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Abstract

In this paper, some applications of Continuous Uniform and Beta probability distributions are developed. Then, by
means of Chebyshev and Holder inequalities, some new results on integral inequalities are established. Finally,
some concepts on w-weighted continuous random variables are further considered to derive some more results.
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1. Introduction

The integral inequalities are very important in the proba-
bility theory, physics and applied sciences. For some applica-
tions of this theory, we refer the reader [1, 3-5, 7, 10, 11, 14].
In particular, we can find applications for Chebyshev’s and
Holder’s inequalities, see [2, 8, 16, 17]. In this sense, let us
recall the following results: we begin by [7, 8] where, Z. Dah-
mani has introduced some fractional notions with some appli-
cations on expectations, variances and moments of continuous
random variables. Other applications have been discussed in

the papers [2, 12, 13]. Then, in [11] the authors established
new identities and lower bounds for expectations and also
some classical results have been generalised for any @ > 0
reformulated by the following theorem:

Theorem 1.1. [11] Let X be a continuous random variable
with support an interval [a,b], —eo < a < b < oo, and density
Sunction f. Let @ be a positive continuous function on [a,b).
Then, the following equality holds for any a0 > 1:

Ezg’,a,w = Egh,oc,a) - Eh,oc,a)Eg.a,wy

where g € C'([a,b]), with |E g 4 o| < o, h(x) is a given func-
tion and

zZ(r) = !

(b—1)*tw(t)f(t)
x / (b— )% @(u) £(u)(Epgco — h(ue) )dt

with the condition that: J*wf(b) = 1.

Based on the above theorem, they also established with
the same conditions the following inequality:
E2

8,00

a>0.

<E|

_ 2
Eroe & Eraol oo

The purpose of this work is to establish some new identities
and inequalities using the normalized concepts on continuous
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random variables. This paper is divided into three sections.
In Section 2, we recall some basic facts about integral frac-
tional calculus; in section 3, we give some new applications
of fractional calculus on probabilistic random variables, we
apply the obtained results and some fractional inequalities to
establish new lower bounds. Finally, some excellent results
of [11], are developed for any a > 0 without the following
condition:

J*of(b) =1.

2. Preliminaries

In this section, we will give some definitions and prelimi-
nary facts that will be used through out this paper.

Definition 2.1. [15] The Riemann-Liouville fractional inte-

gral operator of order a > 0, for a continuous function f on
[a,blis defined as

1

JELF()] = /a[(t—r)“"f(r)dr, @>0.a<t<b,

I'a).

where T(a) := [ e “u®* du.

For a > 0, B > 0, we have:
VA AGIEN a0

JEIBIF ()] = TR (£ (1),
The Euler Beta function is connected with the Euler Gamma
function by:

B(x,y) = ——=,x>0,y>0,
y
where B(x,y) = fo ¥ (1 —1)"'dr.
Let us now recall the following definitions [18] :
Definition 2.2. The normalized fractional expectation of or-

der a > 0, for a random variable X with a p.d.f. f defined
on [a,b] is given by:
1

1T ()
where N1 = J*[f(D)].

b
Eq(X)= / (b—1)*"'tf(t)dt, >0, a<t<b,

Definition 2.3. The normalized fractional variance of order
a > 0 for a random variable X having a p.d.f. f on [a,b] is
defined as

1

1T (e)
Definition 2.4. The normalized fractional moment of orders
r> 0, o > 0 for a continuous random variable X having a
p.d.f. f defined on [a,b] is defined by

1

ry . b o—1,r
Ea(X).:Tm)/a (b—0)*"t" f(t)dt, a > 0.

b
Va(X) = / (b—1)" (1 — Eo(X))2f(1)dt, a >0,
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Based on the above definitions, we give the following
properties:
Let oc > 0:

1* For any real number ¢, we have:

Eq(c) =c.

2* The properties
Eq(Ea(X)) =Ea(X), Varq(X)= Eoc(Xz) —Eé(X),
is also valid.

