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3-Successive C-edge coloring of graphs
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Abstract
The 3-successive c-edge coloring number ψ

′
3s(G) of a graph G is the highest number of colors that can

occur in a coloring of the edges of G such that every path on three edges has at most two colors. In
this paper, we obtain some exact values of 3-successive c-edge coloring number. Also, we attempt to
find bounds of ψ

′
3s(G) for different product of graphs which includes Cartesian, direct, strong, rooted

and corona. The 3-successive c-edge achromatic sum is the maximum sum of colors among all the
3-successive c-edge coloring of G with highest number of colors. We also determine the 3-successive
c-edge achromatic sum for some classes of graphs.
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1. Introduction
Three edges e1,e2 and e3 in a graph G = (V,E) are

said to be successive if they form a path or a cycle
of length 3. A coloring of the edges of G is called
3-consecutive edge coloring if for any 3-successive edges
e1,e2 and e3, the edge e2 receives the color of e1 or e3.
The 3-consecutive edge coloring number χ

′
3c(G) of G is

the highest number of colors conceded in such a coloring
(see [3]).

A coloring of the edges of a graph G is called
3-successive c-edge coloring if there exists no 3-colored
path on three edges; that is, among every three successive
edges there exist two having the same color. The 3-
successive c-edge coloring number ψ

′
3s(G) of G is the

highest number of colors used in a 3- successive c-edge
coloring.

In an edge coloring a vertex v is called monochromatic
if all edges incident to the vertex v have the same color
(see [3]). The main difference between 3- successive
c-edge coloring and 3-consecutive edge coloring is,
in 3-consecutive edge coloring, for any arbitrary edge
e = uv either u or v will be monochromatic (see [3]), but
this is not always true in 3-successive c- edge coloring,
for example, see Figure 1. Clearly, any 3-consecutive
edge coloring is a 3-successive c- edge coloring, and hence

χ
′
3c(G)≤ ψ

′
3s(G).

The anti-Ramsey number denoted by ar(G1,G2) is
defined as the highest number k, such that there exists an
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allocation of k colors to the edges of G1, so that every
copy of G2 in G1 has at least two edges with same color.
The anti-Ramsey number ar(G1,P3), where P3 is the path
of length 3 is similar to the definition of 3- successive c-
edge coloring number (see [1]). S. Akhoondian et al. in
[1] studied about the complexity of computing the anti-
Ramsey number ar(G1,P3).

3-consecutive edge coloring

3-successive c- edge coloring
Figure 1. 3-consecutive edge coloring and 3-successive
c-edge coloring of a graph G

In this paper, we initiate a combinatorial study of
3-successive c-edge coloring number, and obtain some
bounds besides finding the exact values of this parameter
for some known graphs. For more definitions on graph
theory, we refer the reader to the book [5].

2. Exact Values and Bounds
First, we obtain some preliminary results.

Proposition 2.1. If d(G) ≥ 3, then ψ
′
3s(G) < m, where

d(G) is the diameter and m is the number of edges in G.

Proof. Assume ψ
′
3s(G) = m. Since d(G)≥ 3, there must

be at least one set of 3-successive edges say e1,e2 and e3
such that all of them have different colors, a contradiction.

ψ
′
3s can be straightforwardly determined for the fol-

lowing standard graphs :

• For Pn, a path graph of order n ≥ 2, ψ
′
3s(Pn) =

dn/2e.

• For Cn, the cycle graph on n ≥ 4 vertices,
ψ
′
3s(Cn) = bn/2c.

• If G is the complete graph on n≥ 3 vertices, then
ψ
′
3s(G) = 2.

• For the complete bipartite graph Km,n, ψ
′
3s(Km,n) =

max{m,n}.

• If G is the Petersen graph, then ψ
′
3s(G) = 3.

The subsequent proposition characterizes simple
graphs G for which ψ

′
3s(G) = m, where m is the num-

ber of edges in the graph G.

Proposition 2.2. Let G be a simple graph with m ≥ 1
edges. Then ψ

′
3s(G) = m if and only if each component of

G is a star graph K1,n.

Proof. We prove only the necessary part, as sufficiency is
obvious. Assume ψ

′
3s(G)=m. If there exists a component

of G which is not a star, then G contains 3-successive
edges say e1,e2 and e3 such that at least two of them have
the same color, a contradiction.

