Existence of mild solution result for fractional neutral stochastic integro-differential equations with nonlocal conditions and infinite delay

N. Ait oualia,* and A. Kandoucib

a,bLaboratory of Stochastic Models, Statistic and Applications, Tahar Moulay University PO.Box 138 En-Naz, 20000 Saida, Algeria.

Abstract

We investigate in this paper the existence of mild solutions for the fractional differential equations of neutral type with nonlocal conditions and infinite delay in Hilbert spaces by employing fractional calculus and Krasnoselski-Schaefer fixed point theorem. Finally an example is provided to illustrate the application of the obtained results.

Keywords: Infinite delay, Stochastic fractional differential equations, mild solution, fixed point theorem.

2010 MSC: 35G20.

c©2012 MJM. All rights reserved.

1 Introduction

The main purpose of this paper is to prove the Existence of the mild solution for fractional differential equations of neutral type with infinite delay in Hilbert spaces of the form.

\[
\begin{cases}
\frac{cD_t^\alpha}{t} [x(t) - h(t, x_t)] = A[x(t) - h(t, x_t)] + f(t, x_t) + \int_{-\infty}^{t} \sigma(t, s, x_s) dW(s) & t \in J = [0, b] \\
x(0) + \mu(x) = x_0 = \phi(t) & t \in (-\infty, 0],
\end{cases}
\]

(1.1)

Here, \(x(.)\) takes value in a real separable Hilbert space \(H\) with inner product \((\cdot, \cdot)_H\) and the norm \(\|\cdot\|_H\). The fractional derivative \(cD_t^\alpha\), \(\alpha \in (0, 1)\), is understood in the Caputo sense. The operator \(A\) generates a strongly continuous semigroup of bounded linear operators \(S(t), t \geq 0,\) on \(H\). Let \(K\) be another separable Hilbert space with inner product \((\cdot, \cdot)_K\) and the norm \(\|\cdot\|_K\). \(W\) is a given \(K\)-valued Wiener process with a finite trace nuclear covariance operator \(Q \geq 0\) defined on a filtered complete probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\). The histories \(x_t : \Omega \rightarrow \mathbb{C}_\nu\) defined by \(x_t = \{x(t + \theta), \theta \in (-\infty, 0]\}\) belong to the phase space \(C_\nu\), which will be defined in section 2. The initial data \(\phi = \{\phi(t), t \in (-\infty, 0]\}\) is an \(\mathcal{F}_{0\sigma}\) measurable, \(\mathbb{C}_\nu\)-valued random variable independent of \(W\) with finite second moments, and \(h : J \times \mathcal{C}_\nu \rightarrow \mathbb{H},\) \(h : J \times \mathcal{C}_\nu \rightarrow \mathbb{H},\) \(\sigma : J \times J_1 \times \mathcal{C}_\nu \rightarrow \mathcal{L}_0^2(K, H)\) are appropriate functions, where \(J_1 = (-\infty, b]\) and \(\mathcal{L}_0^2(K, \mathbb{H})\) denotes the space of all \(Q\)-Hilbert Schmidt operators from \(K\) into \(\mathbb{H}\); \(\mu : C(J, H) \rightarrow H\) is bounded and the initial data \(x_0\) is an \(\mathcal{F}\) adapted \(H\)-valued random variable independent of Wiener process \(W\).

The fractional differential equations arise in many engineering and scientific disciplines as the mathematics modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium, polymer rheology, etc., involves derivatives of fractional order. It is worthwhile mentioning that several important problems of the theory of ordinary and delay differential equations lead to investigations of functional differential equations

*Corresponding author.

E-mail addresses: aitouali.nadia@gmail.com (N. Ait ouali), kandouci1974@yahoo.fr (A. Kandouci).
of various types (see the books by Hale and Verduyn Lunel [16], Wu [31], Liang et al [17], Liang and Xiao [18], and the references therein).

In particular the nonlocal condition problems for some fractional differential equations have been attractive to many researchers Mophou et al [23] studied existence of mild solution for some fractional differential equations with nonlocal condition. Chang et al [7] investigate the fractional order integro-differential equations with nonlocal condition. Mophou et al [23] studied existence of mild solution for some fractional differential equations with nonlocal conditions in the Riemann-Liouville fractional derivative sense.

In this paper, we prove the existence theorem of mild solution for neutral differential equation with nonlocal conditions and infinite delay by using the Krasnosel’ski-Schaefer fixed point theorem. An example is provided to illustrate the application of the obtained results.

2 Preliminaries

Next we mention a few results and notations needed to establish our results. Let \((\mathbb{H}, \|\cdot\|_\mathbb{H})\) and \((\mathbb{K}, \|\cdot\|_\mathbb{K})\) be two real separable Hilbert spaces. We denote by \(\mathcal{L}(\mathbb{K}, \mathbb{H})\) the set of all linear bounded operators from \(\mathbb{K}\) into \(\mathbb{H}\), equipped with the usual operator norm \(\|\cdot\|\). In this article, we use the symbol \(\|\cdot\|\) to denote norms of operators regardless of the spaces involved when no confusion possibly arises.

Let \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) be a filtered complete probability space satisfying the usual condition, which means that the filtration is a right continuous increasing family and \(\mathcal{F}_0\) contains all \(\mathbb{P}\)-null sets. \(W = (W_t)_{t \geq 0}\) be a Q-Wiener process defined on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) with the covariance operator \(Q\) such that \(trQ < \infty\). We assume that there exists a complete orthonormal system \(\{e_k\}_{k \geq 1}\) in \(\mathbb{K}\), a bounded sequence of nonnegative real numbers \(\lambda_k\) such that \(Q e_k = \lambda_k e_k,\ k = 1, 2, \ldots,\) and a sequence of independent Brownian motions \(\{\beta_k\}_{k \geq 1}\) such that

\[\langle W(t), e \rangle_\mathbb{K} = \sum_{k=1}^{\infty} \sqrt{\lambda_k} (e_k, e)_\mathbb{K} \beta_k(t) \quad e \in \mathbb{K} \quad t \geq 0\]

Let \(\mathcal{L}_2^0 = \mathcal{L}_2(Q^{1/2} \mathbb{K}, \mathbb{H})\) be the space of all Hilbert Schmidt operators from \(Q^{1/2} \mathbb{K}\) to \(\mathbb{H}\) with the inner product \(\langle \varphi, \phi \rangle_{\mathcal{L}_2^0} = tr[\varphi Q \phi^*]\).

