \([a,b] \) with \(s \in (0, 1) \), and and \(f'' \) is bounded, i.e., \(\|f''\|_{\infty} = \sup_{x \in [a,b]} |f''| < \infty \), for any \(x \in [a,b] \),

then the following inequality holds

\[
|L_a(x)| \leq (b - a) (x - a)^{a+1} (b - x)^{a+1} \left[\frac{1}{a + s + 2} + \beta (a + 2, s + 1) \right] \|f''\|_{\infty}
\]

Proof. by lemma 2.1 and since \(|f''| \) is s-convex and \(|f''| \leq M \), then we have

\[
|L_a(x)| \leq (x - a)^{a+1} (b - x)^{a+1} \left[\int_0^1 |f''(tx + (1 - t) a)| dt + \int_0^1 |f''(tx + (1 - t) b)| dt \right] \leq \|f''\|_{\infty} (x - a)^{a+1} (b - x)^{a+1} \left(\frac{1}{p + 1} \right)^{\frac{1}{q}} \int_0^1 (t^s |f''(x)| + (1 - t)^s |f''(a)|) \ dt + \int_0^1 (b - x)^{a+1} (b - x)^{a+1} \left[\frac{1}{a + s + 2} + \beta (a + 2, s + 1) \right] \|f''\|_{\infty}
\]

\[
|L_a(x)| \leq \|f''\|_{\infty} \left[\int_0^1 s dt + \int_0^1 (1 - t)^s dt \right] + (b - x) \left(\int_0^1 s dt + \int_0^1 (1 - t)^s dt \right)
\]

\[
|L_a(x)| \leq \|f''\|_{\infty} \left[\int_0^1 s dt + \int_0^1 (1 - t)^s dt \right]
\]
\[
= (b - a) (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[\frac{1}{\alpha + s + 2} + \beta (\alpha + 2, s + 1) \right] \|f''\|_\infty
\]

Corollary 2.7. With the assumptions in Theorem 2.3 in the case where \(\alpha = 1 \), one has the inequality
\[
\left| \frac{f(a + b)}{2} - \frac{1}{b - a} \int_a^b f(t) \, dt \right| \leq \frac{(b - a)^2}{8} \left[\frac{s^2 + 3s + 4}{(s + 3)(s + 2)(s + 1)} \right] \|f''\|_\infty
\] (2.33)

Proof. The proof is similar to that of Corollary 2.2.

Corollary 2.8. With the assumptions in Theorem 2.3 in the case where \(\alpha = 1 \), one has the inequality
\[
\left| \frac{f(\frac{3a + b}{4}) + f(\frac{a + 3b}{4})}{2} - \frac{1}{b - a} \int_a^b f(t) \, dt \right| \leq \frac{(b - a)^2}{32} \left[\frac{s^2 + 3s + 4}{(s + 3)(s + 2)(s + 1)} \right] \|f''\|_\infty
\] (2.34)

Proof. The proof is similar to that of Corollary 2.2.

Corollary 2.9. Let \(f : I \subset [0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I \) such that \(f'' \in L_1 [a, b] \), where \(a, b \in I \), with \(a < b \).

If \(|f''|^q \) is \(s \)-convex on \([a, b] \) with \(s \in (0, 1) \), \(p, q \geq 1 \), \(\frac{1}{p} + \frac{1}{q} = 1 \) and and \(f'' \) is bounded, i.e., \(\|f''\|_\infty = \sup_{x \in [a, b]} |f''| < \infty \), for any \(x \in [a, b] \),

then the following inequality holds
\[
|L_{\alpha}(x)| \leq 2^{\frac{1}{3}} (b - a) (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[\frac{1}{(\alpha + 1)p + 1} \right] \left(\frac{1}{s + 1} \right) \|f''\|_\infty
\] (2.35)

