Some curvature tensors on a generalized Sasakian space form

B. Sumangalaa and Venkateshab,\ast

a,bDepartment of Mathematics, Kuvempu University, Shankaraghatta–577451, Shimoga, Karnataka, India.

Abstract

In the present paper, we have studied the geometry of generalized Sasakian space form with the condition satisfying $W^*(\xi, X)W^* = 0$, $W^*(\xi, X)S = 0$, $W^*(\xi, X)P = 0$ and $P(\xi, X)P = 0$.

Keywords: Generalized Sasakian space form, M-projective curvature tensor, Projective curvature tensor.

1 Introduction

A Sasakian manifold (M, ϕ, ξ, η, g) is said to be a Sasakian space form [3], if all the ϕ-sectional curvatures $K(X \wedge \phi X)$ are equal to a constant C, where $K(X \wedge \phi X)$ denotes the sectional curvature of the section spanned by the unit vector field X, orthogonal to ξ and ϕX. In such a case, the Riemannian curvature tensor of M is given by,

$$
R(X, Y)Z = \frac{C + 3}{4} \{g(Y, Z)X - g(X, Z)Y\} + \frac{C - 1}{4} \{g(X, \phi Z)Y - g(Y, \phi Z)X + 2g(X, \phi Y)\phi Z\} + \frac{C - 1}{4} \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\}.
$$

(1.1)

As a natural generalization of these manifolds, Alegre P., Blair D. E. and Carriazo A. [1, 3] introduced the notion of generalized Sasakian space form.

Sasakian space form and generalized Sasakian space form have been studied by several authors, viz., [2, 3, 5, 9, 14, 15].

The properties of the M-projective curvature tensor in Sasakian and Kaehler manifolds were studied by Ojha R. H. [11, 12]. He showed that it bridges the gap between the conformal curvature tensor, coharmonic curvature tensor and concircular curvature tensor. Chaubey S. K. and Ojha R. H. [17] studied the properties of the M-projective curvature tensor in Riemannian and Kenmotsu manifolds. Chaubey S. K. [18] also studied the properties of M-projective curvature tensor in LP-Sasakian manifold. Present authors [4] have studied some properties of M-projective curvature tensor in a generalized Sasakian space form. Motivated by these ideas, in the present paper we have extended the study of further properties of M-projective curvature tensor to generalized Sasakian space form. The present paper is organized as follows:

\astCorresponding author.

E-mail address: suma.srishaila@gmail.com (B. Sumangala), vensmath@gmail.com (Venkatesha).
In section 2, we review some preliminary results. From section 3 onwards we have obtained necessary and sufficient condition for a generalized Sasakian space form satisfying the derivation conditions \(W^*(\xi, X)W^* = 0, W^*(\xi, X)S = 0, W^*(\xi, X)P = 0 \) and \(P(\xi, X)P = 0 \). We have proved that these conditions are satisfied if and only if \(f_3 = \frac{3f_2}{1-2n} \).

2 Preliminaries

An odd-dimensional Riemannian manifold \((M, g)\) is called an almost contact manifold if there exists on \(M\), a \((1,1)\) tensor field \(\phi\), a vector field \(\xi\) and a 1-form \(\eta\) \([6]\) such that,

\[
\phi^2(X) = -X + \eta(X)\xi, \tag{2.2}
\]

\[
\eta(\phi X) = 0, \tag{2.3}
\]

\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{2.4}
\]

\[
\phi\xi = 0, \quad \eta(\xi) = 0, \quad g(X, \xi) = \eta(X), \tag{2.5}
\]

for any vector fields \(X, Y\) on \(M\).

If in addition, \(\xi\) is a Killing vector field, then \(M\) is said to be a \(K\)-contact manifold. It is well known that a Contact metric manifold is a \(K\)-contact manifold if and only if \((\nabla_X\xi) = -\phi(X)\) for any vector field \(X\) on \(M\).

