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Semilinear functional differential equations with fractional order

and finite delay

Mohammed Belmekki,a Kheira Mekhalfib and Sotiris K. Ntouyasc,∗

aDepartment of Mathematics, Saida University, BP 138, 20000 Saida, Algeria.

bDepartment of Mathematics, Saida University, BP 138, 20000 Saida, Algeria.

cDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, Greece.

Abstract

In this paper, we establish sufficient conditions for existence and uniqueness of solutions for semilinear functional

differential equations with finite delay involving the Riemann-Liouville fractional derivative. Our approach is based on

resolvent operators, the Banach contraction principle, and the nonlinear alternative of Leray-Schauder type.
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1 Introduction

This paper is concerned with existence of solutions defined on a compact real interval for fractional order
semilinear functional differential equations of the form

Dαy(t) = Ay(t) + f(t, yt), t ∈ J := [0, b], 0 < α < 1, (1.1)

y(t) = φ(t), t ∈ [−r, 0], (1.2)

where Dα is the standard Riemann-Liouville fractional derivative, f : J × C([−r, 0], E) → E is a continuous
function, A : D(A) ⊂ E → E is a densely defined closed linear operator on E, φ : [−r, 0] → E a given
continuous function with φ(0) = 0 and (E, | · |) a real Banach space.

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary non-integer
order. Differential equations with fractional order have recently proved to be valuable tools for the description
of hereditary properties of various materials and systems. For more details, see [9].

Fractional calculus appears in rheology, viscoelasticity, electrochemistry, electromagnetism, etc. For details,
see the monographs of Kilbas et al. [8], Miller and Ross [10], Podlubny [13], Oldham et al. [12]. For some
recent developments on the subject, see for instance [1, 2, 3, 4, 7, 11] and references cited therein.

The purpose of this paper is to study the existence and uniqueness of mild solutions for (1.1)-(1.2) by virtue
of resolvent operator. In Section 2 we recall some definitions and preliminary facts which will be used in the
sequel. In Section 3, we give our main existence and uniqueness results. An example will be presented in the
last section illustrating the abstract theory.
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2 Preliminaries

In this section, we recall some definitions and propositions of fractional calculus and resolvent operators.
Let E be a Banach space. By C(J,E) we denote the Banach space of continuous functions from J into E with
the norm

‖y‖∞ = sup{|y(t)| : t ∈ J}.

For φ ∈ C([−r, b], E) the norm of φ is defined by

‖φ‖D = sup{|φ(θ)| : θ ∈ [−r, b]}.

C([−r, 0], E) is endowed with norm defined by

‖ψ‖C = sup{|ψ(θ)| : θ ∈ [−r, 0]}.

L(E) denotes the space of bounded linear operators from E into E, with norm

‖N‖L(E) = sup{|N(y)| : |y| = 1}.

Definition 2.1. [8, 13] The Riemann-Liouville fractional primitive of order α ∈ R+ of a function h : (0, b] → E

is defined by

Iα
0 h(t) =

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds,

provided the right hand side exists pointwise on (0, b], where Γ is the gamma function.

Definition 2.2. [8, 13] The Riemann-Liouville fractional derivative of order
0 < α < 1 of a continuous function h : (0, b] → E is defined by

dαh(t)
dtα

=
1

Γ(1− α)
d

dt

∫ t

0

(t− s)−αh(s)ds

=
d

dt
I1−α
0 h(t).

Consider the fractional differential equation

Dαy(t) = Ay(t) + f(t), t ∈ J, 0 < α < 1, y(0) = 0, (2.1)

where A is a closed linear unbounded operator in E and f ∈ C(J,E). Equation (2.1) is equivalent to the
following integral equation [8]

y(t) =
1

Γ(α)
A

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t ∈ J. (2.2)

This equation can be written in the following form of integral equation

y(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Ay(s)ds, t ≥ 0, (2.3)

where

h(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds. (2.4)

Examples where the exact solution of (2.1) and the integral equation (2.2) are the same, are given in [4]. Let
us assume that the integral equation (2.3) has an associated resolvent operator (S(t))t≥0 on E.

