(1, 2)*-rgα-Closed sets in bitopological spaces

D. Sreejaa,* and P. Juane Sinthyab

a,bDepartment of Mathematics, CMS College of Science and Commerce, Coimbatore, Tamil Nadu, India.

Abstract

In this paper, we introduce (1, 2)*-rgα-closed sets some of its basic properties are studied.

Keywords: (1, 2)*-rgα-closed sets, (1, 2)*-rgα-neighbourhoods sets.

2010 MSC: 54D10.

1 Introduction

N. Levine [1] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Balachandran, Sundaram and Maki [3], Bhattacharyya and Lahiri [4], Arockiarani [2], Dunham [5], Gnanambal [6], Malghan [7], Palaniappan and Rao [8], Park [9] Arya and Gupta [12] and Devi [13], Benchalli and wali [11] have worked on generalized closed sets, their generalizations and related concepts in general topology. In this paper, we define and study the properties of (1,2)*-regular generalized α-closed sets (briefly (1,2)*-rgα-closed) in bitopological spaces.

On comparing topologies on a non-empty set, Weston [14] defined coupling and consistency of the topologies. The beauty is, this study is the possibility of getting always two distinct topologies. Kelly [15] initiated the systematic study of such spaces. That is, a triple(\(X, \tau_1, \tau_2\)), where \(X\) is a nonempty set and \(\tau_1\) and \(\tau_2\) are topologies on \(X\), is called a bitopological space. An year later, various author make their attention in this theory. Fukutake [16] introduced and studied the notions of generalized closed sets in bitopological spaces.

*Corresponding author.

E-mail address: sreejadamu@gmail.com (D. Sreeja), sreejadamu@gmail.com (P. Juane Sinthya).
2 Preliminaries

Throughout the present paper \((X, \tau_1, \tau_2)\), denote bitopological spaces.

Definition 2.1. A subset \(A\) of a space \((X, \tau)\) is called

1. a pre-open set [18] if \(A \subset \text{int}(\text{cl}(A))\) and a pre-closed set if \(\text{cl}(\text{int}(A)) \subset A\);

2. a semi-open set[19] if \(A \subset \text{cl}(\text{int}(A))\) and a semi-closed set if \(\text{int}(\text{cl}(A)) \subset A\);

3. a \(\alpha\)-open set[20] if \(A \subset \text{int}(\text{cl}(\text{int}(A)))\) and a \(\alpha\)-closed set if \(\text{cl}(\text{int}(\text{cl}(A))) \subset A\);

4. a semi-preopen set[21] if \(A \subset \text{cl}(\text{int}(\text{cl}(A)))\) and a semi-pre-closed set if \(\text{int}(\text{cl}(\text{int}(A))) \subset A\);

5. a regular open set if \(A=\text{int}(\text{cl}(A))\) and a regular closed set if \(A=\text{cl}(\text{int}(A))\);

6. \(b\)-open [22] or \(sp\)-open [24], \(\gamma\)-open [25] if \(A \subset \text{cl}(\text{int}(A)) \cup \text{int}(\text{cl}(A))\).

7. \(\pi\alpha\)-closed [23] if \(\alpha\text{Cl}(A) \subset U\) whenever \(A \subset U\) and \(U\) is \(\pi\)-open in \(X\).

8. \(\pi\gamma\)-closed [26] if \(\gamma\text{Cl}(A) \subset U\) whenever \(A \subset U\) and \(U\) is \(\pi\)-open in \(X\).

Definition 2.2. [27] A subset \(A\) of \(X\) is called \(\tau_1\tau_2\)-open if \(S \in \tau_1 \cup \tau_2\) and the complement of \(\tau_1\tau_2\)-open set is \(\tau_1\tau_2\)-closed.

Definition 2.3. [27] Let \(A\) be a subset of \(X\)

(i) The \(\tau_1\tau_2\) -closure of \(A\), denoted by \(\tau_1\tau_2\)-cl\((S)\) is defined by \(\cap\{F/S \subset F\text{ and } F\text{ is }\tau_1\tau_2\text{-closed}\}\)

(ii) The \(\tau_1\tau_2\) -interior of \(A\), denoted by \(\tau_1\tau_2\)-int\((S)\) is defined by \(\cup\{F/F \subset S\text{ and } F\text{ is }\tau_1\tau_2\text{-open}\}\)

Remark 2.1. [28]

(i) \(\tau_1\tau_2\)-int\((S)\) is \(\tau_1\tau_2\)-open for each \(S \subset X\) and \(\tau_1\tau_2\)-cl\((S)\) is \(\tau_1\tau_2\)-closed for each \(S \subset X\).

(ii) A subset \(S \subset X\) is \(\tau_1\tau_2\)-open iff \(S=\tau_1\tau_2\)-int\((S)\) and \(\tau_1\tau_2\)-closed iff \(S=\tau_1\tau_2\)-cl\((S)\)

(iii) \(\tau_1\tau_2\)-int\((S)\)=int\(\tau_1(S)\) \(\cup\) int\(\tau_2(S)\) and \(\tau_1\tau_2\)-cl\((S)\)=cl\(\tau_1(S)\) \(\cup\) cl\(\tau_2(S)\) for any \(S\subset X\)

(iv) for any family \(\{Si/i \in I\}\) of subsets of \(X\) we have

(a) \(i \cup \tau_1\tau_2 - \text{int}(Si) \subset \tau_1\tau_2 - \text{int}(i \cup_i Si)\)

(b) \(i \cup_i \tau_1\tau_2 - \text{cl}(Si) \subset \tau_1\tau_2 - \text{cl}(i \cup_i Si)\)

(c) \(\tau_1\tau_2 - \text{int}(i \cup_i Si) \subset i \cup_i \tau_1\tau_2 - \text{int}(Si)\)

(d) \(\tau_1\tau_2 - \text{cl}(i \cup_i Si) \subset i \cup_i \tau_1\tau_2 - \text{cl}(Si)\)
(v) \(\tau_1 \tau_2 \)-open sets need not form a topology.