The following proposition characterizes connected
graphs for which ψ

′
3s(G) = 1.

Proposition 2.3. For any connected graph G, ψ
′
3s(G) = 1

if and only if G is K2, the complete graph on two vertices.

Proof. Let G be a connected graph which is not a K2 and
ψ
′
3s(G) = 1. Then there will be at least two edges e1 and

e2. Color e1 and all other edges except the edge e2 with
the color 1 and e2 with the color 2. Clearly, this coloring
yields a 3-successive c- edge coloring with two colors.
This implies ψ

′
3s(G)≥ 2, a contradiction.

Proposition 2.4. If G is a connected graph with a cut
vertex v, then ψ

′
3s(G)≥ 2.

3. ψ
′
3s(G) and the Diameter

It can be easily observed that ψ
′
3s(G) is independent

of the diameter of the graph G. In this section, we pro-
vide some graphs in which diam(G) = 2 and ψ

′
3s(G)> 2.

Graph formed by connecting a universal vertex (a vertex
which is adjacent to all other vertices of the graph G) to
all vertices of the cycle graph Cn is called the Wheel graph
and is denoted by Wn+1.

Proposition 3.1. For the wheel graph Wn+1,

ψ
′
3s(Wn+1) =


n
3 +1 i f n≡ 0 mod 3
n−1

3 +1 i f n≡ 1 mod 3
n−2

3 +1 i f n≡ 2 mod 3

Proof. Let Wn+1 denote the wheel graph. The 3-
successive c-edge coloring number varies only at every
third edge of the outer cycle Cn in the wheel graph Wn+1.
If we color the edges incident to the universal vertex, say
u, using 2 different colors, then the highest number of
colors which can be used in the wheel graph Wn+1 get
restricted to 2. But the aim is to maximize the number of
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colors used. So, the approach begins by coloring all the
edges incident to the universal vertex u by the same color,
say 1.

Now, consider the outer cycle Cn. Variation of 3-
successive c-edge coloring number depends on the
number of vertices n. Thus we have 3 cases.

Case 1: When n ≡ 0 mod 3, a maximum of n
3

more distinct colors can be used in the outer cy-
cle. The coloring sequence in this particular case
is as follows, 2,1,1,3,1,1,4, . . . ,1,1. Then, all the
edges incident to the central vertex can be colored using
the color 1. Hence, ψ

′
3s(Wn+1) =

n
3 +1 i f n≡ 0 mod 3.

Case 2: When n ≡ 1 mod 3, a maximum of n−1
3

more distinct colors can be used to color the outer cycle
Cn. The coloring sequence is 2,1,1,3,1,1, . . . ,1,1,1.
Then, including the extra color which is used to
color the edges incident to the central vertex u, the
ψ
′
3s(Wn+1) =

n−1
3 +1 i f n≡ 1 mod 3.

Case 3: When n ≡ 2 mod 3, n−2
3 more distinct

colors can be used to color the outer cycle Cn. The
coloring sequence would be 2,1,1,3,1,1, . . . ,1,1,1,1.
Hence,
ψ
′
3s(Wn+1) =

n−2
3 +1 i f n≡ 2 mod 3.

The Friendship graph Fn can be defined as the graph
consisting of n-triangles attached with exactly one com-
mon vertex called the center( See[2]).

Proposition 3.2. Let Fn denote the friendship graph on
2n+1 vertices. Then, ψ

′
3s(Fn) = n+1.

Proof. Friendship graph can be considered as a graph in
which n triangles are attached to the central vertex, say
u. If we color the edges incident to u using two colors,
then the maximum number of colors that we can use to
color the edges will be 2. So, the technique is to color the
edges incident to u using the same color. We know that a
triangle can be colored with the maximum of two colors.
So, each edge which forms the base of the triangle can be
colored using a different color. Hence, ψ

′
3s(Fn) = n+1.

4. 3-Successive c-edge coloring
number of product graphs

In this section, we find the 3-Successive c-edge col-
oring number of some product graphs. First we find the
3-successive c-edge coloring number of strong product of
the path Pn with the complete graph K2.