Let us now consider a positive continuous function @
defined on [a,b]. We recall the @-concept:

Definition 2.5. The normalized fractional w-weighted expec-
tation of order & > 0, for a random variable X with a positive
p.d.f. f defined on [a,b] is defined as

1 b a—1
Ex,a,w(b)rzm/a (b—1)* 'ro(1)f(1)dT, ,a<t <b,

where N = J% o f(b)].

3. Main Results

We begin this section by some applications:

3.1 Continuous Uniform Distribution
Let us take the continuous uniform distribution (CUD). So for
any x € [a,b], we have f(x) = (b—a)~' which implies that:

(b—a)®!

IS0 = T i1

1 CUD Normalized Fractional Expectation:

Some easy calculations give:

_ b—a
Ca+1

Eq(X) +a.

By taking & = 1 in the preceding result, then we obtain
the classical expectation of X:

b+a
Ei(X)= 5 =E(X).
2 CUD Normalized Fractional Moment:
We have:
2(b—a)? b—a ,
Ey(X%) = +2a +a”.
a(X°) (a+2)(a+1) a+1

If we take o = 1 in the above formula, we get:

a*+b*+ab

E|(X?) = 3

E(X?).
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3 CUD Normalized Fractional Variance:
Thanks to the properties (2*), we have:

b—a)?
Varg(X) = 62(X) = ((xj.:(Z)((x)+1)2
If ¢ = 1, we obtain
a2
ot(x) = o) = L=

4 CUD Normalized Fractional Moment of order (1, @):
Particularly, where the p.d.f, of the uniform random
X is defined on some positive real interval [0,b], the
fractional moment of X is given by:
MNa+1)I(r+1) ,

Ey XY= —--—~ ")
«(X") C(a+r+1) ’

for

bafl
N=———.
IN'o+1)
Notice that, if o¢ = 1, we obtain the classical moment
of order r for the uniform distribution of X:
B r(r+1) , _

E\(X") = r(r+2)b —E(X").

3.2 Beta Distribution

Let consider now the Beta distribution (BD for short) which
—1 b—1

is defined, for any x € [0,1], by f(x) = %

Using the preceding fractional definitions, we get:

1 BD Normalized Fractional Moment:

B(a+b—1,a+r)
Eq(X") = ’
a(X') Bla+b—1,a)

2 BD Normalized Fractional Expectation:
Taking r = 1, in the above fractional moment formula,
we obtain:

a

E =
X G tbta—1
Then if we take o = 1 in the above formula, we get the

classical expectation E (X ) = -%.

a+b
3 BD Fractional Variance:
Taking into account that J* f(b) = %@],ﬁ), we ob-
tain
B(a+b—1,a+2) a*
Vi X)= — .
ara(X) Bla+b—1,a) (a+b+a—1)?

We remark also that, if we take o = 1, we get:

ab
(a+b+1)(a+b)

Var)(X) = 5 = Var(X).
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3.3 New Estimates of BD Normalized Fractional Mo-
ments

By Chebyshev fractional integral inequality, we can prove the

following result:

Proposition 3.1. Let m,n, p and q be positive real numbers,
such that (p —m)(q —n) <O0. Then, for any o0 > 1 we have:

B(p,g+a—1)B(m,n+a—1)>B(p,n+a—1)B(m,g+a—1).

Proof. The proof of this result is based on Definition 2 as well
as on the Beta distribution p.d.f, and the 1-weighted version
of Chebyshev fractional inequality given by:

JEp(1)J%pfe(1) —J%pf(1)J%pg(1) >0,
for any x € [0, 1] we take:
FO) =2, g(x) = (1—=x)17, p(x) =2~ (1 —x) .
Then, we obtain the desired result. ]

Remark 3.2. If o = 1, then the above proposition generalizes
Theorem 3.1 of [17].

Based on the paper [2], we prove the following theorems:

Theorem 3.3. Let X,Y,U and V be four random variables,
such thatX ~ B(p,q), Y ~ B(m,n), U ~ B(p,n) and V ~
B(m,q). If (p —m)(q —n) <0, then for any o > 1, the in-
equality :

Eq(X")Eq(Y") - B(p,aa+n—1)B(m,oc+g—1)
Eq(UNEq(V") ~ B(p,a+q—1)B(m,ot+n—1)’
is valid.