Definition 2.4. The finite union of \((1, 2)^*\)-regular open sets [29] is said to be \(\tau_1 \tau_2 - \pi\)-open. The complement of \(\tau_1 \tau_2 - \pi\)-open is said to be \(\tau_1 \tau_2 - \pi\)-closed.

Definition 2.5. A subset \(A \) of a bitopological space \((X, \tau_1, \tau_2)\) is called

(i) \((1, 2)^*\)-semi-open set[17] if \(A \subset (X, \tau_1, \tau_2) - \text{cl}(\tau_1 \tau_2 - \text{int}(A)) \)

(ii) \((1, 2)^*\)-preopen set [17] if \(A \subset (X, \tau_1, \tau_2) - \text{int}(\tau_1 \tau_2 - \text{cl}(A)) \)

(iii) \((1, 2)^*\)-\(\alpha\)-open set[17] if \(A \subset \tau_1 \tau_2 - \text{int}(\tau_1 \tau_2 - \text{cl}(A)) \)

(iv) \((1, 2)^*\)-\(\pi\alpha\)-closed [29] if \((1, 2)^*\)-\(\alpha\text{Cl}(A) \subset U \) whenever \(A \subset U \) and \(U \) is \((1, 2)^*\)-\(\pi\)-open in \(X \).

(v) \((1, 2)^*\)-regular open [17] if \(A = \tau_1 \tau_2 - \text{int}(\tau_1 \tau_2 - \text{cl}(A)) \). Complement of the \((1, 2)^*\)-regular open set is called \((1, 2)^*\)-regular closed set.

(vi) \((1, 2)^*\)-b-open [30] if \(A \subset \tau_1 \tau_2 - \text{cl}(\tau_1 - \text{int}(A)) \cup \tau_2 - \text{int}(\tau_1 \tau_2 - \text{cl}(A)) \).

(vii) \((1, 2)^*\)-generalized closed (briefly \((1, 2)^*\)-g-closed)[22] if \(\tau_1 \tau_2 - \text{cl}(A) \subset U \) whenever \(A \subset U \) and \(U \) is \(\tau_1 \tau_2 \)-open in \(X \).

(viii) \((1, 2)^*\)-\(\alpha\)-closure [17] (resp \((1, 2)^*\)-semi-closure) of a subset \(A \) of \(X \), denoted by \((1, 2)^*\)-\(\alpha\text{Cl}(A) \) (resp. \((1, 2)^*\)-\(\alpha\text{sCl}(A) \)) is defined to be the intersection of all \((1, 2)^*\)-\(\alpha\)-closed (resp. \((1, 2)^*\)-\(\alpha\)-semi-closed) sets containing \(A \).

(ix) \((1, 2)^*\)-\(\alpha\)-interior [17] (resp \((1, 2)^*\)-semi-interior) of a subset \(A \) of \(X \) denoted by \((1, 2)^*\)-\(\alpha\text{Int}(A) \) (resp. \((1, 2)^*\)-\(\alpha\text{sInt}(A) \)) is defined to be the union of all \((1, 2)^*\)-\(\alpha\)-open (resp. \((1, 2)^*\)-\(\alpha\)-semi-open) sets containing \(A \).

(x) \((1, 2)^*\)-semi-generalized closed (briefly \((1, 2)^*\)-sg-closed)[17] if \((1, 2)^*\)-\(\alpha\text{sCl}(A) \subset U \) whenever \(A \subset U \) and \(U \) is \((1,2)^*\) semi-open in \(X \).

(xi) \((1, 2)^*\)-generalized semi closed (briefly \((1, 2)^*\)-gs-closed) [17] if \((1, 2)^*\)-\(\alpha\text{gCl}(A) \subset U \) whenever \(A \subset U \) and \(U \) is \((1, 2)^*\) \(\tau_1 \tau_2 \) open in \(X \).

(xii) \((1, 2)^*\)-\(\alpha\)-generalized closed (briefly \((1, 2)^*\)-\(\alpha\)-g-closed) [17] if \((1, 2)^*\)-\(\alpha\text{Cl}(A) \subset U \) whenever \(A \subset U \) and \(U \) is \(\tau_1 \tau_2 \)-open in \(X \).

(xiii) \((1, 2)^*\)-generalized \(\alpha\)-closed (briefly \((1, 2)^*\)-\(\alpha\)-g-closed) [17] if \((1, 2)^*\)-\(\alpha\text{Cl}(A) \subset U \) whenever \(A \subset U \) and \(U \) is \(\tau_1, \tau_2 \)-\(\alpha\)-open in \(X \).

(xiv) \((1, 2)^*\)-weakly generalized closed set (briefly,\((1,2)^*\)-wg-closed)[31] if \((1,2)^*\)-\(\text{clint}(A) \subset U \)
whenever $A \subseteq U$ and U is τ_1, τ_2 open in X.

(1,2)*-weakly closed set (briefly,(1,2)*- w-closed)[31] if $(1,2)*- \text{cl} (A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)*$-semiopen in X.

$(1,2)*$-regular weakly generalized closed set (briefly,$(1,2)*$- rwg-closed) if $(1,2)*- \text{clint} (A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)*$-regular open in X.

3 $(1,2)^{*} - r g_{\alpha}$ closed sets and their basic properties

We introduce the following definition

Definition 3.1. A subset A of a space (X, τ_1, τ_2) is called $(1,2)^{*}$-regular α-open set (briefly,$(1,2)^{*}$-rα-open) if there is a$(1,2)^{*}$- regular open set U such that $U \subset A \subset (\tau_1, \tau_2 \alpha \text{cl}(U))$. The family of all $(1,2)^{*}$- regular α-open sets of (X, τ_1, τ_2) is denoted by $R\alpha O (X, \tau_1, \tau_2)$.

Definition 3.2. A subset A of a space (X, τ_1, τ_2) is called a $(1,2)^{*}$- regular generalized α-closed set (briefly,$(1,2)^{*}$-rgα-closed) if $\alpha \text{cl} (A) \subset U$ whenever $A \subset U$ and U is$(1,2)^{*}$- regular α-open in (X, τ_1, τ_2). We denote the set of all $(1,2)^{*}$-rgα-closed sets in (X, τ_1, τ_2) by $R\alpha C (X, \tau_1, \tau_2)$. First we prove that the class of $(1,2)^{*}$-rgα-closed sets has properly lies between the class of(1,2)*- gα-closed sets and the class of$(1,2)^{*}$- regular generalized closed sets.