Proposition 4.1. For the strong product of a path Pn with
K2, Pn �K2 , the 3-successive c-edge coloring number
ψ
′
3s(Pn �K2)= b n

2c+1.

Proof. Let v1,v2, . . . ,vn be the vertices of the first copy of
path Pn and let v1

′,v2
′, . . . ,vn

′ denote the vertices of the
second copy of Pn in the graph G=Pn �K2. Assume that
the edge v1v1

′ is colored with the color 1. And let all the
other edges adjacent to the edge v1v1

′ be colored with the
color 2. Then, a new color 3 can appear only on the edge
v3v3

′. If we use a new color in between these edges, it
contradicts the 3-successive c-edge coloring of the graph
G. Consequently, a further new color 4 appears on the
edge v5v5

′. If any new color appear in between then, it
forms a rainbow P3.

The mth super triangle is an equilateral triangular grid
on m vertices on each side (See[6]).

Proposition 4.2. If m denote the number of layers in the
mth super triangle, then the 3-successive edge coloring
ψ
′
3s(G)=bm

2 c+1.

Proof. Let G denote the mth super triangle with m layers.
Then, when m=1 and m=2, the result is trivial.
Assume that the result is true for m=k. Now, we have to
prove that the result is true for m=k+1. The k+1th layer
contain k+1 vertices more than the kth layer. Since, the
result is true for the kth super triangle, the k+ 1th super
triangle can be colored with at least b k

2c. We have to prove
that the k+1th super triangle can be colored with at most
k+1 colors. Let v be the vertex of degree 2 in the mth

super triangle.
In the kth super triangle, every new color appears at the
distance of 2. When k is even, the value of b k

2c and b k+1
2 c

are same. If its not then, it contradicts the 3-successive c-
edge coloring .
When k is odd, the value of b k+1

2 c is one more than b k
2c.

And hence another color appear at a distance two. That
is, a new color appear at the k + 1th layer of the super
triangle.

The complete graph K4−{e} is known as the diamond
graph. The Necklace graph is the graph with s diamonds,
denoted as Ns, is a 3-regular graph that can be obtained
from a 3s-cycle graph by appending s extra vertices, with
each of these extra vertices is adjacent to 3- sequential
cycle vertices (See[4]).

Proposition 4.3. Let Ns denote the nth necklace with 4s
vertices; where s denotes the number of diamonds. Then,
the 3- successive c-edge coloring number ψ

′
3s(Ns)≥ s+1.

Proof. Consider a set of sequential vertices from the 3s-
cycle graph as u,v and w and let x be the exta vertex added
in the 3s-cycle graph to form a diamond in the necklace
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graph Ns. Since there are s-diamonds in the necklace
graph and we can color each xv type edges distinctly with
s-colors and the remaining edges with one more extra
color. Clearly this coloring produces a 3-successive c-edge
coloring with s+1 colors therefore, the result follows.

Let Pn�Pm be the Cartesian product of the path Pn
with the path Pm.

Proposition 4.4. Let G denote the graph Pn�Pm and
α0(G) denote the vertex covering number of G. Then,
ψ
′
3s(G) = α0(G) = bmn

2 c.

Proof. Let G1,G2, . . . ,Gm denote the m-copies of the
path Pn in G. We attempt to prove the proposition using
mathematical induction on m. For n,m = 1, the result is
trivial since G is the path P2.

Consider the case when m = 2 and consider the
path Pn. Let S denote the minimum vertex cover of
the graph Pn�P2. Let G′ and G′′ denote the 2 copies
of the path Pn in Pn�P2. Mark the vertices of G′ as
v1,v2, . . . ,vn and the vertices of G′′ as v1

′,v2
′, . . . ,vn

′.
Then S = {v1,v2

′,v3, . . . ,vn} when n is odd and
S = {v1,v2

′,v3, . . . ,vn
′} when n is even. Color the edges

of G in such a way that all the edges incident to v1
receives the same color. Now, clearly, N(v1)∩N(v2

′) 6= φ .
The edges incident to v1 ∪ v2

′ can be colored with at
most two colors. That is, the edges incident to v2

′ is
colored with another color. Similarly, N(v1)∩N(v

′
2) 6= φ

and N(v2
′) ∩ N(v3) 6= φ . Hence v1 ∪ v2

′ ∪ v3 can be
colored with at most three colors. Continuing like this,
the maximum number of colors that can be used in
3- successive c-edge coloring of G is α0(G). In this
particular case, α0(G) = n, since S contains n vertices.