Next we define the resolvent operator of the integral equation (2.3).

Definition 2.3. [14, Definition 1.1.3] A one parameter family of bounded linear operators (S(t))t≥0 on E is
called a resolvent operator for (2.2) if the following conditions hold:

(a) S(·)x ∈ C([0,∞), E) and S(0)x = x for all x ∈ E;

(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and every t ≥ 0;
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(c) for every x ∈ D(A) and t ≥ 0,

S(t)x = x+
1

Γ(α)

∫ t

0

(t− s)α−1AS(s)xds. (2.5)

Here and hereafter we assume that the resolvent operator (S(t))t≥0 is analytic [14, Chapter 2], and there
exist a function φA ∈ L1

loc([0,∞),R+) such that ‖S′(t)x‖ ≤ φA(t)‖x‖[D(A)] for all t > 0 and each x ∈ D(A).
We have the following concept of solution using Definition 1.1.1 in [14].

Definition 2.4. A function u ∈ C(J,E) is called a mild solution of the integral equation (2.3) on J if
∫ t

0
(t−

s)α−1u(s)ds ∈ D(A) for all t ∈ J, h(t) ∈ C(J,E) and

u(t) =
A

Γ(α)

∫ t

0

(t− s)α−1u(s)ds+ h(t), ∀t ∈ J.

The next result follows from [14, Proposition I.1.2, Theorem II.2.4, Corollary II.2.6].

Lemma 2.1. Under the above conditions the following properties are valid.

(i) If u(·) is a mild solution of (2.3) on J, then the function t→
∫ t

0
S(t−s)h(s)ds is continuously differentiable

on J, and

u(t) =
d

dt

∫ t

0

S(t− s)h(s)ds, ∀t ∈ J.

(ii) If h ∈ Cβ(J,E) for some β ∈ (0, 1), then the function defined by

u(t) = S(t)(h(t)− h(0)) +
∫ t

0

S′(t− s)[h(s)− h(t)]ds+ S(t)h(0), t ∈ J,

is a mild solution of (2.3) on J.

(iii) If h ∈ C(J, [D(A)]) then the function u : J → E defined by

u(t) =
∫ t

0

S′(t− s)h(s)ds+ h(t), t ∈ J,

is a mild solution of (2.3) on J.

3 Main Results

In this section we give our main existence results for problem (1.1)-(1.2). This problem is equivalent to the
following integral equation

y(t) =


A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Motivated by Lemma 2.1 and the above representation, we introduce the concept of mild solution.

Definition 3.1. We say that a continuous function y : [−r, b] → E is a mild solution of problem (1.1)-(1.2) if:

1.
∫ t

0

(t− s)α−1y(s)ds ∈ D(A) for t ∈ J,

2. y(t) = φ(t), t ∈ [−r, 0], and

3. y(t) =
A

Γ(α)

∫ t

0

(t− s)α−1y(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds, t ∈ J.
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Suppose that there exists a resolvent (S(t))t≥0 which is differentiable and the function f is continuous.
Then by Lemma 2.1 (iii), if y : [−r, b] → E is a mild solution of (1.1)-(1.2), then

y(t) =


1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds, t ∈ J,

φ(t), t ∈ [−r, 0].

Our first existence result for problem (1.1)-(1.2) is based on the Banach’s contraction principle.

Theorem 3.1. Let f : J × C([−r, 0], E) → E be continuous and there exists a constant L > 0 such that

|f(t, u)− f(t, v)| ≤ L‖u− v‖C , for t ∈ J and u, v ∈ C([−r, 0], E).

If
Lbα

Γ(α+ 1)
(1 + ‖φA‖L1) < 1, (3.1)

then the problem (1.1)-(1.2) has a unique mild solution on [−r, b].