Given an almost contact metric manifold \((M, \phi, \xi, \eta, g)\), we say that \(M\) is an generalized Sasakian space form \([1]\), if there exist three functions \(f_1, f_2\) and \(f_3\) on \(M\) such that

\[
R(X, Y)Z = f_1 \{g(Y, Z)X - g(X, Z)Y\} \tag{2.6}
\]

\[
+ f_2 \{g(X, \phi Z)\phi Y - g(Y, \phi Z)\phi X + 2g(X, \phi Y)\phi Z\}
\]

\[
+ f_3 \{\eta(\phi Z)\eta(X)Y - \eta(Y)\eta(Z)X \tag{2.7}
\]

\[
+ g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi\},
\]

for any vector fields \(X, Y, Z\) on \(M\), where \(R\) denotes the curvature tensor of \(M\). This kind of manifold appears as a natural generalization of the well-known Sasakian space form \(M(C)\), which can be obtained as particular cases of generalized Sasakian space form by taking \(f_1 = \frac{C+3}{4}\) and \(f_2 = f_3 = \frac{C-1}{4}\). Further in a \((2n + 1)\)-dimensional generalized Sasakian space form, we have \([1]\)

\[
(\nabla_X\phi)(Y) = (f_1 - f_3)\{g(Y, X)\xi - \eta(Y)X\}, \tag{2.8}
\]

\[
(\nabla_X\xi) = -(f_1 - f_3)\phi(X), \tag{2.9}
\]

\[
QX = (2nf_1 + 3f_2 - f_3)X - (3f_2 + (2n - 1)f_3)\eta(X)\xi, \tag{2.10}
\]

\[
S(X, Y) = (2nf_1 + 3f_2 - f_3)g(X, Y) - (3f_2 + (2n - 1)f_3)\eta(X)\eta(Y), \tag{2.11}
\]

\[
r = 2n(2n + 1)f_1 + 6nf_2 - 4nf_3, \tag{2.12}
\]

\[
R(X, Y)\xi = (f_1 - f_3)\{\eta(Y)X - \eta(X)Y\}, \tag{2.13}
\]

\[
R(\xi, X)Y = (f_1 - f_3)\{g(X, Y)\xi - \eta(Y)X\}, \tag{2.14}
\]

\[
\eta(R(X, Y)Z) = (f_1 - f_3)\{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\}, \tag{2.15}
\]

In 1971, Pokhariyal G. P. and Mishra R. S. \([13]\) defined \(M\)-projective curvature tensor \(W^*\) on a Riemannian manifold as

\[
W^*(X, Y)Z = R(X, Y)Z - \frac{1}{4n}|S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY|, \tag{2.16}
\]

and projective curvature tensor \([16]\) is defined as

\[
P(X, Y)Z = R(X, Y)Z - \frac{1}{2n}|S(Y, Z)X - S(X, Z)Y|. \tag{2.17}
\]
3 Generalized Sasakian space form satisfying $W^*(\xi, X)W^* = 0$

Let us consider a generalized Sasakian space form satisfying

$$W^*(\xi, X)W^* = 0. \quad (3.18)$$

The above equation can be written as

for any vector field X, Y, Z, U on M.

In view of (2.5), (2.9), (2.10) and (2.13), (2.16) becomes

$$W^*(\xi, X)Y = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2]g(X, Y)\xi - \eta(Y)X \quad (3.20)$$

and

$$\eta(W^*(X, Y)Z) = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][g(Y, Z)\eta(X) - g(X, Z)\eta(Y)]. \quad (3.21)$$

From (2.16) and (3.20), we find

$$W^*(\xi, X)W^*(Y, Z)U = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][g(X, W^*(Y, Z)U)\xi$$

$$- \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][g(Z, U)\eta(Y)X - g(Y, U)\eta(Z)X]] \quad (3.22)$$

and

$$W^*(W^*(\xi, X)Y, Z)U = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][\frac{(1 - 2n)f_3 - 3f_2}{4n}g(X, Y)g(Z, U)\xi$$

$$- g(X, Y)\eta(U)Z - \eta(Y)W^*(X, Z)U]. \quad (3.23)$$

Substituting $Z = \xi$ in (2.16), we get

$$W^*(X, Y)\xi = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][\eta(Y)X - \eta(X)Y], \quad (3.24)$$