The semigroup \(S(\cdot)\) is uniformly bounded. That is to say, \(\|S(t)\| \leq M\) for some constant \(M \geq 1\) and every \(t \geq 0\).

Assume that \(v : (-\infty, 0) \to (0, +\infty)\) with \(l = \int_{-\infty}^{0} v(t) dt < +\infty\) a continuous function. Recall that the abstract phase space \(\mathcal{C}_v\) is defined by

\[\mathcal{C}_v = \{\varphi : (-\infty, 0) \to \mathbb{H}, \text{ for any } \alpha > 0, \left(\mathbb{E} |\varphi(\theta)|^2\right)^{1/2} \text{ is bounded and measurable}\]

\[\text{function on } [-a, 0] \text{ and } \int_{-\infty}^{0} v(s) \sup_{s \leq \theta \leq 0} \left(\mathbb{E} |\varphi(\theta)|^2\right)^{1/2} ds < +\infty\}.

If \(\mathcal{C}_v\) is endowed with the norm

\[\|\varphi\|_{\mathcal{C}_v} = \int_{-\infty}^{0} v(s) \sup_{s \leq \theta \leq 0} \left(\mathbb{E} |\varphi(\theta)|^2\right)^{1/2} ds, \quad \varphi \in \mathcal{C}_v\]

then \((\mathcal{C}_v, \|\cdot\|_{\mathcal{C}_v})\) is a Banach space (see [20]).

Let us now recall some basic definitions and results of fractional calculus.

Definition 2.1. [21] The fractional integral of order \(\alpha\) with the lower limit 0 for a function \(f\) is defined as

\[I^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} f(s) (t-s)^{1-\alpha} ds \quad t > 0 \quad \alpha > 0\]

provided the right-hand side is pointwise defined on \([0, \infty)\), where \(\Gamma(\cdot)\) is the gamma function.

Definition 2.2. The Caputo derivative of order \(\alpha\) with the lower limit 0 for a function \(f\) can be written as

\[^cD^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{f^n(s)}{(t-s)^{n+1-\alpha}} ds = I^{n-\alpha} f^{(n)}(t), \quad t > 0, \quad 0 \leq n - 1 < \alpha < n\]
The Caputo derivative of a constant equal to zero. If \(f \) is an abstract function with values in \(\mathbb{H} \), then the integrals appearing in the above definitions are taken in Bochner’s sense (see [21]).

Lemma 2.1. Let \(H \) be a Hilbert space and \(\Phi_1, \Phi_2 \) two operators on \(H \) such that

- \(\Phi_1 \) is a contraction and
- \(\Phi_2 \) is completely continuous.

Then either

1. **a)** the operator equation \(\Phi_1 x + \Phi_2 x = x \) has a solution or
2. **b)** \(G = \{ x \in \mathbb{H} : \lambda \Phi_1 (\frac{x}{\lambda}) + \lambda \Phi_2 x = x \} \) is unbounded for \(\lambda \in (0, 1) \).

Lemma 2.2. Let \((v, w) : [0, b] \to [0, \infty)\) be a continuous function. If \(w(.) \) is nondecreasing and there exist two constants \(\theta \geq 0 \) and \(0 < \alpha < 1 \) such that

\[
v(t) \leq w(t) + \theta \int_0^t \frac{v(s)}{(t-s)^{1-\alpha}} ds, \quad t \in J
\]

then

\[
v(t) \leq e^{\theta n(\Gamma(\alpha))^{n} t^n / \Gamma(n)} \sum_{j=0}^{n-1} \left(\frac{\theta \beta^n}{\alpha} \right)^j w(t),
\]

for every \(t \in [0, b] \) and every \(n \in \mathbb{N} \) such that \(n \alpha > 1 \).

3 Existence results

Definition 3.3. An \(\mathbb{H} \)-valued stochastic process \(\{ x(t), t \in (-\infty, b] \} \) is a mild solution of the system if \(x(0) + \mu(x) = x_0 = \phi(t) \) on \((-\infty, 0] \) satisfying \(\| x \|_{\mathbb{C}_{\omega}} < +\infty \), the process \(x \) satisfies the following integral equation

\[
x(t) = S_\alpha(t)[\phi(0) - \mu(x) - h(0, \phi)] + h(t, x(t)) + \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s)f(s, x_s)ds
\]

\[
+ \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s) \left[\int_{-\infty}^{s} \sigma(s, \tau, x_\tau)dW(\tau) \right] ds
\]

where

\[
S_\alpha(t)x = \int_0^\infty \zeta_\alpha(\theta)S(t^{\alpha}\theta)xd\theta, \quad T_\alpha(t)x = \alpha \int_0^\infty \theta \zeta_\alpha(\theta)S(t^{\alpha}\theta)xd\theta
\]

and \(\zeta_\alpha \) is a probability density function defined on \((0, \infty)\).

The following properties of \(S_\alpha(t) \) and \(T_\alpha(t) \) appeared in [11] are useful.

Lemma 3.3. The operators \(S_\alpha(t) \) and \(T_\alpha(t) \) have the following properties

- **i)** For any fixed \(t \geq 0 \), \(S_\alpha(t) \) and \(T_\alpha(t) \) are linear and bounded operators such that for any \(x \in \mathbb{H} \)

\[
\| S_\alpha(t)x \|_{\mathbb{H}} \leq M \| x \|_{\mathbb{H}} \quad \text{and} \quad \| T_\alpha(t)x \|_{\mathbb{H}} \leq \frac{M_\alpha}{\Gamma(1+\alpha)} \| x \|_{\mathbb{H}}
\]

- **ii)** \(S_\alpha(t) \) and \(T_\alpha(t) \) are strongly continuous and compact.

To study existence of mild solutions of [11], we introduce the following hypotheses.