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the operator F : C([−r, b], E) →
C([−r, b], E) defined by:

F (y)(t) =


φ(t), t ∈ [−r, 0],

1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds, t ∈ [0, b].

We need to prove that F has a fixed point, which is a unique mild solution of (1.1)-(1.2) on [−r, b]. We shall
show that F is a contraction. Let y, z ∈ C([−r, b], E). For t ∈ [0, b], we have

|F (y)(t)− F (z)(t)|

=
∣∣∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1[f(s, ys)− f(s, zs)]ds

+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1[f(τ, yτ )− f(τ, zτ ]dτ
)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys)− f(s, zs)|ds

+
∫ t

0

φA(t− s)
1

Γ(α)

∫ τ

0

(s− τ)α−1|f(τ, yτ )− f(τ, zτ )|dτds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1L‖yτ − zτ‖Cds+
1

Γ(α)

∫ t

0

φA(t− s)
∫ s

0

(s− τ)α−1L‖yτ − zτ‖Cdτds

≤ L

Γ(α)
‖y − z‖D

∫ t

0

(t− s)α−1ds+
L

Γ(α)
‖y − z‖D

∫ t

0

φA(t− s)
∫ s

0

(s− τ)α−1dτds

≤ Lbα

Γ(α+ 1)
‖y − z‖D +

‖φA‖L1Lbα

Γ(α+ 1)
‖y − z‖D.

Taking the supremum over t ∈ [−r, b], we get

‖F (y)− F (z)‖D ≤ Lbα

Γ(α+ 1)
(1 + ‖φA‖L1) ‖y − z‖D.

By (3.1) F is a contraction and thus, by the contraction mapping theorem, we deduce that F has a unique
fixed point. This fixed point is the mild solution of (1.1)-(1.2).

Next, we give an existence result based upon the following nonlinear alternative of Leray-Schauder applied
to completely continuous operators [5].

Theorem 3.2. Let E a Banach space, and U ⊂ E convex with 0 ∈ U . Let F : U → U be a completely
continuous operator. Then either
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(a) F has a fixed point, or

(b) The set E = {x ∈ U : x = λF (x), 0 < λ < 1} is unbounded.

Our main result here reads:

Theorem 3.3. Let f : J × C([−r, 0], E) → E be continuous. Assume that:

(i). S(t) is compact for all t > 0;

(ii). there exist functions p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)‖u‖C , t ∈ J and u ∈ C([−r, 0], E).

Then, the problem (1.1)-(1.2) has at least one mild solution on [−r, b], provident that

bα‖q‖∞
Γ(α+ 1)

(1 + ‖φA‖L1) < 1.

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the operator F : C([−r, b], E) →
C([−r, b], E) defined in Theorem 3.1, namely,

F (y)(t) =


φ(t), t ∈ [−r, 0],

1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds, t ∈ [0, b].

In order to prove that F is completely continuous, we divide the operator F into two operators:

F1(y)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds,

and

F2(y)(t) =
∫ t

0

S′(t− s)F1(y)(s)ds.

We prove that F1 and F2 are completely continuous. We note that the condition (i) implies that S′(t) is
compact for all t > 0 (see [6, Lemma 2.2]).

Step 1: F1 is completely continuous.
At first, we prove that F1 is continuous. Let {yn} be a sequence such that yn → y as n→∞ in C([−r, b], E).
Then for t ∈ [0, b] we have

|F1(yn)(t)− F1(y)(t)| ≤ 1
Γ(α)

∫ t

0

(t− s)α−1

∣∣∣∣f(s, yns)− f(s, ys)
∣∣∣∣ds

≤ 1
Γ(α)

‖f(·, yn.)− f(·, y.)‖∞
∫ t

0

(t− s)α−1ds

≤ bα

Γ(α+ 1)
‖f(·, yn.)− f(·, y.)‖∞.

Since f is a continuous function, we have

‖F1(yn)− F1(y)‖D → 0 as n→∞.

