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Abstract

Covering is a common type of data structure and covering-based rough set theory is an efficient tool to
process this type of data. Lattice is an important algebraic structure and used extensively in investigating some
types of generalized rough sets. This paper presents the lattice based on covering rough approximations and
lattice for covering numbers. An important result is investigated to illustrate the paper.
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1 Introduction

Theory of rough sets was introduced by Z. Pawlak [7], assumed that sets are chosen from a universe U,
but that elements of U can be specified only upto an indiscernibility equivalence relation E on U. If a subset
X ⊆ U contains an element indiscernible from some elements not in X, then X is rough. Also a rough set X is
described by two approximations. Basically, in rough set theory, it is assume that our knowledge is restricted
by an indiscernibility relation. An indiscernibility relation is an equivalence relation E such that two elements
of an universe of discourse U are E-equivalent if we can not distinguish these two elements by their proper-
ties known by us. By the means of an indiscernibility relation E, we can partition the elements of U into three
disjoint classes respect to any set X ⊆ U, defined as follows:

• The elements which are certainly in X. These are elements x ∈ U whose E-class x/E is included in X.

• The elements which certainly are not in X. These are elements x ∈ U such that their E-class x/E is
included in Xco, which is the complement of X

• The elements which are possibly belongs to X. These are elements whose E-class intersects with both X
and Xco. In other words, x/E is not included in X nor in Xco.

From this observation, Pawlak [7] defined lower approximation set X ↓ of X to be the set of those elements
x ∈ U whose E-class is included in X, i.e, X ↓= {x ∈ U : x/E ⊆ X} and for the upper approximation set
X ↑ of X consists of elements x ∈ U whose E-class intersect with X, i.e, X ↑= {x ∈ U : x/E ∩ X 6= ∅}. The
difference between X ↓ and X ↑ is treated as the actual area of uncertainty.
Covering-based rough set theory ([17], [19]) is a generalization of rough set theory. The structure of covering-
based rough sets ([18],[19],[20]) have been a interested field of study. The classical rough set theory is based
on equivalence relations. An equivalence relation corresponds to a partition, while a covering is an extension
of a partition. This paper focuses on establishing algebraic structure of covering-based rough sets through
down-sets and up-sets. Firstly, we connect posets with covering-based rough sets, then covering-based rough
sets can be investigated in posets. Down-sets and up-sets are defined in the poset environment. In order to
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achieve this goal, many theories and methods have been proposed, for example, fuzzy set theory ([4], [16]),
computing with words ([9], [15]), rough set theory ([5], [14]) and granular computing ([1], [3], [11], [13]). From
the structures of these theories, two structures are mainly used, that is, algebraic structure ([2], [10],[12]) and
topological structure [17]. This paper focuses on establish the algebraic structures of covering-based rough
lattice through down sets, up sets and lattice for covering numbers.

2 Preliminaries

In this section, we present some definition and fundamental concept on covering lattice.

Definition 2.1. Let U be a domain of discourse, and C be a family of subsets of U. If none of subsets in C is empty and
∪C = U, then C is called a covering of U. We call (U, C) the covering approximation space and the covering C is called
the family of approximation sets. It is clear that a partition of U is certainly a covering of U, so the concept of a covering
is an extension of a partition.
Let (U, C) be an approximation space and x be any element of U. then the family. Mind(x) = { K ∈ C : x ∈ K ∧ (∀S ∈
C ∧ x ∈ S ∧ S ⊆ K ⇒ K = S)} is called the minimal description of the object x. In order to describe an object we need
only the essential characteristics related to this object. This is the purpose of the minimal description concept.

Definition 2.2. A relation R on a set P is called a partial order if R is reflexive, antisymmetric, and transitive. If R is a
partial order on P, then (P, R) is called a poset.

Definition 2.3. An upper semi-lattice is a poset (P, R) in which every subset {a, b} has a least upper bound a ∨ b. A
lower semi-lattice is a poset (P, R) in which every subset {a, b} has a greatest lower bound a ∧ b. The upper semi-lattice
and the lower semi-lattice are also called semi-lattices.

Definition 2.4. [8] The lattice as a poset will be denoted by (L,≤), and the lattice as an algebra by (L,∧,∨).We write
simply L to denote the lattice in both senses. A poset (L,≤) is a lattice if sup{a, b} and in f {a, b} exist for all a, b ∈ L.

Definition 2.5. Let C be a covering of domain U and K ∈ C. If K is a union of some sets in C − {K}, we say K is
reducible in C, otherwise K is irreducible.