Substituting (3.20), (3.22), (3.23) in (3.19), we get

$$\frac{(1 - 2n)f_3 - 3f_2}{4n}[g(W^*(Y, Z)U, X)\xi - (1 - 2n)f_3 - 3f_2]g(Z, U)\eta(Y)X$$

$$- g(Y, U)\eta(Z)X + g(X, Y)g(Z, U)\xi - g(X, Y)\eta(U)Z + g(X, Z)\eta(U)Y$$

$$- g(X, Z)g(U, Y)\xi + g(X, U)\eta(Z)Y - g(X, U)\eta(Y)Z$$

$$+ \eta(Y)W^*(X, Z)U + \eta(Z)W^*(Y, X)U + \eta(U)W^*(Y, Z)X] = 0. \quad (3.25)$$

Taking inner product of (3.25) with respect to ξ and using (2.16) and (3.21), we get

$$\frac{(1 - 2n)f_3 - 3f_2}{4n}[g(R(Y, Z)U, X)$$

$$- 4nf_1 + 3f_2 - (1 + 2n)f_3]g(X, Y)g(Z, U) - g(X, Z)g(Y, U)]$$

$$- \frac{3f_2 + (2n - 1)f_3}{4n}[g(X, Z)g(U, Y)\eta(Y) + g(Y, U)g(Z)\eta(X)$$

$$- g(X, Y)\eta(Z)\eta(U) - g(Z, U)\eta(X)\eta(Y)] = 0. \quad (3.26)$$

This implies either

$$f_3 = \frac{3f_2}{1 - 2n} \quad (3.27)$$
or
\[
g(R(Y, Z)U, X) = \frac{4nf_1 + 3f_2 - (1 + 2n)f_3}{4n}g(X, Y)g(Z, U) \\
- g(X, Z)g(Y, U) + \frac{3f_2 + (2n - 1)f_3}{4n}g(X, Z)\eta(U)\eta(Y) \\
+ g(Y, U)\eta(Z)\eta(X) - g(X, Y)\eta(Z)\eta(U) - g(Z, U)\eta(X)\eta(Y).
\] (3.28)

Let \(\{e_i\}, i = 1, 2, ..., 2n + 1\) be an orthonormal basis of the tangent space at any point of the space form. Then putting \(X = Y = e_i\), in (3.28) and taking summation over \(i, 1 \leq i \leq 2n + 1\), we get
\[
S(Z, U) = \frac{1}{4n}[(2n)(4nf_1 + 3f_2 - (1 + 2n)f_3) \\
- (3f_2 + (2n - 1)f_3)]g(Z, U) \\
- (2n - 1)(3f_2 + (2n - 1)f_3)\eta(U)\eta(Z).
\] (3.29)

Contracting the above equation we get,
\[
r = \frac{1}{2}[(2n + 1)(4nf_1 + 3f_2 - (1 + 2n)f_3) - 2(3f_2 + (2n - 1)f_3)],
\] (3.30)

using (2.11) we get
\[
f_3 = \frac{3f_2}{(1 - 2n)}.
\] (3.31)

This leads us to state the following:

Theorem 3.1. A \((2n + 1)\)-dimensional \((n > 1)\) generalized Sasakian space form satisfies the condition \(W^*(\xi, X)W^* = 0\) if and only if \(f_3 = \frac{3f_2}{(1 - 2n)}\).

4 Generalized Sasakian space form satisfying \(W^*(\xi, X)S = 0\)

The condition \(W^*(\xi, X)S = 0\) implies that
\[
S(W^*(\xi, X)Y, Z) + S(Y, W^*(\xi, X)Z) = 0.
\] (4.32)

Substituting (3.20) in (4.32), we obtain
\[
\frac{(1 - 2n)f_3 - 3f_2}{4n}g(X, Y)S(\xi, Z) - \eta(Y)S(X, Z) \\
+ S(Y, \xi)g(X, Z) - \eta(Z)S(X, Y)] = 0.
\] (4.33)

Again substituting \(Z = \xi\) in (4.33), we get
\[
\frac{(1 - 2n)f_3 - 3f_2}{4n}[S(X, Y) - 2n(f_1 - f_3)g(X, Y)] = 0.
\] (4.34)

This implies either
\[
f_3 = \frac{3f_2}{(1 - 2n)},
\] (4.35)
or
\[
S(X, Y) = 2n(f_1 - f_3)g(X, Y).
\] (4.36)