Theorem 3.1. Every $(1,2)^{*}$-gα-closed set in (X, τ_1, τ_2) is $(1,2)^{*}$- rgα-closed set in (X, τ_1, τ_2), but not conversely.

Proof. The proof follows from the definitions and the fact that every $(1,2)^{*}$- regular open sets is $(1,2)^{*}$-regular α-open. The converse of the above theorem need not be true, as seen from the following example.

Example 3.1. Let $X=\{a, b, c, d, e\}$ and $\tau_1=\{\phi, \{a, b\}, a, b, c, dX\}$, $\tau_2=\{\phi, \{c, d\}, \{a, b, c, d\}, X\}$, then the set $A=\{a\}$ is $(1,2)^{*}$- rgα-closed set but not $(1,2)^{*}$- gα-closed set in (X, τ_1, τ_2)

Theorem 3.2. Every$(1,2)^{*}$- w-closed set in X is $(1,2)^{*}$- rgα-closed set in (X, τ_1, τ_2), but not conversely.

Proof. The proof follows from the definitions and the fact that every $(1,2)^{*}$-regular α-open set is $(1,2)^{*}$-semiopen and τ_1, τ_2 closed sets are α-closed. The converse of the above theorem need not be true, as seen from the following example.

Example 3.2. Let $X=\{a, b, c, d, e\}$ and $\tau_1=\{\phi, \{a, b\}, a, b, c, dX\}$, $\tau_2=\{\phi, \{c, d\}, \{a, b, c, d\}, X\}$, then the set $A=\{b\}$ is $(1,2)^{*}$- rgα-closed set but not $(1,2)^{*}$- w-closed set in (X, τ_1, τ_2)
Theorem 3.3. Every (1,2)*-rw-closed set in \((X, \tau_1, \tau_2)\) is (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\), but not conversely.

Proof. The proof follows from the definitions and the fact that closed sets are (1,2)*-α-closed. The converse of the above theorem need not be true, as seen from the following example.

Example 3.3. Let \(X=\{a, b, c, d, e\}\) and \(\tau_1=\{\phi, \{a, b\}, a, b, c, d, X\}\), \(\tau_2=\{\phi, \{c, d\}, \{a, b, c, d\}, X\}\), then the set \(A=\{b\}\) is (1,2)*-rgα-closed set but not (1,2)*-rw-closed set in \((X, \tau_1, \tau_2)\).

Theorem 3.4. Every (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\) is (1,2)*-rg-closed set in \((X, \tau_1, \tau_2)\), but not conversely.

Proof. The proof follows from the definitions and the fact that every (1,2)*-regular open sets are (1,2)*-regular α-open. The converse of the above theorem need not be true, as seen from the following example.

Example 3.4. Let \(X=\{a, b, c, d, e\}\) and \(\tau_1=\{\phi, \{a, b\}, a, b, c, d, X\}\), \(\tau_2=\{\phi, \{c, d\}, \{a, b, c, d\}, X\}\), then the set \(A=\{a, b\}\) is (1,2)*-rg-closed set but (1,2)*-not rgα-closed set in \((X, \tau_1, \tau_2)\).

Corollary 3.1. Every closed set is (1,2)*-rgα-closed but not conversely.

Corollary 3.2. Every (1,2)*-regular closed set is (1,2)*-rgα-closed but not conversely.

Corollary 3.3. Every (1,2)*-rgα-closed set is a (1,2)*-gpr-closed set but not conversely.

Corollary 3.4. Every (1,2)*-π-closed set is a (1,2)*-rgα-closed set but not conversely.

Theorem 3.5. Every (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\) is (1,2)*-rwg-closed set in \((X, \tau_1, \tau_2)\), but not conversely.

Proof. The proof follows from the definitions and the fact that every (1,2)*-regular open sets are (1,2)*-regular α-open. The converse of the above theorem need not be true, as seen from the following example.

Theorem 3.6. The union of two (1,2)*-rgα-closed subsets of \((X, \tau_1, \tau_2)\) is also (1,2)*-rgα-closed subset of \((X, \tau_1, \tau_2)\).

Proof. Assume that \(A\) and \(B\) are (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\). Let \(U\) be (1,2)*-regular α-open in \((X, \tau_1, \tau_2)\) such that \(A \cup B \subseteq U\). Then \(A \subseteq U\) and \(B \subseteq U\). Since \(A\) and \(B\) are (1,2)*-rgα-closed, \(1,2)*-αcl(A) \subseteq U\) and \((1,2)*-αcl(B) \subseteq U\). Hence\((1,2)*-αcl(A \cup B) = (1,2)*-(αcl(A)) \cup (1,2)*-(αcl(B)) \subseteq U\). That is \(1,2)*-αcl(A \cup B) \subseteq U\). Therefore \(A \cup B\) is (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\).

Remark 3.1. The intersection of two (1,2)*-rgα-closed sets in \((X, \tau_1, \tau_2)\) is generally not (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\).
Example 3.5. Let $X=\{a, b, c, d, e\}$ and $\tau_1=\{\phi, \{a, b\}, \{a, b, c, d\}, X\}$, $\tau_2=\{\phi, \{c, d\}, \{a, b, c, d\}\}$, then the set $A=\{a, b, c\}$ and $B=\{a, d, e\}$ then A and B are $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2) but $A \cap B=\{a\}$ is not $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2).

Theorem 3.7. If a subset A of (X, τ_1, τ_2) is $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2). Then $(1,2)^*\alpha$cl$(A)\setminus A$ does not contain any nonempty $(1,2)^*\alpha$-regular α-open set in (X, τ_1, τ_2).