\((H_1) \) : The function \(h, f : J \times \mathbb{C}_{\omega} \to \mathbb{H} \) are continuous and there exist some constants \(M_h, M_f \), such that

\[
E \| h(t, x) - h(t, y) \|_{\mathbb{H}}^2 \leq M_h \| x - y \|_{\mathbb{C}_{\omega}}^2, \quad x, y \in \mathbb{C}_{\omega}, \quad t \in J
\]

\[
E \| h(t, x) \|_{\mathbb{H}}^2 \leq M_h(1 + \| x \|_{\mathbb{C}_{\omega}}^2)
\]

\[
E \| f(t, x) - f(t, y) \|_{\mathbb{H}}^2 \leq M_f \| x - y \|_{\mathbb{C}_{\omega}}^2, \quad x, y \in \mathbb{C}_{\omega}, \quad t \in J
\]

\[
E \| f(t, x) \|_{\mathbb{H}}^2 \leq M_f(1 + \| x \|_{\mathbb{C}_{\omega}}^2)
\]
\[(H_2)\) \(\mu\) is continuous and there exists some positive constants \(M_\mu\) such that
\[
E\|\mu(x) - \mu(y)\|^2_{L_\mu^2} \leq M_\mu \|x - y\|_{C_v}^2, \ x, y \in C_v, \ t \in J
\]
\[
E\|\mu(x)\|_{L_\mu^2}^2 \leq M_\mu(1 + \|x\|_{C_v}^2)
\]
\[(H_3)\) For each \(\varphi \in C_v\),
\[
k(t) = \lim_{a \to \infty} \int_{-a}^{0} \sigma(t, s, \varphi)dW(s)
\]
exists and is continuous. Further, there exists a positive constant \(M_k\) such that
\[
E\|k(t)\|_{L_\mu^2}^2 \leq M_k
\]
\[(H_4)\) The function \(\sigma : J \times J_1 \times C_v \to L(\mathbb{K}, \mathbb{H})\) satisfies the following:
\[i)\] for each \((t, s) \in J \times J\), \(\sigma(t, s, \cdot) : C_v \to L(\mathbb{K}, \mathbb{H})\) is continuous and for each \(x \in C_v\), \(\sigma(\cdot, \cdot, x) : J \times J \to L(\mathbb{K}, \mathbb{H})\) is strongly measurable;
\[ii)\] there is a positive integrable function \(m \in L^1([0, b])\) and a continuous nondecreasing function \(M_\sigma : [0, \infty) \to (0, \infty)\) such that for every \((t, s, x) \in J \times J \times C_v\), we have
\[
\int_0^t E\|\sigma(t, s, x)\|_{L_\sigma^2}^2 ds \leq m(t)M_\sigma(\|x\|_{C_v}^2), \ \lim \inf_{r \to \infty} \frac{M_\sigma(r)}{r} ds = \Delta < \infty
\]
\[iii)\] For any \(x, y \in C_v, t \geq 0\), there exists a positive constant \(L_\sigma\) such that
\[
\int_0^t E\|\sigma(t, s, x) - \sigma(t, s, y)\|_{L_\sigma^2}^2 ds \leq L_\sigma \|x - y\|_{C_v}^2
\]
\[(H_5)\)
\[
N_0 = 2l^2\{12M^2M_\mu + 4M_k\} \quad \quad (3.1)
\]
\[
N_1 = 2 \|\sigma\|_{C_v}^2 + 2l^2F \quad \quad (3.2)
\]
\[
N_2 = 8l^2 \left(\frac{M_\sigma}{\Gamma(1 + \alpha)} \right)^2 \frac{b^\alpha}{\alpha} M_f \quad \quad (3.3)
\]
\[
N_3 = 16l^2 \left(\frac{M_\sigma}{\Gamma(1 + \alpha)} \right)^2 \frac{b^\alpha}{\alpha} Tr(Q) \quad \quad (3.4)
\]
\[
K_1 = \frac{N_1}{1 - N_0}, \quad K_2 = \frac{N_2}{1 - N_0}, \quad K_3 = \frac{N_3}{1 - N_0} \quad \quad (3.5)
\]
\[
F = 12M^2(C_1 + C_2) + 12M^2M_\mu + 4M_k + 4 \left(\frac{M_\sigma}{\Gamma(1 + \alpha)} \right)^2 \frac{b^\alpha}{\alpha^2} M_f + 8b \left(\frac{M_\sigma}{\Gamma(1 + \alpha)} \right)^2 \frac{b^\alpha}{\alpha^2} M_k \quad \quad (3.6)
\]

Now, we consider the space,
\[
C_v' = \{ x : (-\infty, b] \to \mathbb{H}, x_0 = \phi \in C_v \}
\]
Set \(\|\cdot\|_b\) be a seminorm defined by
\[
\|x\|_b = \|x_0\|_{C_v} + \sup_{s \in [0, b]} (E|\sigma(s)|^2)^{\frac{1}{2}}, \ x \in C_v'
\]
We have the following useful lemma appeared in \([20]\).
Lemma 3.4. Assume that $x \in \mathcal{C}_v'$, then for all $t \in J$, $x_t \in \mathcal{C}_v$. Moreover,

$$l(E \|x(t)\|^2)^{\frac{1}{2}} \leq \|x_t\|_{\mathcal{C}_v} \leq l \sup_{s \in [0,t]} (E \|x(s)\|^2)^{\frac{1}{2}} + \|x_0\|_{\mathcal{C}_v}$$

where $l = \int_{-\infty}^0 v(s)ds < \infty$

The main object of this paper is to explain and prove the following theorem.