Proof. by lemma 2.1 the assumptions given on \(f'' \) and using the well-known Hölder’s inequality, we have
\[
|L_{\alpha}(x)| \leq (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[(x - a) \int_0^{\frac{1}{p}} |f''(tx + (1 - t)a)| \, dt + (b - x) \int_0^{\frac{1}{p}} |f''(tx + (1 - t)b)| \, dt \right]
\]
\[
\leq (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[(x - a) \left(\frac{1}{(\alpha + 1)p + 1} \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{p}} |f''(tx + (1 - t)a)|^q \, dt \right)^{\frac{1}{q}} \right.
\]
\[
+ \left. (b - x) \left(\frac{1}{(\alpha + 1)p + 1} \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{p}} |f''(tx + (1 - t)b)|^q \, dt \right)^{\frac{1}{q}} \right]
\]
\[
\leq (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left[(x - a) \left(\frac{1}{(\alpha + 1)p + 1} \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{p}} (t^s |f''(tx)|^q + (1 - t)^s |f''(a)|^q) \, dt \right)^{\frac{1}{q}} \right.
\]
\[
+ \left. (b - x) \left(\frac{1}{(\alpha + 1)p + 1} \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{p}} (t^s |f''(tx)|^q + (1 - t)^s |f''(b)|^q) \, dt \right)^{\frac{1}{q}} \right]
\]
\[
\leq (b - a) (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left(\frac{1}{(\alpha + 1)p + 1} \right)^{\frac{1}{q}} \left(\int_0^{\frac{1}{p}} (t^s + (1 - t)^s) \, dt \right)^{\frac{1}{q}} \|f''\|_\infty
\]
\[
2^{\frac{1}{3}} (b - a) (x - a)^{\alpha + 1} (b - x)^{\alpha + 1} \left(\frac{1}{(\alpha + 1)p + 1} \right)^{\frac{1}{q}} \left(\frac{1}{s + 1} \right)^{\frac{1}{q}} \|f''\|_\infty
\]

\[\]
Theorem 2.4. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a twice differentiable mapping on \(I \) such that \(|f''| \in L_1 [a, b] \), where \(a, b \in I \), with \(a < b \).

If \(|f''| \) is \(h \)-convex on \([a, b] \), and \(f'' \) is bounded, i.e., \(\|f''\|_\infty = \sup_{x \in [a, b]} |f''| < \infty \), for any \(x \in [a, b] \), then the following inequality holds

\[
|L_a(x)| \leq \|f''\|_\infty (b - a) (x - a)^{a+1} (b - x)^{a+1} \int_0^1 (t^{a+1} + (1 - t)^{a+1}) h(t) dt.
\] (2.36)

Proof. by lemma [2.1] and since \(|f''| \) is \(h \)-convex and \(|f''| \leq M \), then we have

\[
|L_a(x)| \leq (x - a)^{a+1} (b - x)^{a+1} \left[(x - a) \int_0^1 |f''(tx + (1 - t))| dt + (b - x) \int_0^1 |f''(tx + (1 - t))| dt \right]
\]

\[
\leq (x - a)^{a+1} (b - x)^{a+1} \times \left[(x - a) \int_0^1 (t^{a+1} h(t) |f''(x)| + h(1 - t) |f''(a)|) dt + (b - x) \int_0^1 (t^{a+1} h(t) |f''(x)| + h(1 - t) |f''(b)|) dt \right]
\]

\[
\leq \|f''\|_\infty (b - a) (x - a)^{a+1} (b - x)^{a+1} \int_0^1 t^{a+1} (h(t) + h(1 - t)) dt
\]

\[
= \|f''\|_\infty (b - a) (x - a)^{a+1} (b - x)^{a+1} \int_0^1 (t^{a+1} + (1 - t)^{a+1}) h(t) dt.
\]

Corollary 2.10. With the assumptions in Theorem 2.4 in the case where \(\alpha = 1 \), one has the inequality

\[
\left| f\left(\frac{x + b}{2}\right) - \frac{1}{b - a} \int_a^b f(t) dt \right| \leq \|f''\|_\infty \frac{(b - a)^2}{8} \int_0^1 (2t^2 - 2t + 1) h(t) dt.
\] (2.37)