Definition 2.6. (Down-set and Up-set) Let (P,≺) be a poset. For all A ⊆ P, one can define ↓ A = {x ∈ P : ∃a ∈
A, x ≺ a},
↑ A = {x ∈ P : ∃a ∈ A, a ≺ x}. ↓ A is called a down-set of A on the poset (P,≺); ↑ A is called an up-set A on the
poset (P,≺). When there is no confusion, we say ↓ A is a down-set of A, and ↑ A an up-set of A.

Let (U, C) be a covering approximation space and N(x) = {K ∈ C : x ∈ K} neighborhood of point x for
each x ∈ U. There are six types of covering approximation operations that are defined as follows: for X ⊆ U,

• X ↓C1= ∪{K : K ∈ C ∧ K ⊆ X}; X ↑C1= ∪{K : K ∈ C ∧ K ∩ X 6= ∅};

• X ↓C2= ∪{K : K ∈ C ∧ K ⊆ X}; X ↑C2= U − (U − X) ↑C2 ;

• X ↓C3= {x ∈ U : N(x) ⊆ X}; X ↑C3= {x ∈ U : N(x) ∩ X 6= ∅};

• X ↓C4= {x ∈ U : ∃a(a ∈ N(x) ∧ N(a) ⊆ X)}; X ↑C4= {x ∈ U : ∀a(a ∈ N(x) → N(a) ∩ X 6= ∅ )};

• X ↓C5= {x ∈ U : ∀a(a ∈ N(a) → N(a) ⊆ X )}; X ↑C5= ∪{N(x) : x ∈ U ∧ N(x) ∩ X 6= ∅};

• X ↓C6= {x ∈ U : ∀a(a ∈ N(a) → a ∈ X )}; X ↑C6= ∪{N(x) : x ∈ X}. We call X ↓Cn the covering lower
approximation operation and X ↑Cn the covering upper approximation operation (n = 1, 2, 3, 4, 5, 6).

3 Rough set approximations based on covering

Let Xco be the complement of X in U, Xco = U − X. Let (U, C) be a covering approximation space. For
any subset, X ⊆ U, the covering lower approximation of X be defined by X ↓=

⋃
C ↓ (X) and the covering

upper approximation of X be defined by X ↑= ∩{K : K ⊆ Xco and K ∈ C}. The set X is called new type
covering based rough when X ↓6= X ↑, otherwise X is called an exact set. The boundary of X denoted by
BNC(X) = X ↑ −X ↓ is called as the boundary region of X of the new type covering C. With this concept, we
construct the following proposition as:
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Proposition 3.1. X ↓= X if and only if X is the union of some elements of C and also X ↑= X if and only if Xco is the
union of some elements of C.

Proposition 3.2. Let C be a covering of a universe U. If K is a reducible element of C, C− {K} is still a covering of U.

Proposition 3.3. Let C be a covering of a universe U, K ∈ C, K is a reducible element of C, and K1 ∈ C − {K}, then
K1 is a reducible element of C if and only if it is a reducible element of C − {K}.

3.1 Lattice based on covering rough approximation

Definition 3.7. Let C be a covering of U. We define LC = {X ⊆ U : C6 ↓ (X) = X}. LC is called the fixed point set
of neighborhoods induced by C. We omit the subscript C when there is no confusion.

Theorem 3.1. (L,⊆) is a lattice, where X ∨Y = X ∪Y and X ∧Y = X ∩Y for any X, Y ∈ L.

Proof. For any X, Y ∈ L, if X ∪Y 6∈ L, then there exists x ∈ X ∪Y such that N(x) 6⊆ X ∪Y. Since x ∈ X ∪Y,⇒
x ∈ X or x ∈ Y. Hence N(x) 6⊆ X or N(x) 6⊆ Y , which is contradictory with X, Y ∈ L. Therefore, X ∪ Y ∈ L.
For any X, Y ∈ L, if X ∩ Y 6 ∈ L, then there exists y ∈ X ∩ Y such that N(x) 6⊆ X ∩ Y. Since x ∈ X ∩ Y, x ∈ X
and x ∈ Y. Hence there exist three cases as follows:
(1) N(y) 6⊆ X and N(y) 6⊆ Y ,
(2) N(y) 6⊆ X and N(y) ⊆ Y ,
(3) N(y) ⊆ X and N(y) 6⊆ Y. But these three cases are all contradictory with X, Y ∈ L. Therefore, X ∩ Y ∈ L.
Thus (L,⊆) is a lattice. ∅ and U are the least and greatest elements of (L,⊆). In fact, (L,∩,∪) is defined from
the viewpoint of algebra and (L,⊆) is defined from the viewpoint of partially ordered set. Both of them are
lattices. Therefore, we no longer differentiate (L,∩,∪) and (L,⊆), and both of them are called lattice L.