Assume that the result is true for m = k. We have
to prove the result for m = k+ 1. Let G1,G2, . . .Gm de-
note the m copies of Pn. Let S denote the vertex cover
of G = Pn�Pm and let v1,v2, . . . denote the vertices in S.
Then, clearly for any vi ∈ S, N(vi)∩N(vi+1) 6= φ . Thus,
the edges incident to the vertices in N(vi)∪N(vi+1) can
be colored with at most two colors. The colors can be
assigned to the edges of G in such a way that all the edges
incident to a vertex vi ∈ S are given the same color. This
assignment maximizes the number of colors used in the
coloring of G and consequently ψ

′
3s(G) = α0(G). This

yields the 3-successive c-edge coloring of G.

Definition 4.5. Consider an even cycle Cn of order n≥ 4.
Let v1,v2, . . . ,vn be the vertices of Cn. The graph Ck

n,
(where 2 ≤ k ≤ n), is obtained by taking k-copies of the
cycle with vertices denoted by v1

1,v
1
2, . . . ,v

1
n, v2

1,v
2
2, . . . ,v

2
n,

. . ., vk
1,v

k
2, . . . ,v

k
n, and concantenating the vertex v1

n
2+1 with

the vertex v2
1, and again with this graph concantenating

the vertex v2
n
2+1 with the vertex v3

1 and continuing simi-
larly.

For example see the graph C3
6 in Figure-2.

Figure 2. The graph C3
6

Theorem 4.6. Let Cn be an even cycle and let Ck
n be the

graph obtained by taking k copies of Cn and concatenat-
ing one vertex in the first copy of Cn with the n/2+ 1
vertex of the second copy and continuing similarly. Then,
ψ
′
3s(C

k
n)≤ k×b n

2c.

Proof. We have from proposition-2.1 that ψ
′
3s(Cn) =

bn/2c. Therefore, each cycle Cn in Ck
n can be colored

with at most n/2 colors. Since we have k copies of Cn in
Ck

n. Therefore, the upper bound follows.

A vertex subset I ⊆V in which no two vertices are ad-
jacent is called an independent set. The highest number of
vertices in such a set is known as the vertex independence
number of G and is denoted by β0(G).

Proposition 4.7. For the prism graph Cn�P2,

ψ
′
3s(Cn�P2) =

{
n i f n is even
2b n

2c i f n is odd
.

Proof. Let G be the prism graph Cn�P2 with 2n vertices.

Case 1: Assume that n is even. Let C1 and C2 be
the inner and outer cycles in G. We know that a cycle
Cn on n vertices can be colored using b n

2c colors. So the
cycle C1 has n vertices, hence can be colored using b n

2c
colors. Similarly, the outer cycle C2 has n vertices and
the edges can be colored using another b n

2c colors. If any
new colors are used in the edges joining the inner and
outer cycles, it would form a three colored path, which
is a contradiction to the definiton of 3-successive c-edge
coloring. Hence

ψ
′
3s(Cn�P2)≤ n (4.1)

Consider an independent set in G with maximum car-
dinality. That is consider a β0-set. Let it be v1,v2, . . . ,vn.
Now color the edges incident at each vi,1≤ i≤ n by the
color i. One can observe that this coloring produces a
3-successive c-edge coloring of G and hence

ψ
′
3s(Cn�P2)≥ n (4.2)
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From 4.1 and 4.2 the result follows.

Case 2: Assume that n is odd. Let C1 and C2 be
the inner and outer cycles in G. We know that each cycle
on n vertices can be colored using b n

2c colors. So the
cycle C1 has n vertices, where n is odd. Hence can be
colored using b n

2c colors. Similarly, the outer cycle C2
has n vertices and the edges can be colored using another
b n

2c colors. If any new colors are used in the edges joining
the inner and outer cycles, it would form a three colored
path, which is a contradiction. Hence, Cn�P2 can be
colored using at most 2b n

2c colors. Therefore,

ψ
′
3s(Cn�P2)≤ 2bn

2
c (4.3)

Consider a β0-set in G. Let it be u1,u2, . . . ,un−1. Now
color the edges incident at each ui,1≤ i≤ n by the color
i. Again consider the colorless edges in G and color
these edges by the color 1. Now this coloring gives a
3-successive c-edge coloring of G and hence

ψ
′
3s(Cn�P2)≥ 2bn

2
c (4.4)

From 4.3 and 4.4 the result follows.