Proof. The proof is similar to that of Corollary 2.1

Corollary 2.11. With the assumptions in Theorem 2.4 in the case where \(\alpha = 1 \), one has the inequality

\[
\left| f\left(\frac{3x + a + b}{4}\right) + f\left(\frac{a + 3b}{4}\right) - \frac{1}{b - a} \int_a^b f(t) dt \right| \leq \|f''\|_\infty \frac{(b - a)^2}{32} \int_0^1 (2t^2 - 2t + 1) h(t) dt.
\] (2.38)

Proof. The proof is similar to that of Corollary 2.2

Corollary 2.12. Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a twice differentiable mapping on \(I \) such that \(|f''| \in L_1 [a, b] \), where \(a, b \in I \), with \(a < b \).

If \(|f''| \) is \(h \)-convex on \([a, b] \), \(p, q \geq 1, \frac{1}{p} + \frac{1}{q} = 1 \) and and \(f'' \) is bounded, i.e., \(\|f''\|_\infty = \sup_{x \in [a, b]} |f''| < \infty \), for any \(x \in [a, b] \), then the following inequality holds

\[
|L_a(x)| \leq 2^{\frac{1}{p}} (b - a) (x - a)^{a+1} (b - x)^{a+1} \left(\frac{1}{(a + 1) p + 1} \right)^{\frac{1}{q}} \left(\int_0^1 h(t) dt \right)^{\frac{1}{p}} \|f''\|_\infty
\] (2.39)
Proof. By lemma 2.1 the assumptions given on \(f'' \) and using the well-known Hölder’s inequality, we have

\[
|L_a(x)| \leq (x-a)^{a+1} (b-x)^{a+1} \left[(x-a) \int_0^1 |f''(tx + (1-t)a)| \, dt + (b-x) \int_0^1 |f''(tx + (1-t)b)| \, dt \right]
\]

\[
\leq \frac{1}{(a+1)(b-a)} \times \left[(b-x)(x-a)^2 \int_0^1 |f''(tx + (1-t)a)| \, dt + (a-x)(b-x)^2 \int_0^1 |f''(tx + (1-t)b)| \, dt \right]
\]

\[
\leq (x-a)^{a+1} (b-x)^{a+1} \left[(x-a) \left(\int_0^1 (t^{a+1})^p \, dt \right)^\frac{1}{p} \left(\int_0^1 |f''(tx + (1-t)a)|^q dt \right)^\frac{1}{q} + (b-x) \left(\int_0^1 (t^{a+1})^p \, dt \right)^\frac{1}{p} \left(\int_0^1 |f''(tx + (1-t)a)|^q dt \right)^\frac{1}{q} \right]
\]

\[
= (b-a)(x-a)^{a+1} (b-x)^{a+1} \left[\left(\frac{1}{(a+1)p+1} \right)^\frac{1}{p} \left(\int_0^1 (h(t)|f''(x)|^q + h(1-t)|f''(a)|^q dt \right) \right]^{\frac{1}{q}}
\]

\[
\leq 2^{\frac{1}{q}} (b-a)(x-a)^{a+1} (b-x)^{a+1} \left(\frac{1}{(a+1)p+1} \right)^\frac{1}{p} \left(\int_0^1 h(t) \, dt \right) \|f''\|_\infty.
\]

\[\square\]

Now, using the above reasoning we can obtain some new Ostrowski Type inequalities involving Riemann-Liouville fractional integrals for functions whose derivatives are \(m \)-convex.