Thus F1 is continuous.
Next, we prove that F1 maps bounded sets into bounded sets in C([−r, b], E). Indeed, it is enough to show that
for any ρ > 0, there exists a positive constant δ such that for each y ∈ Bρ = {y ∈ C([−r, b], E) : ‖y‖D ≤ ρ}
one has F1(y) ∈ Bδ. Let y ∈ Bρ. Since f is a continuous function, we have for each t ∈ [0, b]

|F1(y)(t)| =
∣∣∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds
∣∣∣∣
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≤ 1
Γ(α)

∫ t

0

(t− s)α−1
∣∣f(s, ys)

∣∣ds
≤ bα

Γ(α+ 1)
(
‖p‖∞ + ρ‖q‖∞

)
= δ∗ <∞.

Then, ‖F1(y)‖D = max{‖φ‖C , δ
∗} = δ, and hence F1(y) ∈ Bδ.

Now, we prove that F1 maps bounded sets into equicontinuous sets of C([−r, b], E). Let τ1, τ2 ∈ J , τ2 > τ1 and
let Bρ be a bounded set. Let y ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F1(y)(τ2)− F1(y)(τ1)|

=
∣∣∣∣ 1
Γ(α)

∫ τ2

0

(τ2 − s)α−1f(s, ys)ds−
1

Γ(α)

∫ τ1

0

(τ1 − s)α−1f(s, ys)ds
∣∣∣∣

≤
∣∣∣∣ 1
Γ(α)

∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds
∣∣∣∣

+
∣∣∣∣ 1
Γ(α)

∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]f(s, ys)ds
∣∣∣∣

+
∣∣∣∣ 1
Γ(α)

∫ τ2

τ1

(τ2 − s)α−1f(s, ys)ds
∣∣∣∣

≤ ‖p‖∞ + ρ‖q‖∞
Γ(α)

( ∫ τ1−ε

0

[(τ2 − s)α−1 − (τ1 − s)α−1]ds

+
∫ τ1

τ1−ε

[(τ2 − s)α−1 − (τ1 − s)α−1]ds+
∫ τ2

τ1

(τ2 − s)α−1ds

)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero. By Arzelá-Ascoli
theorem it suffices to show that F1 maps Bρ into a precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we define

F1ε(y)(t) =
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds.

Note that the set {
1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds : y ∈ Bρ

}
is bounded since∣∣∣∣ 1

Γ(α)

∫ t−ε

0

(t− s− ε)α−1f(s, ys)ds
∣∣∣∣ ≤ (‖p‖∞ + ρ‖q‖∞)

∣∣∣∣ 1
Γ(α)

∫ t−ε

0

(t− s− ε)α−1ds

∣∣∣∣
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α+ 1)
(t− ε)α.

Then for t > 0, the set
Yε(t) = {F1ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F1(y)(t)− F1ε(y)(t)
∣∣∣ ≤ ‖p‖∞ + ρ‖q‖∞

Γ(α)

( ∫ t−ε

0

[(t− s)α−1 − (t− s− ε)α−1]ds+
∫ t

t−ε

(t− s)α−1ds

)
≤ ‖p‖∞ + ρ‖q‖∞

Γ(α+ 1)
(tα − (t− ε)α).

Therefore, the set Y (t) = {F1(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F1 is completely
continuous.
Step 2: F2 is completely continuous.
The operator F2 is continuous, since S′(·) ∈ C([0, b],L(E)) and F1 is continuous as proved in Step 1.
Now, let Bρ be a bounded set as in Step 1. For y ∈ Bρ we have

|F2(y)(t)| ≤
∫ t

0

|S′(t− s)||F1(y)(s)|ds
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≤
∫ t

0

φA(t− s)‖F1(y)(s)‖[D(A)]ds

≤ ‖φ‖L1bα(‖p‖∞ + ρ‖q‖∞)
Γ(α+ 1)

= δ′.