Proposition 3.4. Let C be a covering of U. For all a ∈ U, N(a) ∈ L.

Proof. For any b ∈ N(a), N(b) ⊆ N(a), which implies b ∈ c : N(c) ⊆ N(a) = C6 ↓ (N(a)). Hence N(a) ⊆ C6 ↓
(N(a)). According to last definition of approximation C6 ↓ (N(a)) ⊆ N(a). Thus C6 ↓ (N(a)) = N(a), i.e.,
N(a) ∈ L.

Theorem 3.2. Let C be a covering of U, then L is a complete distributive lattice.

Proof. For any D ⊆ L, we need to prove that ∩ D ∈ L and ∪D ∈ L. If ∩D 6∈ L, then there exists y ∈ ∩ D
such that N(y) 6⊆ ∩ D, i.e., there are two index sets I, J ⊆ {1, 2, ..., |D|} with I ∩ J = ∅ and |I ∪ J| = |D|
such that N(y) 6⊆ Xi and N(y) ⊆ Xj for any i ∈ I, j ∈ J, where Xi, Xj ∈ D. This is contradictory with
Xi(i ∈ I), Xj(j ∈ J) ∈ L. Hence ∩D ∈ L. If ∪D 6∈ L, then there exists x ∈ ∪ D such that N(x) 6⊆ ∪D, i.e.,
there exists X ∈ D such that x ∈ Xand N(x) 6⊆ X, which is contradictory with X ∈ L. Hence ∪D ∈ L. Again
for any X, Y, Z ∈ L, X, Y, Z ⊆ U. It is straightforward that X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z), X ∩ (Y ∪ Z) =
(X ∩Y) ∪ (X ∩ Z). Hence L is a distributive lattice.

Theorem 3.3. If {N(x) : x ∈ U} is a partition of U, then L is a Boolean lattice.

Proof. According to Theorem 3.6, L is a distributive lattice. Moreover, L is a bounded lattice. Therefore, we
need to prove only that L is a complemented lattice. In other words, we need to prove that Xco ∈ L for any
X ∈ L. If Xco 6∈ L, i.e., ∪x∈Xco N(x) 6= Xco, then there exists y ∈ ∪x∈Xco N(x) such that y 6∈ Xco. Since
y ∈ ∪x∈Xco N(x), then there exists z ∈ Xco such that y ∈ N(z). Since {N(x) : x ∈ U} is a partition of
U, z ∈ N(y). Therefore, N(y) 6⊆ X, i.e., ∪x∈X N(x) 6= X, which is contradictory with X ∈ L. Hence, Xco ∈ L
for any X ∈ L, i.e., L is a complemented lattice. Consequently, L is a Boolean lattice.

4 Covering numbers

Various techniques have been proposed to characterize rough sets ( [2], [3], [5]). Similarly, we establish
some measurements to describe covering- based rough sets quantitatively.
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4.1 Definitions and Properties of Covering Numbers

The upper covering number of a subset of a domain is the minimal number of some elements in a covering
which can cover the subset. The lower covering number of a subset is the maximal number of some elements
in a covering which can be included in the subset.

Definition 4.1. Let C be a covering of U. For all X ⊆ U, we define

• N ↑C (X) = min{|B| : (X ⊆ ∪B) ∧ (B ⊆ C)}.

• N ↓C (X) = |{K ∈ C|K ⊆ X}|.

N ↑C (X) and N ↓C (X) are called the upper and lower covering numbers of X with respect to C. When there is no
confusion, N ↑C (X) is denoted simply by N ↑ (X), and N ↓C (X) by N ↓ (X).

Example-1: Let U = {a, b, c, d}, D1 = {a, b}, D2 = {a, c}, D3 = {b, c}, D4 = {d}, C = {D1, D2, D3, D4}, X =
{a, d}, Y = {a, b, c}. Then B1 = {D1, D4}, B2 = {D2, D4}, B3 = {D1, D2, D4}, B4 = {D1, D3, D4}, B5 =
{D2, D3, D4}, and B6 = {D1, D2, D3, D4} are also coverings of X; in other words, X ⊆ ∪Bi for i ∈ {1, 2, 3, 4, 5, 6}.
So N ↑ (X) = min{|Bi| : 1 ≤ i ≤ 6} = 2 . N ↓ (X) = |{K ∈ C|K ⊆ X}| = |{K4}| = 1. Similarly, N ↑ (Y) = 2
and N ↓ (Y) = 3. In particular, N ↑ ∅ = 0 since, {∅} ⊆ ∪{∅} and {∅} ⊆ C. The result makes the concept of
the covering numbers more reasonable.