Theorem 3.1. Assume that assumptions $(H_0)-(H_5)$ hold. Then there exists a mild solution

Proof Consider the map $\Pi : \mathcal{C}_v' \to \mathcal{C}_v'$ defined by

$$(\Pi x)(t) = \begin{cases} \phi(t) & \text{if } t \in (-\infty, 0] \\ S_\alpha(t)(\phi(0) - \mu x - h(0, \phi) + h(t, x_t)) + \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s) f(s, x_s)ds \\ + \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s) \left[\int_0^s \sigma(s, \tau, x_\tau) dW(\tau) \right] ds & \text{if } t \in J \end{cases}$$

(3.7)

In what follows, we shall show that the operator Π has a fixed point, which is then a mild solution for system 1.1

For $\phi \in \mathcal{C}_v'$, define

$$\tilde{\phi}(t) = \begin{cases} \phi(t) & \text{if } t \in (-\infty, 0] \\ S_\alpha(t)\phi(0) & \text{if } t \in J \end{cases}$$

(3.8)

Then $\tilde{\phi} \in \mathcal{C}_v'$. Let $x(t) = \tilde{\phi}(t) + z(t)$, $-\infty < t \leq b$. It is easy to see that x satisfies 1.1 if and only if z satisfies $z_0 = 0$ and

$$z(t) = S_\alpha(t) \left[-\mu(\tilde{\phi} + z) - h(0, \phi) + h(t, \tilde{\phi}_t + z_t) + \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s) f(s, \tilde{\phi}_s + z_s)ds \\ + \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s) \left[\int_0^s \sigma(s, \tau, \tilde{\phi}_\tau + z_\tau) dW(\tau) \right] ds \right]$$

Let

$$\mathcal{C}_v'' = \{ z \in \mathcal{C}_v' : z_0 = 0 \in \mathcal{C}_v \}$$

For any $z \in \mathcal{C}_v''$, we have

$$\|z\|_b = \|z_0\|_{\mathcal{C}_v'} + \sup_{s \in [0,b]} (E \|z(s)\|^2)^{\frac{1}{2}} = \sup_{s \in [0,b]} (E \|z(s)\|^2)^{\frac{1}{2}}$$

Thus $(\mathcal{C}_v'', \|\cdot\|_b)$ is a Banach space, set

$$B_q = \{ z \in \mathcal{C}_v'' : \|z\|^2_\mathcal{b} \leq q \}$$

then, $B_q \subset \mathcal{C}_v''$ is uniformly bounded.

then, for each q, B_q is clearly a bounded closed convex set in \mathcal{C}_v''. For $z \in B_q$, from Lemma 3.3 we have

$$\|z_t + \tilde{\phi}_t\|^2_{\mathcal{C}_v'} \leq 2(\|z_t\|^2_{\mathcal{C}_v'} + \|\tilde{\phi}_t\|^2_{\mathcal{C}_v'})$$

$$\leq 4l^2 \sup_{s \in [0,t]} E \|z(s)\|^2 + \|z_0\|^2_{\mathcal{C}_v'} + l^2 \sup_{s \in [0,t]} E \|\tilde{\phi}(s)\|^2 + \|\tilde{\phi}_0\|^2_{\mathcal{C}_v'}$$

$$\leq 4l^2 (q + M^2 E \|\phi(0)\|^2_{\mathcal{C}_v'}) + 4 \|\phi\|^2_{\mathcal{C}_v'} = \hat{q}$$

Define the operator $\Phi : \mathcal{C}_v'' \to \mathcal{C}_v''$ by
\[
(\Phi z)(t) = \begin{cases}
0 & t \in (-\infty, 0] \\
S_\alpha(t)[-\mu(\hat{\phi} + z) - h(0, \hat{\phi})] + h(t, \hat{\phi}_t + z_t) + \int_0^t (t-s)^{\alpha-1}T_\alpha(t-s)f(s, \hat{\phi}_s + z_s)ds \\
+ \int_0^t (t-s)^{\alpha-1}T_\alpha(t-s) \left[\int_{-\infty}^s \sigma(s, \tau, \hat{\phi}_\tau + z_\tau) dW(\tau) \right] ds & t \in J
\end{cases}
\]

Observe that \(\Phi \) is well defined on \(B_q \) for each \(q > 0 \).

Now we will show that the operator \(\Phi \) has a fixed point on \(B_q \), which implies that E.q [1.1] has a mild solution. To this end, we decompose \(\Phi \) as \(\Phi = \Phi_1 + \Phi_2 \), where the operators \(\Phi_1 \) and \(\Phi_2 \) are defined on \(B_q \), respectively, by

\[
(\Phi_1 z)(t) = S_\alpha(t)[-\mu(\hat{\phi} + z) - h(0, \hat{\phi})] + h(t, \hat{\phi}_t + z_t)
\]

\[
(\Phi_2 z)(t) = \int_0^t (t-s)^{\alpha-1}T_\alpha(t-s)f(s, \hat{\phi}_s + z_s)ds
\]

\[
+ \int_0^t (t-s)^{\alpha-1}T_\alpha(t-s) \left[\int_{-\infty}^s \sigma(s, \tau, \hat{\phi}_\tau + z_\tau) dW(\tau) \right] ds
\]

Thus, the theorem follows from the next theorem

Theorem 3.2. If assumption \((H_1) - (H_5) \) hold, then \(\Phi_1 \) is a contraction and \(\Phi_2 \) is completely continuous.

Proof To prove that \(\Phi_1 \) is a contraction on \(C^\prime\prime \), we take \(u, v \in C^\prime\prime \). Then for each \(t \in J \) we have

\[
E \| \Phi_1 u(t) - \Phi_1 v(t) \|^2 \leq 2E \left\| S_\alpha(t)(\mu(\hat{\phi} + u) - \mu(\hat{\phi} + v)) \right\|^2
\]

\[
+ 2E \left\| h(t, \hat{\phi}_t + u_t) - h(t, \hat{\phi}_t + v_t) \right\|^2
\]

\[
\leq 2M^2\mu \| u - v \|^2_{C^\prime\prime} + 2M\| u_t - v_t \|^2_{C^\prime}
\]

\[
\leq 2(M^2\mu + M)\| u_t - v_t \|^2_{C^\prime}
\]

\[
\leq 2(M^2\mu + M)
\]

\[
\left[2^2 \sup_{s \in [0, t]} E \| u(s) - v(s) \|^2 + 2\| u_0 \|^2_{C^\prime\prime} + 2\| v_0 \|^2_{C^\prime\prime} \right]
\]

\[
\leq 4(M^2\mu + M)E \| u(s) - v(s) \|^2
\]

\[
\leq \sup_{s \in [0, t]} L_0 E \| u(s) - v(s) \|^2
\]

where we have used the fact that \(\| u_0 \|^2_{C^\prime} = 0, \| v_0 \|^2_{C^\prime} = 0 \).