Let G1 and G2 be two graphs. Then the corona prod-
uct, of G1 and G2 is defined in [7], as the graph G obtained
by taking one copy of G1 and |V (G1)| copies of G2 and
by joining each vertex of the i-th copy of G2 to the i-th
vertex of G1, where 1 ≤ i ≤ |V (G)| and is denoted as
G = G1 ◦G2.

Proposition 4.8. If G is the graph obtained by taking the
corona product of the complete graph with the path Pm,
m≤ 4, then ψ

′
3s(G) = n+1.

Proof. Let G be the graph obtained by taking the corona
product of the graph Kn with the path Pm; m ≤ 4. We
know that the any complete graph Kn can be colored with
at most 2 colors in a 3-successive c-edge coloring. Also
any path Pm; m≤ 4 can be colored with at most 2 colors
in a 3-successive c-edge coloring.
For m = 2, color the complete graph Kn using exactly one
color, say c1. Every copy of P2 corresponding to each ver-
tex in Kn can be colored using one extra color, given that
the edges joining each copy P2 with corresponding vertex
is given the color c1. Corresponding to the n vertices of
Kn, n different colors can be used for each copy of P2 in
G. This gives ψ

′
3s(G) = n+1.

Similar argument can be done for P3 and P4.

The edge coloring of the graph G is the coloring of
the edges of G in such way that no two adjacent edges
receives the same color. The chromatic index, χ ′(G) is the
minimum number of colors required in such a coloring.

The following proposition gives the relationship between
χ ′(G) and ψ

′
3s(G

∗), where G∗ is the graph obtained by
sub-dividing each edges of the given graph G exactly
once.

Proposition 4.9. Let G∗ be the graph obtained by sub-
dividing each edge of the given graph G exactly once.
Then, ∆(G)≤ χ ′(G)≤ ψ

′
3s(G

∗).

Proof. Consider and edge coloring C : E(G)→ N of G.
Let χ ′(G) = k and 1,2, . . . be the number of colors used
in such a coloring. Now, consider G∗ where each edge
of G is sub-divided exactly once. Now, color the sub-
divided edges by the same color we have used to color
the corresponding edge in G. Clearly, this coloring yields
a 3-successive c-edge coloring of G and hence the proof
follows.

Theorem 4.10. Let G be any connected graph of order
n, where, n≥ 3. Let v1,v2, . . . ,vn be the vertices of G and
let H be any connected graph of order m, where m ≥ 2.
Let G∗ be the graph obtained by taking n copies of H
corresponding to each vertex of G, say H1,H2 . . .Hn and
by adding a single edge between each vertex vi of G and
a vertex of Hi,1≤ i≤ n. Then, n+1≤ ψ

′
3s(G

∗).

Proof. Color all the edges of G in G∗ by the color, say
1. Let h1,h2 . . .hn be the vertices of H1,H2, . . . ,Hn which
are adjacent to the vertices v1,v2, . . . ,vn of G in G∗. Now
color the edges v1h1,v2h2, . . . ,vnhn by the same color 1.
Again consider the remaining edges of H1,H2, . . .Hn in
G∗. Color all the edges in H1 by the color 2, and of H2
by the color 3 and so on. Continuing like this, we obtain
a 3-successive c-edge coloring of G∗ with n+ 1 colors.
Therefore, n+1≤ ψ

′
3s(G

∗).

The above upper bound holds if G is the complete
graph Kn of order n≥ 3 and H is the path P2.

Fan graphs Fmn are graph obtained by taking the graph
join K̄m ,(the totally disconnected graph) on m vertices
and the path Pn (the path graph) on n vertices.

Proposition 4.11. Let F1,n denote the fan graph where n
denotes the number of vertices in the path Pn. Then,

ψ
′
3s(F1,n) =


n
3 +1 i f n≡ 0 mod 3
n−1

3 +1 i f n≡ 1 mod 3
n−2

3 +1 i f n≡ 2 mod 3

Proof. Let u denote the universal vertex of F1,n.