Theorem 2.5. Let \(f : I \rightarrow \mathbb{R} \) be a twice differentiable mapping on \(I \) such that \(|f''| \in L_1 [a, b], \) where \(a, b \in I, \) with \(0 < a < b. \)

If \(|f''| \) is \(m \)-convex function on \([a, b], m \in (0, 1) \) and \(f'' \) is bounded, i.e., \(\|f''\|_\infty = \sup_{x \in [a, b]} |f''| < \infty \) for any \(x \in [a, b], \) then the following inequality holds

\[
|L_a(x)| \leq (1-m)(x-a)^{a+1}(b-x)^{a+1} (Y_1 + Y_2) \|f''\|_\infty
\]

where \(Y_1 = (x-a) \left[\frac{1}{a+1} \left(\frac{x-a}{x-ma} \right) + \frac{1}{a+2} \left(\frac{(1-m)a}{x-ma} + \frac{m}{1-m} \right) \right], \)

and \(Y_2 = (b-x) \left[-\frac{1}{a+1} \left(\frac{b-x}{b-mx} \right) + \frac{1}{a+2} \left(\frac{1}{1-m} \right) \right]. \)

Proof. By lemma 2.1 and Under the given assumptions on \(f'' \) we have

\[
|L_a(x)| = \left| (b-x)^{a+1} \int_a^x (y-a)^{a+1} f''(y) \, dy + (b-x)^{a+1} \int_x^b (y-a)^{a+1} f''(y) \, dy \right|
\]

\[
= \left| (b-x)^{a+1} (x-ma) \int_0^{(1-m)a/(x-ma)} (tx + m(1-t)a - a)^{a+1} f''(tx + m(1-t)a) \, dt \right|
\]

\[
+ \left| (x-a)^{a+1} (b-mx) \int_0^{(1-m)x/(b-mx)} (b - (tb + m(1-t)x))^a f''(tb + m(1-t)x) \, dt \right|
\]
Corollary 2.14. Dividing both side of (2.42) by \((\phi \leq x \leq b) \leq \infty \), we obtain (2.41).

Corollary 2.13. With the assumptions in Theorem 2.5, in the case where \(\alpha = 1 \), one has the inequality

\[
\left| \frac{f(a+b)}{2} - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{(1-m) (b-a)^2}{16} \varphi \|f''\|_\infty
\]

where \(\varphi = \frac{(1-m)(b-a)^2}{4(b+(1-2m)a)(b-(b-a))} + \frac{1}{3} \left[\frac{1+m}{1-m} + \frac{2(1-m)a}{b+(1-2m)a} \right] \).

Proof. Choose \(x = \frac{a+b}{2} \) and \(\alpha = 1 \) in (2.40), we get

\[
\frac{(b-a)^3}{2} \left| \frac{f(a+b)}{2} - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \varphi \frac{(1-m) (b-a)^5}{32} \|f''\|_\infty
\]

dividing both side of (2.42) by \(\frac{(b-a)^3}{2} \) we obtain (2.41).

Corollary 2.14. With the assumptions in Theorem 2.5, in the case where \(\alpha = 1 \), one has the inequality

\[
\left| \frac{f(\frac{3a+b}{4}) + f(\frac{a+3b}{4})}{2} - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq (\Psi_1 + \Psi_2) \frac{(1-m) (b-a)^2}{128} \|f''\|_\infty
\]

where \(\Psi_1 = \frac{b-a}{4} \left[\frac{1}{b+(3-4m)a} - \frac{1}{(2-m)b+(2-3m)a} \right] + \frac{1}{3} \left[\frac{1+m}{1-m} + \frac{4(1-m)a}{b+(3-4m)a} \right] \)

and \(\Psi_2 = \frac{b-a}{4} \left[\frac{1}{(5-2m)b+(1-2m)a} - \frac{1}{(4-3m)b-ma} \right] + \frac{1}{3} \left[\frac{1+m}{1-m} + \frac{2(1-m)(a+b)}{(3-2m)b+(1-2m)a} \right] \).
Proof. Apply Theorem 2.5 a faith on the interval \([a, \frac{a+b}{2}]\) taking \(\alpha = 1\) in (2.40), and replace \(x\) by \(\frac{3a+b}{4}\), we get

\[
\frac{(b-a)^3}{16} \left[f\left(\frac{3a+b}{4} \right) - \frac{2}{b-a} \int_a^{b} f(t) dt \right] \leq \frac{(1-m)(b-a)^5}{1024} \|f''\|_\infty \psi_1
\]