Thus, there exists a positive number δ′ such that ‖F2(y)‖D ≤ δ′. This means that F2(y) ∈ Bδ′ .
Next, we shall show that F2 maps bounded sets into equicontinuous sets in C([−r, b], E). Let τ1, τ2 ∈ J , τ2 > τ1
and let Bρ be a bounded set as in Step 1. Let y ∈ Bρ. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have

|F2(y)(τ2)− F2(y)(τ1)|

=
∣∣∣∣ ∫ τ2

0

S′(τ2 − s)F1(y)(τ2)ds−
∫ τ1

0

S′(τ1 − s)F1(y)(τ1)ds
∣∣∣∣

≤
bα

(
‖p‖∞ + ρ‖q‖∞

)
Γ(α+ 1)

( ∫ τ1−ε

0

|S′(τ2 − s)− S′(τ1 − s)| ds

+
∫ τ1

τ1−ε

|S′(τ2 − s)− S′(τ1 − s)| ds+
∫ τ2

τ1

|S′(τ2 − s)|ds
)
.

As τ1 → τ2 and ε sufficiently small, the right-hand side of the above inequality tends to zero. By Arzelá-Ascoli
theorem it suffices to show that F2 maps Bρ into a precompact set in E.

Let 0 < t < b be fixed and let ε be a real number satisfying 0 < ε < t. For y ∈ Bρ we define

F2ε(y)(t) = S′(ε)
∫ t−ε

0

S′(t− s− ε)F1(y)(s)ds.

Since S′(t) is a compact operator for t > 0, the set

Yε(t) = {F2ε(y)(t) : y ∈ Bρ}

is precompact in E for every ε, 0 < ε < t. Moreover∣∣∣F2(y)(t)− F2ε(y)(t)
∣∣∣ ≤ ‖φA‖L1

(
‖p‖∞ + ρ‖q‖∞

)
Γ(α+ 1)

(
tα − (t− ε)α

)
.

Then Y (t) = {F2(y)(t) : y ∈ Bρ} is precompact in E. Hence the operator F2 is completely continuous.
Step 3: A priori bound on solutions.
Now, it remains to show that the set

E = {y ∈ C([−r, b], E) : y = λF (y), 0 < λ < 1}

is bounded.
Let y ∈ E be any element. Then, for each t ∈ [0, b] ,

y(t) = λF (y)(t) = λ
1

Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+ λ

∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds.

Then

|y(t)| ≤
∣∣∣∣ 1
Γ(α)

∫ t

0

(t− s)α−1f(s, ys)ds+
∫ t

0

S′(t− s)
(

1
Γ(α)

∫ s

0

(s− τ)α−1f(τ, yτ )dτ
)
ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0

(t− s)α−1|f(s, ys)|ds+
∫ t

0

φA(t− s)
1

Γ(α)

∫ s

0

(s− τ)α−1|f(τ, yτ )|dτds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]ds

+
∫ t

0

φA(t− s)
1

Γ(α)

∫ s

0

(s− τ)α−1[‖p‖∞ + ‖q‖∞‖ys‖C ]dτds

≤ bα‖p‖∞
Γ(α+ 1)

+
bα‖q‖∞
Γ(α+ 1)

‖ys‖C +
‖φA‖L1bα‖p‖∞

Γ(α+ 1)
+
‖φA‖L1bα‖q‖∞

Γ(α+ 1)
‖ys‖C

≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖φA‖L1) +
bα‖q‖∞
Γ(α+ 1)

(1 + ‖φA‖L1) ‖y‖D,



80 Mohammed Belmekki et al. / Semilinear functional differential ...

and consequently

‖y‖D ≤ bα‖p‖∞
Γ(α+ 1)

(1 + ‖φA‖L1)
{

1− bα‖q‖∞
Γ(α+ 1)

(1 + ‖φA‖L1)
}−1

.

Hence the set E is bounded. As a consequence of Theorem 3.2 we deduce that F has at least a fixed point
which gives rise to a mild solution of problem (1.1)-(1.2) on [−r, b].