Proof. In the following 1-weighted version of Chebyshev
fractional inequality (see [9]),

JEp(1)J%pfe(1) —J%pf(1)J%pg(1) >0,

for any x € [0, 1] we take:

Fx) =xP 7, g(x) = (1)1, p(x) = x+n=1 (1 )1,
Then, it yields that
B(p,aa+q—1)B(m,ot+n—1)Eq(X")Eq(Y")
— B(p,oo+n—1)B(m,a+q—1)Eq(U")Eg(V") >0,
provided that: (p —m)(g—n) <O0.
O

We present to the reader the following theorem:

Theorem 3.4. Let X;, i = 1,2,...,8 be continuos random
variables, such that X1 ~ B(c,8), X2 ~ B(A —o,p — 0),

o
& o 00,
AR

(N
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X6NB((p7p_6)’ X7NB(2’_G7W)’ X8NB(67p_W)
If(A—0—9)(p—6—y) <0, then,

(X3
+B(<p,a+w—l)B(k—<p7a+p—w—1>Ea(X{) Eo(X;
>B(A—0,00+8—1)B(@,00+p — 8 —1)Eg(XL) Eg(
+B(A—o,0+y—1)B(0,a+p—y—1)Eq(X7)Ea(Xg),

where A,p,6,6,0,¥ >0, a > 1 and r € N\{0}.
Proof. Replacing the functions:

r+671(1 _x)571 ’q(x) :xr+(p71(1 _x)lllfl

8(x) = (1—x)P=¥

plx) =x
flx)=x

A—c—0

where x € [0,1]. In the 2-weighted version of Chebyshev
fractional inequality (see [9]), given by:

JEp(1)J%qfe(1) +T%(1)J% pfe(1)
> J%pf(1)J%qg(1) +J%qf(1)J%pg(1),

we obtain the desired result. O

Thanks to Holder fractional integral inequality (see [6]),
we present to the reader the following result.

Theorem 3.5. Let (p,q), (m,n) € [0,00)? and a,b > 0, with
a+b=1. Let X ~ B(ap+bm,aqg+bn) and Y ~ B(p,q).
Then

Ea(X‘")
[Ea(YT)]

B(p.q+a—D][B(mn+a—1)"
B(ap+bm,ag+bn+ao —1)

IN

Proof. We choose the positive mappings f,g defined over
[0,1] as follows:

F@) =" 1= )= (1) e [0,1]

for p = % q= % (% +é =1 and p > 1). Substituting
these mappings in the Holder’s fractional inequality,

J(fe)(1) < [J"‘fé(l)r [J“g%(l)]b.

Then notice that:

1 1 1
= X s
(o) [C(e)]* [D(e)]?
we obtain the result. O

Remark 3.6. If we take o« = 1, then the above theorem re-
duces to Theorem 2.12 of [13].
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,re N\{0}.

3.4 Normalized fractional inequalities for continu-
ous random variable

Theorem 3.7. Let X be a continuous random variable with

support an interval [a,b], —eo < a < b < oo and density func-

tion f. Let @ be a positive continuous function on |a,b). Then,

for any a > 1, the following equality holds

E.o 0.0 =Egha,0 — Ena,oEs a0 3.1

where g € C'([a,b
tion and

Z(t) =

1), with |E.g o | < oo, h(x) is a given func-

1
60" T ()
<[ =0 @) (1) (B0 — )

Proof. By Definition 5, we write:

Ezg’ o,0
1

~ e [ 60" 0

() (b—1)* () f(t)
—u)*! u
X ( ¥ (Ena. ww ()LJ:)() ) )du x o(t)f(r)dt.
_ Loy (b—w)* @ (u) f (u)
B NI(«a )/a & (t)/a ( X (En,a,0 — (1)) >dudt'

Integration by part gives:

o

Ezg/,a,a)

- o (L Yo
- sl (e o)

- s (M2 o
- L (S )e)