Lemma 4.1. Let C be a covering of U. For all K ∈ C, N ↑ (K) = 1.

Lemma 4.2. Let C be a covering of U. For all x ∈ U, N ↑ ({x}) = 1.

5 Lattice for covering numbers

Lattices are important algebraical structures, and have a variety of applications in the real world. This
subsection establishes a lattice structure and two semi- lattices in covering-based rough sets with covering
numbers.

Definition 5.1. Let C be a covering of U. For all X, Y ⊆ U, if X ⊆ Y and N ↑ (X) = N ↑ (Y), we call Y an upper-set
of X, and X a lower-set of Y . The family of all upper-sets and the family of all lower-sets are semi-lattices.

Proposition 5.1. Let C be a covering of U. For all X ⊆ U, we call DX , D
′
Xthe family of all upper-sets, lower-sets of X,

respectively, i.e., DX = {Y ⊆ U : (X ⊆ Y) ∧ (N ↑ (X) = N ↑ (Y))}, D
′
X = {Y ⊆ U : (Y ⊆ X) ∧ (N ↑ (X) = N ↑

(Y))}. Then (DX ,∩), and (D
′
X ,∪) are semi-lattices.

Proof. In fact, we only need to prove Y1 ∩ Y2 ∈ DX for all Y1, Y2 ∈ D , and Y1 ∪ Y2 ∈ D
′
X for all Y1, Y2 ∈ D

′
X .

For all Y1, Y2 ∈ D, N ↑ (Y1) = N ↑ (X), X ⊆ Y1 and N ↑ (Y2) = N ↑ (X), X ⊆ Y2. So X ⊆ Y1 ∩ Y2 ⊆ Y1. Thus
N ↑ (X) ≤ N ↑ (Y1 ∩ Y2) ≤ N ↑ (Y1) = N ↑ (X), that is, N ↑ (Y1 ∩ Y2) = N ↑ (X). Therefore, Y1 ∩ Y2 ∈ D .
Similarly, we can prove Y1 ∪Y2 ∈ D

′
X for all Y1, Y2 ∈ D

′
X .

Definition 5.2. Let C be a covering of U and |C| = n. For X ⊆ U, if N ↓ (X) + N ↓ (Xco) = n, we call X
a detached-set of U with respect to C. With the detached-set, a covering is divided into two smaller coverings of two
smaller domains. Moreover, the concept of the detached-set leads to a lattice structure.

Proposition 5.2. Let C be a covering of U and |C| = n. D is denoted as the family of all detached-sets of U, i.e.,
D = {X ⊆ U : N ↓ (X) + N ↓ (Xco) = n}. Then (D,

⋃
,
⋂

) is a lattice.

Proof. For all X, Y ∈ D, N ↓ (X) + N ↓ (Xco) = n, N ↓ (Y) + N ↓ (Yco) = n. 2n = (N ↓ (X) + N ↓
(Xco)) + (N ↓ (Y) + N ↓ (Yco)) ≤ (N ↓ (X

⋃
Y) + N ↓ (X

⋂
Y)) + (N ↓ (Xco ⋃

Yc)) + N ↓ (Xco ⋂
Yco) =

[N ↓ (X
⋃

Y) + N ↓ ((X
⋃

Y)co)] + [N ↓ (X
⋂

Y) + N ↓ ((X
⋂

Y)co)]. N ↓ (X
⋃

Y) + N ↓ ((X
⋃

Y)co) = n
and N ↓ (X

⋂
Y) + N ↓ ((X

⋂
Y)co) since N ↓ (X) + N ↓ (Xco) ≤ n for all X ⊆ U. Thus X

⋃
Y ∈ D and

X
⋂

Y ∈ D.
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Proposition 5.3. The covering lower and upper approximations have the following properties:
(1) X ↓C⊆ X ↑C
(2) ∅ ↓C= ∅ ↑C= ∅ and U ↓C= U ↑C= U
(3) (X ∩Y) ↓C= X ↓C ∩Y ↓C and (X ∪Y) ↑C= X ↑C ∪Y ↑C
(4) (X ↓C) ↓C= X ↓C and (X ↑C) ↑C
(5) If X ⊆ Y then X ↓C⊆ Y ↓C and X ↑C⊆ Y ↑C
(6) X ↑C=∼ (∼ X) ↓C.

6 Conclusion

In this paper, we investigated some fundamental issues of approximation in the context of rough set theory
based on covering based rough set approximation. Lattice based on covering rough approximation and lattice
for covering numbers are also introduced. Our discussion is based on the notion of lattice that represents the
relationships between elements of a universe with neighborhood system. Furthermore one can find the lattice
for successive rough approximation and stratified rough approximation based on covering system.
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