(2.44) implies

\[
\left| f\left(\frac{3a+b}{4} \right) - \frac{2}{b-a} \int_a^{b} f(t) dt \right| \leq \frac{(1-m)(b-a)^2}{64} \|f''\|_\infty \psi_1
\]

Apply Theorem 2.5 another faith on the interval \([\frac{a+b}{2}, b]\) taking \(\alpha = 1\) in (2.40), and replace \(x\) by \(\frac{a+3b}{4}\), we get

\[
\left| f\left(\frac{a+3b}{4} \right) - \frac{2}{b-a} \int_a^{b} f(t) dt \right| \leq \frac{(1-m)(b-a)^2}{64} \|f''\|_\infty \psi_2
\]

summing (2.45) and (2.46), dividing the result by 2 we obtain (2.43). \(\square\)

Theorem 2.6. Let \(f : I \subset [0, \infty) \to \mathbb{R}\) be a twice differentiable mapping on \(I^0\) such that \(|f''| \in L_1[a,b]\), where \(a, b \in I, a < b\).

If \(|f''|\) is \((s, m)\) - convex on \([a, b]\), where \((s, m) \in (0, 1]^2\), and \(f''\) is bounded, i.e., \(||f''||_\infty = \sup_{x \in [a,b]} |f''| < \infty\), for any \(x \in [a, b]\), then the following inequality holds

\[
|L_a(x)| \leq (1-m) \|f''\|_\infty \left[\frac{m}{(1-m)(x+2)} (b-x)^{\alpha+1} (x-a)^{\alpha+1} - \chi_1 - \chi_2 \right]
\]

where \(\chi_1 = (b-x)^{\alpha+1} (x-ma)^{-s} ((1-m)a)^{\alpha+1} \beta (\alpha+2, -s - \alpha - 2),\)

and \(\chi_2 = (x-a)^{\alpha+1} (b-mx)^{\alpha+2} \beta (\alpha+2, s+1)\).

Proof. by lemma 2.1 and Under the given assumptions on \(f''\), we have

\[
|L_a(x)| = \left| (b-x)^{\alpha+1} \int_a^x (y-a)^{\alpha+1} f''(y) dy + (x-a)^{\alpha+1} \int_x^b (b-y)^{\alpha+1} f''(y) dy \right|
\]

\[
= \left| (b-x)^{\alpha+1} (x-ma) \int_0^1 (tx + m (1-t) a - a)^{\alpha+1} f''(tx + m (1-t) a) dt + \right|
\]

\[
\left| (x-a)^{\alpha+1} (b-mx) \int_0^1 (b - (tb + m (1-t) x))^{\alpha+1} f''(tb + m (1-t) x) dt \right|
\]

\[
\leq \left| (b-x)^{\alpha+1} (x-ma)^{\alpha+2} \int_0^1 \left(t - \frac{(1-m)a}{x-ma} \right)^{\alpha+1} f''(tx + m (1-t) a) dt \right| + \right|
\]

\[
\left| (x-a)^{\alpha+1} (b-mx)^{\alpha+2} \int_0^1 (1-t)^{\alpha+1} f''(tb + m (1-t) x) dt \right|
\]
\[
\begin{align*}
\left(\begin{array}{c}
(b - x)^{a+1} (x - ma)^{a+2} \\(1 - m) a x - ma
\end{array}\right) & \int \left(t - \frac{(1-m)a}{x-ma} \right)^{a+1} |f''(tx + m(1-t)a)| \, dt + \\
(x - a)^{a+1} (b - mx)^{a+2} & \int \left(1 - t \right)^{a+1} |f''(tb + m(1-t)x)| \, dt \\
\end{align*}
\]