Therefore, since N = J¥[wf(b)], we get

Ezg’,mw
5’%‘?&3 J2(b—u)* o (u) f(u)du
= g(b)
—ﬁ(a) J2(b—w)* @ (u) f(u)h(u)du

Erao [0 o(t)(b— 1) (1) £ (¢)dr
— e 2 (= 1) o(t) f(1)h(t)du

o) {Eh‘“’“’lfwf(b) —Em,a,}

N
_Eh,meg,oc,a) + Egh,oc,ar

Hence the result,

Ezg’,ouo = Egh,oc,co - Eh,a,a)Eg,a,w-
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O

Now, taking three continuous functions g, 4, f defined on
[a, D], we prove the following result:

Theorem 3.8. Let g,h and f be three continuous functions on
[a,b], and let @ : [a,b] — R be a continuous function, then

I |8~ T (0) % (1~ IS @hf (b)) of | ()

= JEghi(b) — . U8/ (b)JE @hf(5)3:2)

is valid, for any a > 1, where N = J¥[@ f(D)].
Proof. We have

J2 (e 2 ws ) x (h- sz ans(e)or]| ()

o (s eeo)
= m/ﬂ(b—t) % (h(t) — LI 0hf(b)) | di

x (1) f(t)

T T« )/ (b—1)*" @ (t)g(1)h(r) f(t)dt
Jawh(J;()b) /u (b= o(0)g(0) £(1)dr
- ijwrg(f()) / (b=0)"""(t)h(1) f()dr

o o b
JS ng;\(zfy& 6)ohf(b) / (b—1)*o(1)f(r)dt

2
= JEOhF(b) — 08 (D) R (D)
il E g (bR (D)o f (b).

where N = J¥[f(b)]. Hence the result,

(5= I 0gf(6)) x (h— L IE@hF(B)) | ()
= JEoghy(b) - 3 R0 ()L ().

N
0

Theorem 3.9. Let X be a continuous random variable with
support an interval [a,b], —eo < a < b < oo, having a pdf f.
Then, for any o0 > 1, we have

(3.3)

where g € C'([a,b]), with |E,g 4 ¢| < oo, h(x) is a given func-
tion and 7 is given by

Z(t) =

(b—1)* (1) f(r)

« / ' (b= 1) @(u) £ () (Ep a0 — (o))t
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Proof. Thanks to (3.1), we observe that

Ezg’,a,w = Egh,a.a)_Eh,a,wEg.a,w~

1 1
= (e oghf(b) = 3T whf (b)§ 0gf(b).
1 1
= 3 [roenro) - Lutorso)z o))
By using (3.2), we observe that
Ezg’,oc,a)
I S B e AT ] )
v (2| <6 Daniiar |

1

b a1
- ¥ RGO OYOR

<g(t) - ;wagf(b)> (h(t) - ;]J,f‘whf(b)) dt

Thanks to Cauchy-Shwarz inequality, we obtain

‘2Zg @l 34
b _1lja
(N;(a)/ o= | COEER |a)
_1lja 2
( 1( L[ (prye { (h(r) XZ,{;‘)%{@) }dt)

E(g—ﬁ./lla)gf( )) a,a)E(g— %J}}‘a)hf(b))z,a.w
E

= E . 3.5
(4~Er o) a0t (1-Eygq0)’ @0 (3.3)
Again, taking g = h in (3.1), we get
Ewow = Ehz,a,w_(Eh.,a,w)z
= Ehz,a,a) - 2(Eh.a,co)2 + (Eh,mw)z
Jewf(b)
= Epgp—2Enee)+ Eree)2——=.
e TEREO “O T of ()
Therefore,
1 2
Eoo = 3l (Bof)b) = GEraol (Ohf)(0)

+ 3 (Eraw) I 0F ()

= % [J& (W = 2Epg.0h+ (Ena.0)) 0f (b)]

= % [J;x (h*Eh,oc,w)zwf} (b)

= E(h*Eh_aﬂw)z,a,w- 3.6)
Using (3.5) and (3.6), we deduce the result
E2
|zg' o0, 0|
- <E_ 2 oy @ >0.
Ew oo [¢—Ega.0]* 0.0
The proof of this theorem is complete. O
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