Proof. Suppose that A is $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2). We prove the result by contradiction. Let U be a $(1,2)^*\alpha$-regular α-open set such that $(1,2)^*\alpha$ cl$(A)\setminus A \cup U$ and $U=\phi$. Now $U \subseteq \alpha$ cl$(A)\setminus A$. Therefore $U \subseteq X \setminus A$ which implies $A \subseteq X \setminus U$. Since U is $(1,2)^*\alpha$-regular α-open set, $X \setminus U$ is also $(1,2)^*\alpha$-regular α-open in (X, τ_1, τ_2). Since A is $(1,2)^*\alpha$-closed set in X, by definition we have α cl$(A)\subseteq X \setminus U$. So $U \subseteq X \setminus \alpha$ cl(A). Also $U \subseteq \alpha$ cl(A). Therefore $U \subseteq \alpha \cap (X \setminus \alpha \cap (A))=\phi$. This shows that, $U=\phi$ which is contradiction. Hence $(1,2)^*\alpha$ cl$(A)\setminus A$ does not contains any non-empty $(1,2)^*\alpha$-regular α-open set in (X, τ_1, τ_2).

Corollary 3.5. If a subset A of (X, τ_1, τ_2) is $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2), then $(1,2)^*\alpha$cl$(A)\setminus A$ does not contain any $(1,2)^*\alpha$-regular open set in (X, τ_1, τ_2), but not conversely.

Proof. Follows from theorem 3.20. and the fact that every $(1,2)^*\alpha$-regular open set is $(1,2)^*\alpha$-regular α-open.

Corollary 3.6. If a subset A of (X, τ_1, τ_2) is $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2), then α cl$(A)\setminus A$ does not contain any non-empty $(1,2)^*\alpha$-regular closed set in (X, τ_1, τ_2), but not conversely.

Proof. Follows from theorem 3.20. and the fact that every regular open set is $(1,2)^*\alpha$-regular α-open.

Theorem 3.8. For an element $x \in (X, \tau_1, \tau_2)$, the set $(X, \tau_1, \tau_2)\setminus \{x\}$ is $(1,2)^*\alpha$-closed or $(1,2)^*\alpha$-regular α-open.

Proof. Suppose $(X, \tau_1, \tau_2)\setminus \{x\}$ is not $(1,2)^*\alpha$-regular α-open set. Then (X, τ_1, τ_2) is the only $(1,2)^*\alpha$-regular α-open set containing $(X, \tau_1, \tau_2)\setminus \{x\}$. This implies α cl$(\{X, \tau_1, \tau_2\}\setminus \{x\}) \subseteq (X, \tau_1, \tau_2)$. Hence $(X, \tau_1, \tau_2)\setminus \{x\}$ is $(1,2)^*\alpha$-closed set in (X, τ_1, τ_2).

Theorem 3.9. If A is $(1,2)^*\alpha$-regular open and $(1,2)^*\alpha$-rgα-closed then A is $(1,2)^*\alpha$-regular closed and hence $(1,2)^*\alpha$-clopen.

Proof. Suppose A is $(1,2)^*\alpha$-regular open and $(1,2)^*\alpha$-rgα-closed. As every $(1,2)^*\alpha$-regular open is $(1,2)^*\alpha$-regular α-open and $A \subseteq A$, we have α cl$(A)\subseteq A$. Also $\subseteq \alpha$ cl(A) Therefore α cl$(A)=A$. That is A is α-closed. Since A is $(1,2)^*\alpha$-regular open, A is α-open. Now cl$(\text{int}(A))=\alpha$ cl$(A)=A$. Therefore A is a $(1,2)^*\alpha$-regular closed and α-clopen.
Theorem 3.10. If \(A \) is \((1,2)^*\)-rg\(\alpha\)-closed subset of \((X, \tau_1, \tau_2)\) such that \(A \subset B \subset (1,2)^*\)-\(\alpha\) cl\(A\). Then \(B \) is \((1,2)^*\)-rg\(\alpha\)-closed subset in \((X, \tau_1, \tau_2)\).

Proof. If \(A \) is \((1,2)^*\)-rg\(\alpha\)-closed subset of \((X, \tau_1, \tau_2)\) such that \(A \subset B \subset (1,2)^*\)-\(\alpha\) cl\(A\). Let \(U \) be a \((1,2)^*\)-regular \(\alpha\)-open set of \((X, \tau_1, \tau_2)\) such that \(B \subset U \). Then \(A \subset U \). Since \(A \) is \((1,2)^*\)-rg\(\alpha\)-closed we have \((1,2)^*\)-regular \(\alpha\)-closed. Hence \(B \) is \((1,2)^*\)-rg\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\).

\(\square\)

Remark 3.2. The converse of the theorem 2.10. need not be true in general. Consider the bitopological space \((X, \tau_1, \tau_2)\) where \(X = \{a, b, c, d, e\} \) with topology \(\tau_1 = \{\phi, \{a, b\}, a, b, c, d, X\} \), \(\tau_2 = \{\phi, \{c, d\}, \{a, b, c, d\}, X\} \). Let \(A = \{b\} \) and \(B = \{b, c\} \). Then \(A \) and \(B \) are \((1,2)^*\)-rg\(\alpha\)-closed sets in \((X, \tau_1, \tau_2)\) but \(A \subset B \) is not subset in \((1,2)^*\)-\(\alpha\) cl\(A\).

Theorem 3.11. Let \(A \) be a \((1,2)^*\)-rg\(\alpha\)-closed in \((X, \tau_1, \tau_2)\). Then \(A \) is \((1,2)^*\)-\(\alpha\)-closed if and only if \((1,2)^*\)-\(\alpha\) cl\(A\) \(\setminus\) \(A\) is a \((1,2)^*\)-regular \(\alpha\)-open.

Proof. Suppose \(A \) is a \((1,2)^*\)-\(\alpha\)-closed in \((X, \tau_1, \tau_2)\). Then \((1,2)^*\)-\(\alpha\) cl\(A\) = \(\phi\) and so \((1,2)^*\)-\(\alpha\) cl\(A\) \(\setminus\) \(A\) = \(\phi\), which is \((1,2)^*\)-regular \(\alpha\)-open in \((X, \tau_1, \tau_2)\). Conversely, suppose \((1,2)^*\)-\(\alpha\) cl\(A\) \(\setminus\) \(A\) is \(\alpha\)rg\((\alpha\)cl\(A\)) \(\alpha\)-regular \(\alpha\)-open set in \((X, \tau_1, \tau_2)\). Since \(A \) is \((1,2)^*\)-rg\(\alpha\)-closed, by theorem 2.7 \((1,2)^*\)-\(\alpha\)cl\(A\) \(\setminus\) \(A\) does not contain any nonempty \((1,2)^*\)-regular \(\alpha\)-open in \((X, \tau_1, \tau_2)\). Then \((1,2)^*\)-\(\alpha\) cl\(A\) \(\setminus\) \(A\) = \(\phi\), hence \(A \) is \((1,2)^*\)-\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\).