Observation: If we give two different colors to
the edges incident at the universal vertex u, then it is not
possible to use one new color to any edges in F1,n. Hence,
in this coloring the maximum number of colors to be used
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get restricted to 2. Therefore, to maximize the number
of colors used, we color the edges incident to u with the
same color, say 1.

Color all the edges incident to u by color, say 1.
Now the vertices v1, . . . ,vn of the path Pn remains to
be colored. Since all the vertices of the path Pn forms
three successive edges with the edges incident to u, the
coloring has to be done in such a way that the coloring
sequence does not form three successive edges with the
path Pn, that is, between any two different colors used,
the intermediate two edges should receive the common
color 1. Therefore, the path Pn should be colored in the
coloring sequence 2,1,1,3,1,1, . . .. This color sequence
generates the 3-successive c- edge coloring of the fan
graph F1,n.

The Pineapple graphs are graphs obtained by coalesc-
ing a vertex of the complete graph Km with the star K1,n.
Therefore, the order of the Pineapple graph is m+n and
the size is m2−m+2n

2

Proposition 4.12. Let G be the pineapple graph Kn
m. Then

ψ
′
3s(K

n
m) = n+1.

Proof. The pineapple graph can be obtained by concate-
nating a vertex of the complete graph Km with the star
K1,n. We know that a star K1,n can be colored with at
most n color, since it does not contain any three succes-
sive edges. To color the pineapple graph Kn

m, we color
the star attached to the vertex of Km using n colors. We
then color the complete graph Km using the n+1th color.
If we color in the alternate way of coloring the complete
graph Km using 2 colors, then we cannot use any new
color to color the star, as it forms successive edges with
all the edges of the complete graph Km. This concludes
that ψ

′
3s(K

n
m) = n+1.

5. Graphs with 3-Successive C-edge
coloring number 2

In this section, we provide some graphs for which
3-Successive c-edge coloring number 2.

Proposition 5.1. The 3-successive c- edge coloring num-
ber of the join of Cn, 3≤ n≤ 5 with K2, ψ

′
3s(Cn∨K2) = 2.

Proof. Let u1 and u2 be the vertices of the graph K2 in
Cn ∨K2 and let v1,v2, . . . ,vn be the vertices of the cycle
Cn in Cn ∨K2. If we assign two distinct colors to the
edges incident at u1 and u2, then it is not possible to
use one new color to any edges in Cn ∨K2. Therefore,
to maximize the number of colors the edges incident at
u1 and u2 must be colored with the same color, say 1.
Again if we color the colorless edges in Cn ∨K2 using

two more colors we get three successive edges with three
distinct colors, a contradiction to the definition. Hence
ψ
′
3s(Cn∨K2) = 2.

It is an open problem to charaterize graphs for which
ψ
′
3s(G) = 2. We provide one more class of graphs for

which ψ
′
3s(G) = 2

Proposition 5.2. The 3-successive c-edge coloring num-
ber of join of the path graph Pn, 2 ≤ n ≤ 4 with K2,
ψ
′
3s(Pn∨K2) = 2.

Proof. Let u1 and u2 be the vertices of the graph K2 in
Pn∨K2 and let v1,v2, . . . ,vn be the vertices of the cycle Pn
in Pn ∨K2. If we assign two distinct colors to the edges
incident at u1 and u2 then it is not possible to use one new
color to colr any colorless edges in Pn ∨K2. Therefore,
inorder to maximize the number of colors, the edges inci-
dent at u1 and u2 must be colored with the same color, say
1. Again if we color the colorless edges in Cn∨K2 using
two more colors we get three successive edges with three
distinct colors, a contradiction to the definition. Hence
ψ
′
3s(Pn∨K2) = 2.

6. 3-Successsice C-edge Achromatic
Sum

Definition 6.1. The 3-successive c-edge achromatic sum
∑3sa is the maximum sum among all the 3-successive c-
edge coloring of G with maximum colors.

Definition 6.2. The 3-successive c-edge achromatic poly-
nomial is the number of different ways of 3-successive
c-edge coloring of a graph G with λ colors.

For example, the path of length 3 the 3-successive
c-edge achromatic sum is 5. The 3-successive c-edge
achromatic polynomial is 3.