On contracting (4.36), we find
\[
r = 2n(2n + 1)(f_1 - f_3) \quad \text{and so} \quad f_3 = \frac{3f_2}{(1 - 2n)}.
\] (4.37)

Thus, we state

Theorem 4.2. A \((2n + 1)\)-dimensional \((n > 1)\) generalized Sasakian space form satisfies the condition \(W^*(\xi, X)S = 0\) if and only if \(f_3 = \frac{3f_2}{(1 - 2n)}\).
5 Generalized Sasakian space form satisfying \(W^*(\xi, X)P = 0\)

We know that,
\[
(W^*(\xi, X)P)(Y, Z)U = W^*(\xi, X)P(Y, Z)U - P(W^*(\xi, X)Y, Z)U \tag{5.38}
- P(Y, W^*(\xi, X)Z)U - P(Y, Z)W^*(\xi, X)U.
\]

But as we assume \(W^*(\xi, X)P = 0\), (5.38) takes the form
\[
W^*(\xi, X)P(Y, Z)U - P(W^*(\xi, X)Y, Z)U - P(Y, W^*(\xi, X)Z)U - P(Y, Z)W^*(\xi, X)U = 0. \tag{5.39}
\]

In view of (2.14), we obtain from (2.17) that
\[
\eta(P(X, Y)Z) = \frac{1}{2n}[(1 - 2n)P - 3f_2][g(Y, Z)\eta(X) - g(X, Z)\eta(Y)]. \tag{5.40}
\]

From (2.17) and (3.20), we find
\[
W^*(\xi, X)P(Y, Z)U = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][g(X, R(Y, Z)U)\xi
- \frac{1}{2n}[S(U, Z)g(X, Y) - S(Y, U)g(X, Z)]\xi
- \frac{1}{2n}[(1 - 2n)f_3 - 3f_2][g(Z, U)\eta(Y)X - g(Y, U)\eta(Z)X]] \tag{5.41}
\]

and
\[
P(W^*(\xi, X)Y, Z)U = \frac{1}{4n}[(1 - 2n)f_3 - 3f_2][g(X, Y)g(Z, U)\xi
- \frac{1}{2n}S(U, Z)g(X, Y)\xi - \eta(Y)P(X, Z)U]. \tag{5.42}
\]

Also
\[
P(Y, Z)W^*(\xi, X)U = -\frac{1}{4n}[(1 - 2n)f_3 - 3f_2]\eta(U)P(Y, Z)X. \tag{5.43}
\]

Substituting (5.41), (5.42) and (5.43) in (5.39), we get
\[
\frac{(1 - 2n)f_3 - 3f_2}{4n}[g(R(Y, Z)U, X)\xi
- \frac{1}{2n}[S(U, Z)g(X, Y) - S(Y, U)g(X, Z)]\xi
- \frac{1}{2n}[(1 - 2n)f_3 - 3f_2][g(Z, U)\eta(Y)X - g(Y, U)\eta(Z)X]
- (f_1 - f_3)g(X, Y)g(Z, U)\xi + \frac{1}{2n}S(U, Z)g(X, Y)\xi
+ (f_1 - f_3)g(X, Z)g(Y, U)\xi - \frac{1}{2n}S(Y, U)g(X, Z)\xi
+ \eta(Y)P(X, Z)U + \eta(Z)P(Y, X)U + \eta(U)P(Y, Z)X] = 0 \tag{5.44}
\]

Taking inner product of (5.44) with respect to the Riemannian metric \(g\) and then using (2.5) and (5.40), we have
\[
\frac{1}{4n}[(1 - 2n)f_3 - 3f_2][g(R(Y, Z)U, X)
- (f_1 - f_3)\{g(X, Y)g(Z, U) - g(X, Z)g(Y, U)\}
+ \frac{1}{2n}[(1 - 2n)f_3 - 3f_2][g(X, Z)\eta(Y)\eta(U) - g(X, Y)\eta(Z)\eta(U)]] = 0. \tag{5.45}
\]