\(\square\)

Theorem 3.12. If \(A \) is \((1,2)^*\)-regular open and rg-closed, then \(A \) is \((1,2)^*\)-rg\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\).

Proof. Let \(U \) be any \((1,2)^*\)-regular \(\alpha\)-open set in \((X, \tau_1, \tau_2)\) such that \(A \subset U \). Since \(A \) is \((1,2)^*\)-regular open and \((1,2)^*\)-rg-closed, we have \((1,2)^*\)-\(\alpha\) cl\(A\) \(\subset\) \(A \). Then \((1,2)^*\)-\(\alpha\) cl\(A\) \(\subset\) \(A \subset U \). Hence \(A \) is \((1,2)^*\)-rg\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\).

\(\square\)

Theorem 3.13. If a subset \(A \) of bitopological space \((X, \tau_1, \tau_2)\) is both \((1,2)^*\)-regular \(\alpha\)-open and \((1,2)^*\)-rg\(\alpha\)-closed, then it is \((1,2)^*\)-\(\alpha\)-closed.

Proof. Suppose a subset \(A \) of bitopological space \((X, \tau_1, \tau_2)\) is both \((1,2)^*\)-regular \(\alpha\)-open and \((1,2)^*\)-rg\(\alpha\)-closed. Now \(A \subset A \). Then \((1,2)^*\)-\(\alpha\) cl\(A\) \(\subset\) \(A \). Hence \(A \) is \((1,2)^*\)-\(\alpha\)-closed.

\(\square\)

Corollary 3.7. Let \(A \) be \((1,2)^*\)-regular \(\alpha\)-open and \((1,2)^*\)-rg\(\alpha\)-closed subset in \((X, \tau_1, \tau_2)\). Suppose that \(F \) is \((1,2)^*\)-\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\). Then \(A \cap F \) is an \((1,2)^*\)-rg\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\).

Proof. Let \(A \) be a \((1,2)^*\)-regular \(\alpha\)-open and \((1,2)^*\)-rg\(\alpha\)-closed subset in \((X, \tau_1, \tau_2)\) and \(F \) be closed. By theorem 2.13, \(A \) is \((1,2)^*\)-\(\alpha\)-closed. So \(A \cap F \) is a \((1,2)^*\)-\(\alpha\)-closed and hence \(A \cap F \) is \((1,2)^*\)-rg\(\alpha\)-closed set in \((X, \tau_1, \tau_2)\).

\(\square\)
Theorem 3.14. If A is an open and S is $(1,2)^*$- α-open in bitopological space (X, τ_1, τ_2), then $A \cap S$ is $(1,2)^*$- α-open in (X, τ_1, τ_2).

Theorem 3.15. If A is both open and $(1,2)^*$- g-closed set in (X, τ_1, τ_2), then it is $(1,2)^*$- rgo-closed set in (X, τ_1, τ_2).

Proof. Let A be open and $(1,2)^*$- g-closed set in (X, τ_1, τ_2). Let $A \subset U$ and let U be a $(1,2)^*$-regular α-open set in (X, τ_1, τ_2). Now $A \subset A$. By hypothesis $(1,2)^*$ α-cl(A) $\subset A$. That is $(1,2)^*$ α-cl(A) $\subset U$. Thus A is $(1,2)^*$-rgo-closed in (X, τ_1, τ_2). □

Remark 3.3. If A is both open and $(1,2)^*$- rgo-closed in X, then A need not be $(1,2)^*$-g-closed, in general.

Theorem 3.16. In a bitopological space (X, τ_1, τ_2), if $R \alpha$ O($(X, \tau_1, \tau_2)) = \{(X, \tau_1, \tau_2), \phi\}$, then every subset of (X, τ_1, τ_2) is a $(1,2)^*$- rgo-closed set.

Proof. Let (X, τ_1, τ_2) be a bitopological space and $R \alpha$ O($(X, \tau_1, \tau_2)) = \{(X, \tau_1, \tau_2), \phi\}$. Let A be any subset of (X, τ_1, τ_2). Suppose $A = \phi$. Then ϕ is $(1,2)^*$- rgo-closed set in (X, τ_1, τ_2). Suppose $A = \phi$. Then (X, τ_1, τ_2) is the only regular $(1,2)^*$- α-open set containing A and so $(1,2)^*$ α-cl(A) $\subset (X, \tau_1, \tau_2)$ hence A is $(1,2)^*$-rgo-closed set in (X, τ_1, τ_2). □

Theorem 3.17. In a bitopological space (X, τ_1, τ_2), $R \alpha$ O $(X, \tau_1, \tau_2) \subset \{F \subset X : F^c \subset \tau_1, \tau_2\}$ iff every subset of (X, τ_1, τ_2) is a $(1,2)^*$- rgo-closed set.