4 Example

As an application of our results we consider the following fractional time partial functional differential
equation of the form

∂α

∂tα
u(t, x) =

∂2

∂x2
u(t, x) +Q(t, u(t− r, x)), x ∈ [0, π], t ∈ [0, b], α ∈ (0, 1), (4.1)

u(t, 0) = u(t, π) = 0, t ∈ [0, b], (4.2)

u(t, x) = φ(t, x), x ∈ [0, π], t ∈ [−r, 0], (4.3)

where r > 0, φ : [−r, 0]× [0, π] → R is continuous and Q : [0, b]× R → R is a given function.
To study this system, we take E = L2[0, π] and let A be the operator given by Aw = w′′ with domain

D(A) = {w ∈ E,w,w′ are absolutely continuous, w′′ ∈ E,w(0) = w(π) = 0}.
Then

Aw =
∞∑

n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(x) =
(

2
π

) 1
2

sin(nx), n = 1, 2, . . . is the orthogonal set of

eigenvectors of A. It is well known that A is the infinitesimal generator of an analytic semigroup (T (t))t≥0 on
E and is given by

T (t)w =
∞∑

n=1

e−n2t(w,wn)wn, w ∈ E.

From these expressions it follows that (T (t))t≥0 is uniformly bounded compact semigroup, so that R(λ,A) =
(λ−A)−1 is compact operator for all λ ∈ ρ(A).

From [14, Example 2.2.1] we know that the integral equation

u(t) = h(t) +
1

Γ(α)

∫ t

0

(t− s)α−1Au(s)ds, s ≥ 0,

has an associated analytic resolvent operator (S(t))t≥0 on E given by

S(t) =


1

2πi

∫
Γr,θ

eλt(λα −A)−1dλ, t > 0,

I, t = 0,

where Γr,θ denotes a contour consisting of the rays {reiθ : r ≥ 0} and {re−iθ : r ≥ 0} for some θ ∈ (π, π
2 ). S(t)

is differentiable (Proposition 2.15 in [3]) and there exists a constant M > 0 such that ‖S′(t)x‖ ≤ M‖x‖, for
x ∈ D(A), t > 0.

To represent the differential system (4.1)− (4.3) in the abstract form (1.1)-(1.2), let

y(t)(x) = u(t, x), t ∈ [0, b], x ∈ [0, π]

φ(θ)(x) = φ(θ, x), θ ∈ [−r, 0], x ∈ [0, π]

f(t, φ)(x) = Q(t, φ(θ, x)), θ ∈ [−r, 0], x ∈ [0, π]

Choose b such that
Lbα

Γ(α+ 1)
(1 +M) < 1.

Since the conditions of Theorem 3.1 are satisfied, there is a function u ∈ C([−r, b], L2[0, π]) which is a mild
solution of (4.1)-(4.3).



Mohammed Belmekki et al. / Semilinear functional differential ... 81

References

[1] S. Abbas, M. Benchohra and G. N’Guerekata, Topics in Fractional DifferentialEquations, Springer,
New York, 2012.

[2] R.P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and
inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ., 9. 46 pages, ID
981728.

[3] E. Bajlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven
University of Technology, 2001.

[4] K.Balachandran and S. Kiruthika, Existence results for fractional integrodifferential equations with
nonlocal conditions via resolvent operators, Comput. Math. Appl., 62 (2011), 1350-1358.

[5] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[6] E. Hernández, D. O’Regan and K. Balachandran, On recent developments in the theory of abstract
differential equations with fractional derivatives, Nonlinear Anal., 73 (2010), 3462-3471.

[7] L. Kexue and J. Junxiong, Existence and uniqueness of mild solutions for abstract delay fractional
differential equations, Comput. Math. Appl., 62(2011), 1398-1404.

[8] A.A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[9] M. P. Lazarevic and A. M. Spasic, Finite-time stability analysis of fractional order time delay systems:
Gronwall’s approach, Math. Comput. Modelling, 49(2009), 475-481.

[10] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations,
John Wiley, New York, 1993.
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