Thus,

\[
\| \Phi_1 u - \Phi_1 v \| \leq L_0 \| u - v \|
\]

and by assumption \(0 \leq L_0 \leq 1 \) it is clear that \(\Phi_1 \) is contraction.

Now, we show that the operator \(\Phi_2 \) is completely continuous, firstly we prove that \(\Phi_2 : C^\prime\prime \rightarrow C^\prime\prime \) is continuous.

Let \(\{ z^n(t) \}_{n=0}^\infty \) with \(z^n \rightarrow z \) in \(C^\prime\prime \). Then, there is a number \(q \geq 0 \) such that \(|z^n(t)| \leq q \), for all \(n \) and a.e. \(t \in J \). So \(z^n \in B_q \) and \(z \in B_q \).

\[
f(t, z^n_t + \hat{\phi}_t) \rightarrow f(t, z_t + \hat{\phi}_t)
\]

\[
\sigma(s, \tau, z^n_{\tau} + \hat{\phi}_\tau) \rightarrow \sigma(s, \tau, z_{\tau} + \hat{\phi}_\tau)
\]
for $t \in J$, and since
\[
E \left\| f(t, z_t^{(n)} + \tilde{\phi}_t) - f(t, z_t + \tilde{\phi}_t) \right\|^2 \leq 2M_q(t)
\]
\[
E \left\| \sigma(s, \tau, z_t^{(n)} + \tilde{\phi}_t) - \sigma(s, \tau, z_t^{(n)} + \tilde{\phi}_t) \right\|^2 \leq 2m(t)M_o(q')
\]

By the dominated convergence theorem we obtain continuity of Φ_2
\[
E \left\| \Phi_2^{(n)} - \Phi_2 \right\|^2 \leq 2\sup_{t \in J} E \left\| \int_0^t (t-s)^{\alpha-1}T_\alpha(t-s)[f(s, z_s^{(n)}) - f(s, z_s)]ds \right\|^2
\]
\[
+ 2bE \left\| \int_0^t (t-s)^{\alpha-1}T_\alpha(t-s) [\int_{-\infty}^s |\sigma(s, \tau, z_s^{(n)}) - \sigma(s, \tau, z_s)|dw(\tau)] ds \right\|^2
\]
\[
\leq 2 \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^{2\alpha}}{\alpha^2} \int_0^t E \left\| f(s, z_s^{(n)}) - f(s, z_s) \right\|^2 ds
\]
\[
+ 2b \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^{2\alpha}}{\alpha^2} \int_0^t E \left[\int_{-\infty}^s |\sigma(s, \tau, z_s^{(n)}) - \sigma(s, \tau, z_s)|dw(\tau) \right] ds \right\|^2
\]
\[
\to 0 \text{ as } n \to \infty
\]

Next, we prove that Φ_2 maps bounded sets into bounded sets in C_v''. For each $z \in B_q$ from \(3.4\), we have
\[
\left\| z_t + \tilde{\phi}_t \right\|_{C_v}^2 \leq 4T^2(q + M^2E \left\| \phi(0) \right\|_H^2) + 4 \left\| \phi \right\|_{C_v}^2 = q'
\]
\[
E \left\| \Phi_2(z(t)) \right\|_H^2 \leq 2E \left\| (t-s)^{\alpha-1}T_\alpha(t-s)f(s, \tilde{\phi}_s + z_s) \right\|_H^2
\]
\[
+ 2E \left\| (t-s)^{\alpha-1}T_\alpha(t-s) [\int_{-\infty}^s |\sigma(s, \tau, \tilde{\phi}_s + z_s)|dW(\tau)] ds \right\|_H^2
\]
\[
\leq 2 \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^{2\alpha}}{\alpha^2} \int_0^t (t-s)^{\alpha-1}M_f(1 + \left\| \tilde{\phi}_s + z_s \right\|_{C_v}^2) ds
\]
\[
+ \left\{ \frac{M_\alpha}{\Gamma(1+\alpha)} \right\} \frac{b^{2\alpha}}{\alpha^2} \int_0^t (t-s)^{\alpha-1}(2M_k + 2Tr(Q)m(s)M_o(\left\| \tilde{\phi}_s + z_s \right\|_{C_v}^2) ds.
\]
\[
\leq 2 \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^{2\alpha}}{\alpha^2} M_f(1 + q')
\]
\[
+ 2 \left\{ \frac{M_\alpha}{\Gamma(1+\alpha)} \right\} \frac{b^{2\alpha}}{\alpha^2} (M_k + Tr(Q)M_o(q') \sup_{t \in J} m(s))
\]
\[
\leq r
\]

Which implies that for each $z \in B_q$, $\left\| \Phi_2(z) \right\|_H^2 \leq r$.

Next, we establish the compactness of Φ_2. We employ the Arzela-Ascoli theorem to show the set $V(t) = \{ (\Phi_2(z))(t), z \in B_q \}$ is relatively compact in H. Let $0 < t \leq b$ be fixed and ϵ be a real number satisfying $0 < \epsilon \leq t$. For $\delta > 0$, for $z \in B_q$, We define
\[(\Phi_2^\epsilon \delta z)(t) = \alpha \int_0^{t-\epsilon} \int_0^t \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta) f(s, \tilde{\phi}_s + z_s) ds + \alpha \int_0^{t-\epsilon} \int_0^t \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta) \left[\int_{-\infty}^s \sigma(s, \tau, \tilde{\phi}_\tau + z_\tau) dW(\tau) \right] ds \]

\[= S(\epsilon^\alpha \delta) \alpha \int_0^{t-\epsilon} \int_0^t \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta - \epsilon^\alpha \delta) f(s, \tilde{\phi}_s + z_s) ds + S(\epsilon^\alpha \delta) \alpha \int_0^{t-\epsilon} \int_0^t \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta - \epsilon^\alpha \delta) \left[\int_{-\infty}^s \sigma(s, \tau, \tilde{\phi}_\tau + z_\tau) dW(\tau) \right] ds \]