Proof. Suppose that $(1,2)^*$ $R \alpha$ O $(X, \tau_1, \tau_2) \subset \{F \subset X : F^c \subset \tau_1, \tau_2\}$. Let A be any subset of (X, τ_1, τ_2) such that $A \subset U$, where U is a $(1,2)^*$- regular α-open. Then $U \subset (1,2)^*$ $R \alpha$ O $(X, \tau_1, \tau_2) \subset \{F \subset X : F^c \subset \tau_1, \tau_2\}$. That is $U \subset \{F \subset X : F^c \subset \tau\}$. Thus U is a $(1,2)^*$-α-closed set. Then α cl(U) $= U$. Also $(1,2)^*$ α-cl(A) $\subset (1,2)^*$ α-cl(U) $= U$. Hence A is $(1,2)^*$-rgo-closed set in (X, τ_1, τ_2). Conversely, suppose that every subset of (X, τ_1, τ_2) is $(1,2)^*$-rgo-closed. Let $U \subset (1,2)^*$ $R \alpha$ O (X, τ_1, τ_2). Since $U \subset U$ and U is $(1,2)^*$-rgo-closed, we have $(1,2)^*$-α cl(U) $\subset U$. Thus $(1,2)^*$-α cl(U) $= U$ and $U \subset \{F \subset X : F^c \subset \tau_1, \tau_2\}$. Therefore $R \alpha$ O $(1,2)^*$ $(X, \tau_1, \tau_2) \subset \{F \subset X : F^c \subset \tau_1, \tau_2\}$. □

Definition 3.3. The intersection of all $(1,2)^*$- regular α-open subsets of (X, τ_1, τ_2) containing A is called the $(1,2)^*$- regular α-kernal of A and is denoted by roker (A).

Lemma 3.1. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of (X, τ_1, τ_2). If A is a $(1,2)^*$- regular α-open in (X, τ_1, τ_2), then roker (A) = A but not conversely.

Proof. Follows from definition. 2.3. □

Lemma 3.2. For any subset A of (X, τ_1, τ_2), αker (A) \subset roker (A).

Proof. Follows from the implication $R \alpha$ O $(X, \tau_1, \tau_2) \subset \alpha$O (X, τ_1, τ_2). □
4 (1,2)*-rgα open sets and (1,2)*rgα neighborhood

In this section, we introduce and study (1,2)*-rgα-open sets in topological spaces and obtain some of their properties. Also, we introduce (1,2)*-rgα-neighborhood (shortly (1,2)*-rgα-nbhd in topological spaces by using the notion of (1,2)*-rgα-open sets. We prove that every nbhd of x in \((X, \tau_1, \tau_2)\) is (1,2)*-rgα-nbhd of x but not conversely.

Definition 4.1. A subset \(A\) in \((X, \tau_1, \tau_2)\) is called (1,2)*-regular generalized α-open (briefly, (1,2)*-rgα-open) in \((X, \tau_1, \tau_2)\) if \(A^c\) is (1,2)*-rgα-closed in \((X, \tau_1, \tau_2)\). We denote the family of all (1,2)*-rgα-open sets in \(X\) by \((1,2)*-RG\alpha O (X, \tau_1, \tau_2)\).

Theorem 4.1. If a subset \(A\) of a space \((X, \tau_1, \tau_2)\) is (1,2)*-w-open then it is (1,2)*-rgα-open but not conversely.

Proof. Let \(A\) be a (1,2)*-w-open set in a space \((X, \tau_1, \tau_2)\). Then \(A^c\) is (1,2)*-w-closed set. By theorem 3.2. \(A\) is (1,2)*-rgα-closed. Therefore \(A\) is (1,2)*-rgα-open set in \((X, \tau_1, \tau_2)\). The converse of the above theorem need not be true, as seen from the following example.

Example 4.1. Let \(X = \{a, b, c\}\), \(\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}\) and \(\tau_2 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}\). In this topological space the subset \(\{a, b\}\) is rg-open set in \(X\), but not (1,2)*-rgα.

Corollary 4.1. Every open set is (1,2)*-rgα-open set but not conversely.

Proof. Follows from theorem 4.2.

Corollary 4.2. Every (1,2)*-regular open set is (1,2)*-rgα-open set but not conversely.

Proof. Follows from theorem 4.2.

Theorem 4.2. If a subset \(A\) of a space \((X, \tau_1, \tau_2)\) is (1,2)*-rgα-open, then it is (1,2)*-rg-open set in \((X, \tau_1, \tau_2)\).

Proof. Let \(A\) be (1,2)*-rgα-open set in space \((X, \tau_1, \tau_2)\). Then \(A^c\) is (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\). By theorem 2.4., \(A^c\) is (1,2)*-rg-closed set in \((X, \tau_1, \tau_2)\). Therefore \(A\) is (1,2)*-rg-open set in space \((X, \tau_1, \tau_2)\). The converse of the above theorem need not be true, as seen from the following example.

Example 4.2. Let \(X = \{a, b, c\}\), \(\tau_1 = \{\phi, \{a\}, X\}\) and \(\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}\). Then the subsets \(A = \{b, c\}\) are (1,2)*-rg-open but not (1,2)*-rgα-open sets in \((X, \tau_1, \tau_2)\).

Theorem 4.3. If a subset \(A\) of a space \((X, \tau_1, \tau_2)\) is (1,2)*-rgα-open, then it is (1,2)*-gpr-open set in \((X, \tau_1, \tau_2)\).

Proof. Let \(A\) be (1,2)*-rgα-open set in a space \((X, \tau_1, \tau_2)\). Then \(A^c\) is (1,2)*-rgα-closed set in \((X, \tau_1, \tau_2)\). By corollary 2.3. \(A^c\) is (1,2)*-gpr-closed in \((X, \tau_1, \tau_2)\). Therefore \(A\) is (1,2)*-gpr-open set in \((X, \tau_1, \tau_2)\).
Theorem 4.4. If a subset A of a bitopological space (X,τ_1,τ_2) is $(1,2)^*-rg\alpha$-open, then it is $(1,2)^*-rwg$-open set in (X,τ_1,τ_2), but not conversely.

Proof. Let A be $(1,2)^*-rg\alpha$-open set in a space (X,τ_1,τ_2). Then A^c is $(1,2)^*-rg\alpha$-closed set in (X,τ_1,τ_2). By theorem 2.5. A^c is $(1,2)^*-rwg$-closed in (X,τ_1,τ_2). Therefore A is $(1,2)^*-rwg$-open subset in (X,τ_1,τ_2). The converse of the above theorem need not be true, as seen from the following example.

Example 4.3. Let $X = \{a, b, c, d, e\}$ with topology $\tau_1 = \{\emptyset, \{a, b\}, a, b, c, d, X\}$, $\tau_2 = \{\emptyset, \{c, d\}, \{a, b, c, d\}, X\}$. In this topological space the subset $\{a, b\}$ is $(1,2)^*$-rwg-open in X, but not $(1,2)^*$-rg\alpha-open.