\[
\begin{align*}
\left(\begin{array}{c}
(b - x)^{a+1} (x - ma)^{a+2} \\(1 - m) a x - ma
\end{array}\right) & \int \left(t - \frac{(1-m)a}{x-ma} \right)^{a+1} (t^s |f''(x)| + m(1-t^s) |f''(a)|) \, dt + \\
(x - a)^{a+1} (b - mx)^{a+2} & \int \left(1 - t \right)^{a+1} (t^s |f''(b)| + m(1-t^s) |f''(x)|) \, dt \\
\end{align*}
\]

\[
\leq (1 - m) \| f'' \|_{\infty}
\]

\[
\begin{align*}
\left(\begin{array}{c}
\left(\frac{m}{1-m(a+2)}\right) (b - x)^{a+1} (x - a)^{a+2} \\
\left(\frac{m}{1-m(a+2)}\right) (x - a)^{a+1} (b - x)^{a+2}
\end{array}\right) & \int (1 - t)\left(t^{s+2}\right) dt + \\
\left(\begin{array}{c}
\left(\frac{m}{1-m(a+2)}\right) (x - ma)^{a+2} \\
\left(\frac{m}{1-m(a+2)}\right) (x - ma)^{a+1} (b - ma)^{a+2}
\end{array}\right) & \int (1 - t^{s+3}) dt + \\
\end{align*}
\]

\[
\leq (1 - m) \| f'' \|_{\infty}
\]

\[
\left[\frac{m}{(1-m)(a+2)}\right] (b - x)^{a+1} (x - a)^{a+1} (b - a) + \chi_1 + \chi_2
\]

\]

Corollary 2.15. With the assumptions in Theorem 2.6, in the case where \(\alpha = 1\), one has the inequality

\[
\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \Gamma \left(\frac{1-m}{b-a}\right) \| f'' \|_{\infty}
\]

where \(\Gamma = \frac{m(b-a)^3}{2a^m} + \frac{(b+1-2m)a^{-s}(1-m)a^{s+3}}{2^{s-3}} \beta(3, -s - 3) + \frac{(2-m)(b-ma)^3}{2^4} \beta(3, s + 1)\).

Proof. Just take in (2.47), \(\alpha = 1\), \(x = \frac{a+b}{2}\) and dividing both sides of the result by \(\frac{(b-a)^3}{2}\) we obtain (2.48). \(\square\)

Corollary 2.16. With the assumptions in Theorem 2.6, in the case where \(\alpha = 1\), one has the inequality

\[
\left| f\left(\frac{3a+b}{4}\right) + \frac{f\left(\frac{a+3b}{4}\right)}{2} - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \zeta_1 + \zeta_2 \left(\frac{1-m}{b-a}\right) \| f'' \|_{\infty},
\]

(2.49)
where $\zeta_1 = \frac{m(b-a)^3}{48(1-m)} + \left(\frac{b+(3-4m)a}{4}\right)^{-s} (1-m) a^{s+3} \beta(3,-s-3) + \frac{(2-m)b-ma)^3}{64} \beta(3, s+1)$, and $\zeta_2 = \frac{m(b-a)^3}{48(1-m)} + \left(\frac{3-2m)b+(1-2m)a}{4}\right)^{-s} (1-m) a^{s+3} \beta(3,-s-3) + \frac{(4-3m)b+(2-3m)a)^3}{64} \beta(3, s+1)$.

Proof. The steps of the proof are similar to that of Corollary 2.2, we start by applying Theorem 2.6 a faith on the interval $[a, a+x_2]$, taking $x = \frac{3a+b}{4}$, and a second time on the interval $[a+x_2, b]$ for $x = \frac{a+3b}{4}$, make the sum and dividing the results by $\frac{(b-a)^3}{x^2}$, we obtain (2.49). \square

3 Acknowledgements

The author would like to thank the anonymous referee for his/her valuable suggestions. This work has been supported by CNEPRU–MESRS–B01120120103 project grants.

References

Received: June 13, 2014; *Accepted*: July 19, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/