Since \(S(t, t > 0)\) is a compact operator, the set \(V_{\epsilon, \delta} = \{ \Phi_2^\epsilon \delta(t), z \in B_q \}\) is relatively compact in \(\mathbb{H}\) for every \(\epsilon \in (0, t), \delta > 0\). Moreover, for each \(z \in B_q\), we have

\[
E \left\| (\Phi_2 z)(t) - (\Phi_2^\epsilon \delta z)(t) \right\|_{\mathbb{H}}^2
\leq 4 \alpha^2 E \left\| \int_0^t \int_0^\delta \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta) f(s, z_s + \tilde{\phi}_s) dt d\theta ds \right\|_{\mathbb{H}}^2
+ 4 \alpha^2 E \left\| \int_0^t \int_{t-\epsilon}^\delta \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta) f(s, z_s + \tilde{\phi}_s) dt d\theta ds \right\|_{\mathbb{H}}^2
+ 4 \alpha^2 E \left\| \int_0^t \int_0^\delta \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta) \left[\int_{-\infty}^s \sigma(s, \tau, z_\tau + \tilde{\phi}_\tau) dW(\tau) \right] d\theta ds \right\|_{\mathbb{H}}^2
+ 4 \alpha^2 E \left\| \int_0^t \int_{t-\epsilon}^\delta \theta(t-s)^{\alpha-1} \eta_\alpha(\theta) S((t-s)^\alpha \theta) \left[\int_{-\infty}^s \sigma(s, \tau, z_\tau + \tilde{\phi}_\tau) dW(\tau) \right] d\theta ds \right\|_{\mathbb{H}}^2
\leq 4 M^2 b^2 \alpha M_f (1 + q') \left(\int_0^\delta \theta \eta_\alpha(\theta) d\theta \right)^2 + \frac{4 M^2 2^2 \alpha M_f (1 + q')}{\Gamma^2(1 + \alpha)}
+ 4 \alpha M^2 b^\alpha \int_0^t (t-s)^{\alpha-1} (2 M_k + 2 T_r(Q) M_s(q') m(s)) ds \left(\int_0^\delta \theta \eta_\alpha(\theta) d\theta \right)^2
+ \frac{4 \alpha M^2 c^\alpha}{\Gamma^2(1 + \alpha)} \int_{t-\epsilon}^t (t-s)^{\alpha-1} (2 M_k + 2 T_r(Q) M_s(q') m(s)) ds
\]

where we have used the equality (see \([22, 29]\))

\[
\int_0^\infty \theta^\gamma \eta_\alpha(\theta) = \frac{\Gamma(1 + \gamma)}{\Gamma(1 + \alpha \gamma)}
\]

We see that for each \(z \in B_q\)

\[
E \left\| (\Phi_2 z)(t) - (\Phi_2^\epsilon \delta z) \right\|_{\mathbb{H}}^2 \to 0 \text{ as } \epsilon^+ \to 0, \delta \to 0.
\]

Since the right-hand side of the above inequality can be made arbitrarily small, there is relatively compact \(V_{\epsilon, \delta}\) arbitrarily close to the set \(V(t)\). Hence, the set \(V(t)\) is relatively compact in \(B_q\). It remains to show that \(\Phi_2\) maps is bounded set into equicontinuous sets of \(\dot{C}_\alpha^\epsilon\).

Let \(0 < \epsilon < t < b\) and \(\delta > 0\) such that \(\| T_{\alpha}(s_1) - T_{\alpha}(s_2) \| \leq \epsilon\), for every \(s_1, s_2 \in J\).
with $|s_1 - s_2| < \delta$. For $z \in B_q$, we have

\[
E \left\| \Phi_2 z(t + h) - \Phi_2 z(t) \right\|_H^2 \\
\leq 6E \int_0^t \left| (t + h - s)^{\alpha - 1} - (t - s)^{\alpha - 1} \right| T_\alpha(t + h - s) f(s, \tilde{\phi}_s + z_s) ds \right\|_H^2 \\
+ 6E \int_t^{t+h} (t + h - s)^{\alpha - 1} T_\alpha(t + h - s) f(s, \tilde{\phi}_s + z_s) \right\|_H^2 \\
+ 6E \int_0^t (t - s)^{\alpha - 1} [T_\alpha(t + h - s) - T_\alpha(t - s)] f(s, \tilde{\phi}_s + z_s) \right\|_H^2 \\
+ 6E \int_0^t [(t + h - s)^{\alpha - 1} - (t - s)^{\alpha - 1}] T_\alpha(t + h - s) \left\| \int_{-\infty}^s \sigma(s, \tau, \tilde{\phi}_\tau + z_\tau) dW(\tau) ds \right\|_H^2 \\
+ 6E \int_t^{t+h} (t + h - s)^{\alpha - 1} T_\alpha(t + h - s) \left\| \int_{-\infty}^s \sigma(s, \tau, \tilde{\phi}_\tau + z_\tau) dW(\tau) ds \right\|_H^2 \\
+ 6E \int_0^t (t - s)^{\alpha - 1} [T_\alpha(t + h - s) - T_\alpha(t - s)] \left\| \int_{-\infty}^s \sigma(s, \tau, \tilde{\phi}_\tau + z_\tau) dW(\tau) ds \right\|_H^2 \\
\leq 6 \left\{ \frac{M_\alpha}{\Gamma(1 + \alpha)} \right\}^2 \int_0^t \left| (t + h - s)^{\alpha - 1} - (t - s)^{\alpha - 1} \right|^2 M_f(1 + q') ds \\
+ 6 \left\{ \frac{M_\alpha}{\Gamma(1 + \alpha)} \right\}^2 \int_t^{t+h} \left| (t + h - s)^{\alpha - 1} \right|^2 M_f(1 + q') ds \\
+ 6\epsilon^2 \int_0^t \left| (t - s)^{\alpha - 1} \right|^2 M_f(1 + q') ds + 6 \left\{ \frac{M_\alpha}{\Gamma(1 + \alpha)} \right\}^2 \int_0^t \left| (t + h - s)^{\alpha - 1} - (t - s)^{\alpha - 1} \right|^2 \\
\times (2M_k + 2Tr(Q)m(s)M_\sigma(q')) ds \\
+ 6 \left\{ \frac{M_\alpha}{\Gamma(1 + \alpha)} \right\}^2 \int_0^t \left| (t + h - s)^{\alpha - 1} \right|^2 (2M_k + 2Tr(Q)m(s)M_\sigma(q')) ds \\
+ 6\epsilon^2 \int_0^t \left| (t - s)^{\alpha - 1} \right|^2 (2M_k + 2Tr(Q)m(s)M_\sigma(q')) ds
\]