Theorem 4.5. If A and B are $(1,2)^*$-rg\alpha-open sets in a space (X,τ_1,τ_2). Then $A \cap B$ is $(1,2)^*$-rg\alpha-open set in (X,τ_1,τ_2).

Proof. If A and B are $(1,2)^*-rg\alpha$-open sets in a space (X,τ_1,τ_2). Then A^c and B^c are $(1,2)^*-rg\alpha$-closed sets in a space (X,τ_1,τ_2). By theorem 2.6. $A^c \cup B^c$ is also $(1,2)^*-rg\alpha$-closed set in (X,τ_1,τ_2). That is $A^c \cup B^c = (A \cap B)^c$ is a $(1,2)^*$-rg\alpha-closed set in (X,τ_1,τ_2). Therefore $A \cap B$ is $(1,2)^*-rg\alpha$-open set in (X,τ_1,τ_2).

Remark 4.1. The union of two $(1,2)^*$-rg\alpha-open sets in (X,τ_1,τ_2) is generally not a $(1,2)^*$-rg\alpha-open set in (X,τ_1,τ_2).

Example 4.4. Let $X = \{a, b, c, d, e\}$ with topology $\tau_1 = \{\emptyset, \{a, b\}, a, b, c, d, X\}$, $\tau_2 = \{\emptyset, \{c, d\}, \{a, b, c, d\}, X\}$. If $A = \{a\}$ and $B = \{c\}$, then A and B are $(1,2)^*$-rg\alpha-open sets in X, but $A \cup B = \{a, c\}$ is not a $(1,2)^*-rg\alpha$-open set in X.

Theorem 4.6. If a set A is $(1,2)^*$-rg\alpha-open in a space (X,τ_1,τ_2), then $G = X$, whenever G is $(1,2)^*$-regular α-open and $int(A) \cup A^c \subset G$.

Proof. Suppose that A is $(1,2)^*$-rg\alpha-open in (X,τ_1,τ_2). Let G be $(1,2)^*$-regular α-open and $int(A) \cup A^c \subset G$. This implies $G^c \subset (int(A) \cup A^c)^c = (int(A))^c \cap A$. That is $G^c \subset (int(A))^c - A^c$, Thus $G^c \subset cl(A)^c - A^c$, Since $(int(A))^c = cl(A^c)$. Now G^c is also regular α-open and A^c is $(1,2)^*$-rg\alpha-closed, by theorem 2.7., it follows that $G^c = \emptyset$. Hence $G = (X,\tau_1,\tau_2)$. The converse of the above theorem is not true in general as seen from the following example.

Example 4.5. Let $X = \{a, b, c, d\}$ with topology $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a, b, d\}, X\}$. Then $(1,2)^*$-rg\alpha O $(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, d\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $(1,2)^*$-rg\alpha O $(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, c, d\}\}$. Take $A = \{b, c, d\}$. Then A is not $(1,2)^*$-rg\alpha-open. However $int(A) \cup A^c = \{b, c\} \cup \{a\} = \{a, b, c\}$. So for some regular α-open G, we have $int(A) \cup A^c = \{a, b, c\} \subset G$ gives $G = X$, but A is not $(1,2)^*$-rg\alpha-open.
Theorem 4.7. Every singleton point set in a space is either $(1,2)^*$-rgα-open or $(1,2)^*$-raα-open.

Proof. Let (X, τ_1, τ_2) be a bitopological space. Let $x \in (X, \tau_1, \tau_2)$. To prove x is either $(1,2)^*$-rgα-open or $(1,2)^*$-raα-open. That is to prove $(X, \tau_1, \tau_2)\{-x\}$ is either $(1,2)^*$-rgα-closed or $(1,2)^*$-raα-open, which follows from theorem 2.8. Analogous to a neighbourhood in space (X, τ_1, τ_2), we define $(1,2)^*$-rgα-neighbourhood in a space (X, τ_1, τ_2) as follows. □

Definition 4.2. Let (X, τ_1, τ_2) be a bitopological space and let $x \subset (X, \tau_1, \tau_2)$. A subset N of (X, τ_1, τ_2) is said to be a $(1,2)^*$-rgα-nbhd of x iff there exists a $(1,2)^*$-rgα-open set G such that $x \in G \subset N$.

Definition 4.3. A subset N of space (X, τ_1, τ_2), is called a $(1,2)^*$-rgα-nbhd of $A \subset (X, \tau_1, \tau_2)$ iff there exists a $(1,2)^*$-rgα-open set G such that $A \subset G \subset N$.

Remark 4.2. The $(1,2)^*$-rgα-nbhd N of $x \in (X, \tau_1, \tau_2)$ need not be a $(1,2)^*$-rgα-open in (X, τ_1, τ_2).

Example 4.6. Let $X = \{a, b, c, d\}$ with topology $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b, d\}, X\}$ with topology Then $(1,2)^*$-RGα $O(\{a\}) = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Note that $\{a, c\}$ is not a $(1,2)^*$-rgα-open set, but it is a $(1,2)^*$-rgα-nbhd of $\{a\}$. Since $\{a\}$ is a $(1,2)^*$-rgα-open set such that $a \in \{a\} \subset \{a, c\}$.

Theorem 4.8. Every nbhd N of $x \in (X, \tau_1, \tau_2)$ is a $(1,2)^*$-rgα-nbhd of (X, τ_1, τ_2).

Proof. Let N be a nbhd of point $x \in (X, \tau_1, \tau_2)$. To prove that N is a $(1,2)^*$-rgα-nbhd of x. By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1,2)^*$-rgα-open set G such that $x \in G \subset N$. Hence N is $(1,2)^*$-rgα-nbhd of x. □

Remark 4.3. In general, a $(1,2)^*$-rgα-nbhd N of $x \in (X, \tau_1, \tau_2)$ need not be a nbhd of x in (X, τ_1, τ_2), as seen from the following example.