This implies either
\[
f_3 = \frac{3f_2}{(1 - 2n)}. \tag{5.46}
\]
or
\[
g(R(Y, Z)U, X) = (f_1 - f_3)\{g(X, Y)g(Z, U) - g(X, Z)g(Y, U)\} - \frac{1}{2n}(1 - 2n)f_3 - 3f_2\{g(X, Z)\eta(Y)\eta(U) - g(X, Y)\eta(Z)\eta(U)\}.
\]
(5.47)

Let \(\{e_i\}, i = 1, 2, ..., 2n + 1\) be an orthonormal basis of the tangent space at any point of the space form. Then putting \(X = Y = e_i\) in (5.47) and taking summation over \(i, 1 \leq i \leq 2n + 1\), we get
\[
S(Z, U) = 2n(f_1 - f_3)g(Z, U) + [(1 - 2n)f_3 - 3f_2]\eta(Z)\eta(U).
\]
(5.48)

Contracting (5.48), we find
\[
r = 2n(2n + 1)(f_1 - f_3) + (1 - 2n)f_3 - 3f_2.
\]
(5.49)

Using (2.11), the above equation gives
\[
f_3 = \frac{3f_2}{(1 - 2n)}.
\]
(5.50)

Thus, we state

Theorem 5.3. A \((2n + 1)\)-dimensional \((n > 1)\) generalized Sasakian space form satisfies the condition \(W^*(\xi, X)P = 0\) if and only if \(f_3 = \frac{3f_2}{(1 - 2n)}\).

6. An generalized Sasakian space form satisfying \(P(\xi, X)P = 0\)

The condition \(P(\xi, X)P = 0\) implies that
\[
\]
(6.51)

In view of (2.5), (2.10) and (2.13), (2.17) becomes
\[
P(\xi, X)Y = (f_1 - f_3)g(X, Y)\xi - \frac{1}{2n}S(X, Y)\xi.
\]
(6.52)

Using (6.52) in (6.51), we get
\[
(f_1 - f_3)g(P(Y, Z)U, X)\xi - \frac{1}{2n}S(P(Y, Z)U, X)\xi
\]
(6.53)

\[
- [(f_1 - f_3)g(X, Y) - \frac{1}{2n}S(X, Y)][(f_1 - f_3)g(Z, U) - \frac{1}{2n}S(Z, U)]\xi
\]

\[
- [(f_1 - f_3)g(X, Z) - \frac{1}{2n}S(X, Z)][\frac{1}{2n}S(Y, U) - (f_1 - f_3)g(Y, U)]\xi
\]

\[
- [(f_1 - f_3)g(X, U) - \frac{1}{2n}S(X, U)]P(Y, Z)\xi = 0,
\]

Taking inner product of (6.53) with respect to the Riemannian metric \(g\) and then using (2.10), (2.17) and (5.40), we have
\[
\frac{1}{2n}(1 - 2n)f_3 - 3f_2\{g(R(Y, Z)U, X)
\]

\[
- (f_1 - f_3)\{g(X, Y)g(Z, U) - g(X, Z)g(Y, U)\} = 0.
\]
(6.54)

\[
\Rightarrow f_3 = \frac{3f_2}{(1 - 2n)}\quad \text{or}
\]

\[
g(R(Y, Z)U, X) = (f_1 - f_3)\{g(X, Y)g(Z, U) - g(X, Z)g(Y, U)\}.
\]
(6.55)

(6.55) implies
\[
R(Y, Z)U = (f_1 - f_3)\{g(Z, U)Y - g(Y, U)Z\}.
\]
(6.56)
Contracting (6.56) with respect to the vector field Y, we find
\[S(Z, U) = 2n(f_1 - f_3)g(Z, U). \] (6.57)

On contracting the above equation, we get
\[r = 2n(2n + 1)(f_1 - f_3) \quad \text{and so} \quad f_3 = \frac{3f_2}{(1 - 2n)}. \] (6.58)

Thus, we state

Theorem 6.4. A $(2n + 1)$-dimensional $(n > 1)$ generalized Sasakian space form satisfies the condition $P(\xi, X) = 0$ if and only if $f_3 = \frac{3f_2}{(1 - 2n)}$.

References

Received: July 09, 2014; Accepted: August 19, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/