It is known that the compactness of $T_\alpha(t), t > 0$ implies the continuity in the uniform operator topology. Therefore, for ϵ sufficiently small, the right-hand side of the above inequality tends to zero as $h \to 0$. Thus, the set $\{\Phi_2 z, z \in B_q\}$ is equicontinuous. This completes the proof that Φ_2 is completely continuous.

To apply the Krasnoselskii-Schaefer theorem, it remains to show that the set

$$G = \{ x \in H : \lambda \Phi_1 \left(\frac{x}{\lambda} \right) + \lambda \Phi_2 x = x \}$$

is bounded for $\lambda \in (0, 1)$.

We consider the following nonlinear operator equation,

$$x(t) = \lambda (S_\alpha(t)[\phi(0) - \mu(x) - h(0, \phi)]) + \lambda h(t, x_t)$$
$$+ \lambda \int_0^t (t - s)^{\alpha - 1} T_\alpha(t - s) f(s, x_s) ds$$
$$+ \lambda \int_0^t (t - s)^{\alpha - 1} T_\alpha(t - s) \left[\int_{-\infty}^s \sigma(s, \tau, x_\tau) dW(\tau) \right] ds$$
From lemma [3.4] and the above inequality, we have
\[E ||x(t)||^2 \leq E ||S_\alpha(t)(\phi(0) - \mu(x) - b(0, \phi))||_{\mathcal{H}}^2 + 4 ||b(t, x)||_{\mathcal{H}}^2 \]
\[+ 4E \left| \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s)f(s, x_s)ds \right|^2_{\mathcal{H}} \]
\[+ 4E \left| \int_0^t (t-s)^{\alpha-1} T_\alpha(t-s) \left[\int_{-\infty}^s \sigma(s, \tau, x_\tau)dW(\tau) \right]ds \right|^2_{\mathcal{H}} \]
\[\leq 12 M^2 (C_1 + C_2 + M_\mu) + 12 M^2 (1 + \|x\|_{\mathcal{C}_\nu}^2) \]
\[+ 4 \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^{2\alpha}}{\alpha^2} M_f (1 + \|x\|_{\mathcal{C}_\nu}) \]
\[+ 4b \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^\alpha}{\alpha} \int_0^t (t-s)^{\alpha-1} (2M_k + 2Tr(Q)m(s)M_\sigma(\|x_s\|_{\mathcal{C}_\nu})ds \]

Now, we consider the function \(\nu \) defined by
\[\dot{\nu}(t) = \sup\{E ||x(s)||^2, 0 \leq s \leq t\}, 0 \leq t \leq b \]
From lemma [3.4] and the above inequality, we have
\[E ||x(t)||^2 = 2 ||\phi||_{\mathcal{C}_\nu}^2 + 2t^2 \sup_{0 \leq s \leq t} (E ||x(s)||^2) \]
Therefore, we get
\[\dot{\nu}(t) \leq 2 ||\phi||_{\mathcal{C}_\nu}^2 + 2t^2 \{ \bar{F} + 12 M^2 \dot{\nu}(t) + 4 \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^{2\alpha}}{\alpha^2} M_f \dot{\nu}(t) \]
\[+ 8b \left(\frac{M_\alpha}{\Gamma(1+\alpha)} \right)^2 \frac{b^\alpha}{\alpha} \int_0^t (t-s)^{\alpha-1} Tr(Q)m(s)M_\sigma(\dot{\nu}(s))ds \}
\]
where \(\bar{F} \) is given in (3.6). Thus, we have
\[\dot{\nu}(t) \leq K_1 + K_2 \int_0^t \frac{\dot{\nu}(s)}{(t-s)^{1-\alpha}}ds + K_3 \int_0^t m(s)M_\sigma(\dot{\nu}(s))ds \]
where \(K_1, K_2, K_3 \) are given in (3.5). By Lemma [2.2], we have
\[\dot{\nu} \leq B_0(K_1 + K_3 \int_0^t m(s)M_\sigma(\dot{\nu}(s))ds \]
Where
\[B_0 = e^{K_2^2 (\Gamma(\alpha))^n b^{n\alpha} / \Gamma(n\alpha)} \sum_{j=0}^{n-1} \left(\frac{K_2 b^\alpha}{\alpha} \right)^j \]
Denoting by \(\nu(t) \) the right hand side of the last inequality, we have \(\nu(0) = B_0K_1 \)
\[\dot{\nu}(t) \leq B_0K_3m(t)M_\sigma \dot{\nu}(t) \]
\[\dot{\nu}(t) \leq B_0K_3m(t)M_\sigma(\dot{\nu}(t)) \]
This implies
\[\int_{\nu(0)}^{\nu(t)} ds / M_\sigma(s) \leq \int_0^b \pi(s)ds < \int_0^\infty \frac{ds}{B_0K_1} \]
This inequality implies that there is a constant \(\rho \) such that \(\nu(t) \leq \rho, t \in J \) and hence \(\dot{\nu}(t) \leq \rho, t \in J \). Furthermore, we get \(||x(t)||_{\mathcal{C}_\nu} \leq \dot{\nu}(t) \leq \nu(t) \leq \rho, t \in J \), where \(\rho \) depends only on \(b \) and on the functions \(\pi(s) \) and \(M_\sigma(s) \).