Example 4.7. Let $X = \{a, b, c, d\}$ with topology $\tau_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b, d\}, X\}$ Then $(1,2)^*$-RGα $O(\{a, c\}) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. The set $\{a, c\}$ is $(1,2)^*$-rgα-nbhd of the point c, since the $(1,2)^*$-rgα-open sets $\{c\}$ is such that $c \in \{c\} \subset \{a, c\}$. However, the set $\{a, c\}$ is not a nbhd of the point c, since no open set G exists such that $c \in G \subset \{a, c\}$.

Theorem 4.9. If a subset N of a space (X, τ_1, τ_2) is $(1,2)^*$-rgα-open, then N is $(1,2)^*$-rgα-nbhd of each of its points.

Proof. Suppose N is $(1,2)^*$-rgα-open. Let $x \in N$. We claim that N is $(1,2)^*$-rgα-nbhd of x. For N is a $(1,2)^*$-rgα-open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1,2)^*$-rgα-nbhd of each of its points. □

Remark 4.4. The converse of the above theorem is not true in general as seen from the following example.
Example 4.8. Let $X = \{a, b, c, d\}$ with topology $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\tau_2 = \{\emptyset, \{a, b, c\}, X\}$. Then $(1,2)^*-RG\alpha O (X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. The set $\{a, d\}$ is a $(1,2)^*$-rgo-nbd of the point a, since the $(1,2)^*$-rgo-open set $\{a\}$ is such that $a \in \{a\} \subset \{a, d\}$. Also the set $\{a, d\}$ is a $(1,2)^*$-rgo-nbd of the point $\{d\}$, since the $(1,2)^*$-rgo-open set $\{d\}$ is such that $d \in \{d\} \subset \{a, d\}$. That is $\{a, d\}$ is a $(1,2)^*$-rgo-nbd of each of its points. However the set $\{a, d\}$ is not a $(1,2)^*$-rgo-open set in X.

Theorem 4.10. Let (X, τ_1, τ_2) be a bitopological space. If F is a $(1,2)^*$-rgo-closed subset of (X, τ_1, τ_2), and $x \in F^c$. Prove that there exists a $(1,2)^*$-rgo-nbd N of x such that $N \cap F = \emptyset$.

Proof. Let F be a $(1,2)^*$-rgo-closed subset of (X, τ_1, τ_2) and $x \in F^c$. Then F^c is a $(1,2)^*$-rgo-open set of (X, τ_1, τ_2). So by theorem 3.9. F^c contains a $(1,2)^*$-rgo-nbd of each of its points. Hence there exists a $(1,2)^*$-rgo-nbd N of x such that $N \subset F^c$. That is $N \cap F = \emptyset$. \hfill \blacksquare

Definition 4.4. Let x be a point in a space (X, τ_1, τ_2). The set of all $(1,2)^*$-rgo-nbd of x is called the $(1,2)^*$-rgo-nbd system at x, and is denoted by $(1,2)^*$-rgo-N(x).

Theorem 4.11. Let (X, τ_1, τ_2) be a bitopological space and for each $x \subset (X, \tau_1, \tau_2)$, Let $(1,2)^*$-rgo-N(x) be the collection of all $(1,2)^*$-rgo-nbhs of x. Then we have the following results.

(i) $\forall x \in (X, \tau_1, \tau_2), (1,2)^*$-rgo-N$(x) \neq \emptyset$.

(ii) $N \in (1,2)^*$-rgo-N(x) \Rightarrow $x \in N$.

(iii) $N \in (1,2)^*$-rgo-N(x), $M \supseteq N \Rightarrow M \in (1,2)^*$-rgo-N$(x)$.

(iv) $N \in (1,2)^*$-rgo-N(x), $M \in (1,2)^*$-rgo-N(x) $\Rightarrow N \cap M \in (1,2)^*$-rgo-N$(x)$.

(v) $N \in (1,2)^*$-rgo-N(x) \Rightarrow there exists $M \in (1,2)^*$-rgo-N(x) such that $M \subset N$ and $M \in (1,2)^*$-rgo-N(y) for every $y \in M$.

Proof. (i) Since (X, τ_1, τ_2) is a $(1,2)^*$-rgo-open set, it is a $(1,2)^*$-rgo-nbd of every $x \in (X, \tau_1, \tau_2)$. Hence there exists at least one $(1,2)^*$-rgo-nbd (namely - (X, τ_1, τ_2)) for each $x \in (X, \tau_1, \tau_2)$. Hence $(1,2)^*$-rgo-

(i) $N(x) \neq \emptyset$ for every $x \in (X, \tau_1, \tau_2)$.

(ii) If $N \in (1,2)^*$-rgo-N(x), then N is a $(1,2)^*$-rgo-nbd of x. So by definition of $(1,2)^*$-rgo-nbd, $x \in N$.

(iii) Let $N (1,2)^*$-rgo-N(x) and $M \supseteq N$. Then there is a $(1,2)^*$-rgo-open set G such that $x \in G \subset N$. Since $N \subset M, x \in G \subset M$ and so M is $(1,2)^*$-rgo-nbd of x. Hence $M \in (1,2)^*$-rgo-N(x).
(iv) Let $N \in (1,2)^*-rg_\alpha - N (x)$ and $M \in (1,2)^*-rg_\alpha - N (x)$. Then by definition of $(1,2)^*-rg_\alpha$-nbhd Hence $x \in G_1 \cap G_2 \subset N \cap M \rightarrow (1)$. Since $G_1 \cap G_2$ is a $(1,2)^*-rg_\alpha$-open set, (being the intersection of two $(1,2)^*-rg_\alpha$-open sets), it follows from (1) that $N \cap M$ is a $(1,2)^*-rg_\alpha$-nbhd of x. Hence $N \cap M \in (1,2)^*-rg_\alpha - N (x)$.

(v) If $N \in (1,2)^*-rg_\alpha - N (x)$, then there exists a $(1,2)^*-rg_\alpha$-open set M such that $x \in M \subset N$. Since M is a $(1,2)^*-rg_\alpha$-open set, it is $(1,2)^*-rg_\alpha$-nbhd of each of its points. Therefore $M \in (1,2)^*-rg_\alpha - N (y)$ for every $y \in M$.

References

Received: March 15, 2015; Accepted: May 13, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/