Theorem 3.3. Assume that the hypotheses \((H_1) - (H_5)\) hold. Then problem has at least one mild solution on \(J \).
Proof. Let us take the set

\[D(\Phi) = \{ z \in C''_\alpha : z = \lambda \Phi_1(\frac{z}{x}) + \lambda \Phi_2 z \text{ for some } \lambda \in [0, 1] \} \]

(3.9)

Then, for any \(z \in D(\Phi) \), we have by theorem ... that \(\|x\|_{C^1_\alpha} \leq K, t \in J \), and hence

\[
\|z\|_0^2 = \|z_0\|_{C^1_\alpha}^2 + \sup\{ E \|z(t)\|^2 : 0 \leq t \leq b \} \\
= \sup\{ E \|z(t)\|^2 : 0 \leq t \leq b \} \\
\leq \sup\{ E \|x(t)\|^2 : 0 \leq t \leq b \} + \sup\{ E \|\phi(t)\|^2 : 0 \leq t \leq b \} \\
\leq \sup\{ H \|x(t)\|^2_{C^1_\alpha} : 0 \leq t \leq b \} + \sup\{ \|s_\alpha(t)\phi(0)\| : 0 \leq t \leq b \} \\
\leq I^{-\rho} + M_1 \|\phi(0)\|^2
\]

This implies that \(D \) is bounded on \(J \). Consequently by Lemma 2.1, the operator \(\Phi \) has a fixed point \(z \in C''_\alpha \). So Eq. (3.1) has a mild solution. Theorem is proved.

Example 3.1. As an application of the above result, consider the following fractional order neutral stochastic partial differential system with nonlocal conditions and infinite delay in Hilbert space.

\[
\begin{cases}
^cD_t^\alpha [z(t, x) - \int_{-\infty}^t e^{4(s-t)} z(s, x) ds] = \frac{\partial^2}{\partial x^2} [z(t, x) - \int_{-\infty}^t e^{4(s-t)} z(s, x) ds] + \eta(t, x) \\
+ \int_0^t \hat{a}(s) \sin(z(t+s, x)) ds + \int_{-\infty}^t \sigma(t, x, s-t) ds \beta(s, x) \quad t \in J = [0, b] \\
z(t, 0) = z(t, \pi) = 0 \quad t \in J \\
z(0, x) + \int_0^\pi k_1(x, y) z(t, y) dy = x_0 = \varphi(t, x) \quad t \in (-\infty, 0],
\end{cases}
\]

(3.10)

where \(^cD_t^\alpha\) is a Caputo fractional partial derivative of order \(\alpha \in (0, 1) \), and \(K_1(x, y) \in \mathbb{H} = L^2([0, \pi] \times [0, \pi]) \) and \(\int_0^\pi |\hat{a}(s)| ds < +\infty \). \(\beta(t) \) is a one-dimensional standard Wiener process on filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\). To rewrite this system into the abstract form (3.1), let \(\mathbb{H} = L^2([0, \pi]) \) with the norm \(\|\cdot\| \). Define \(A : \mathbb{H} \rightarrow \mathbb{H} \) by \(A(t)z = z \) with the domain \(D(A) = \{ z \in \mathbb{H} : z, z' \text{ are absolutely continuous}, z'' \in \mathbb{H}, z(0) = z(\pi) = 0 \} \).

It is well known that \(A \) generates a strongly continuous semigroup \(T(.) \), which is compact, analytic and self-adjoint. Then

\[
Az = \sum_{n=1}^\infty n^2 \langle z, z_n \rangle z_n, \quad z \in D(A)
\]

where \(z_n(s) = \sqrt{\frac{2}{\pi}} \sin(ns), n = 1, 2, \ldots \) is the orthonormal set of eigenvector of \(A \). It is well known that \(A \) is their infinitesimal generator of an analytic semigroup \(T(.) \) in \(H \) and is given by

\[
T(t)z = \sum_{n=1}^\infty e^{-n^2 t} \langle z, z_n \rangle z_n
\]

Then the operator \(A^{-\frac{1}{2}} \) is given by

\[
A^{-\frac{1}{2}}z = \sum_{n=1}^\infty n \langle z, z_n \rangle z_n
\]

on the space \(D(A^{-\frac{1}{2}}) = \{ z(.) \in \mathbb{H} : \sum_{n=1}^\infty n \langle \zeta, z_n \rangle z_n \in \mathbb{H} \} \).
Now, we present a special C_ψ space. Let $\vartheta(s) = e^{2s}$, $s < 0$, then $l = \int_{-\infty}^{0} \vartheta(s)ds = \frac{1}{2}$.

Let

$$\|\varphi\|_{C_\psi} = \int_{-\infty}^{0} h(s) \sup_{s \leq \theta \leq 0} E\left(\|\varphi(\theta)\|^2\right)^{\frac{1}{2}} ds$$

Then $(C_\psi, \|\cdot\|_{C_\psi})$ is a Banach space.

For $(t, \varphi) \in J \times C_\psi$ where $\varphi(\theta)(x) = \varphi(\theta, x)$, $(\theta, x) \in (-\infty, 0] \times [0, \pi]$, and define the Lipschitz continuous functions $h, f : J \times C_\psi \to H$, $\sigma : J \times C_\psi \to L_Q(H)$, for the infinite delay as follows

$$h(t, \varphi)(x) = \int_{-\infty}^{0} e^{-4\theta} \varphi(\theta)(x)d\theta$$

$$f(t, \varphi)(x) = \int_{-\infty}^{0} \hat{a}(\theta) \sin(\varphi(\theta)(x))d\theta$$

$$\sigma(t, \varphi)(x) = \int_{-\infty}^{0} \zeta(t, x, \theta)\sigma(\varphi(\theta)(x))d\theta$$

Then, the equation (3.10) can be rewritten as the abstract form as the system 1.1. Thus, under the appropriate condition so the functions h, f, and σ are satisfies the hypotheses $(H_1) - (H_5)$. All conditions of the Theorem 3.2 are satisfied, therefore the system (3.10) has a mild solution.

References

Received: July 1, 2014; Accepted: October 29, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/