Proposition 6.3. For the complete graph Kn of order n≥
2, the 3-successive c- edge achromatic sum is n2−n−2.

Proof. Let G be the complete graph on n vertices. From
the observations, we have ψ

′
3s(G) = 2. Color the edges

of G in such a way that just an edge receives the color
1 and all the other edges receives the color 2. Then the
3-successive c-edge achromatic sum is consequently n2−
n−2.

Proposition 6.4. Let Kn
m denote the pineapple graph.

Then the 3-successive c-edge achromatic sum

∑
3sa

(Kn
m) =

n2 +n+(m2−m)(n+1)
2

.
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Proof. We have discussed that the pineapple graph can
be obtained by concatenating a star at any vertex of the
complete graph Km. We have mentioned the 3-successive
c-edge coloring of pineapple graph earlier. But, to obtain
the maximum 3-successive c-edge achromatic sum, we
color the complete graph using the n+1th color. We know
the Km has m(m−1)

2 edges. So, coloring all the edges of the
complete graph using n+1th color gives the achromatic
sum of the complete graph Km in Kn

m to be m(m−1)(n+1)
2 .

And color the edges in the star K1,n with the remaining n
colors. The sum of the n colors in the star would add up to
n(n+1)

2 . So, the achromatic sum of Kn
m = n2+n+(m2−m)(n+1)

2 .

Proposition 6.5. Let Fn denote the friendship graph on
2n+1 vertices. Then, the 3-successive c-edge achromatic
sum ∑3sa Fn =

5n2+5n
2 .

Proof. The coloring of the friendship graph is mentioned
above. Our objective is to maximize the achromatic sum.
So, we color all the edges incident to the central vertex,
say u, using the n+1th color. There would be 2n edges
incident to the central vertex u. So that would sum up to
2n(n+1). Each edge which forms the base of the triangle
is given a different color and hence it would add up to
n(n+1)

2 . So adding both and condensing we get 5n2+5n
2 .

7. Python Programes to Compute
3-Successive c-edge Achromatic Sum

This section deals with some python programs to cal-
culate the 3-successive c-edge achromatic sum of some
standard graphs such as Cycles, Complete graphs and
Pineapple graphs. Most of the modules used here are
takes from the text books Doing maths with Python Amit
Saha (see [8]) and Graph Theory Using python .
Program 7.1. Python Program to calculate the 3-
successive c-edge achromatic sum of cycles with vertices
more than six.

import networkx as gp
import matplotlib.pyplot as mplot
def even_v():

evensum = (m**2 + 2*m)/4
print(’3 S C- achromatic sum =
{0}’.format(evensum))
G = gp.cycle_graph(m)
gp.draw_circular(G)
mplot.show()

def odd_v():
oddsum =( m**2 + 2*m -3)/4
print(’3 S C- achromatic sum =
{0}’.format(oddsum))
G1 = gp.cycle_graph(m)
gp.draw_circular(G1)
mplot.show()

if __name__ == ’__main__’:
while True:

m = int(input(’Number of vertices
in the cycle C_n: ’))
if (m % 2) == 0:

even_v()
else:

odd_v()
answer = input(’Do you want to exit?
(y) for yes ’)
if answer == ’y’:

break

Output: Number of vertices in the cycle Cn: 20
3 S C- chromatic sum = 110.0

Do you want to exit? (y) for yes y
Program 7.2. Python Program to find the 3-successive
c-edge achromatic sum of Pineapple graphs with atleast
10 vertices.

import networkx as gp
import matplotlib.pyplot as mplot
def pineapple():

sum = (n*n+n+(m*m-m)*(n+1))/2
print(’3 S C- achromatic sum of this
pineapple graph = {0}’.format(sum))
a = gp.star_graph(n)
b = gp.complete_graph(m)
a= gp.relabel_nodes(a, { n: str(n)
if n==0 else ’a-’+str(n) for n in
a.nodes })
b= gp.relabel_nodes(b, { n: str(n)
if n==0 else ’b-’+str(n) for n in
b.nodes })
c = gp.compose(a,b)
gp.draw(c)
mplot.show()

if __name__ == ’__main__’:

while True:
m = int(input(’Number of
vertices in the complete graph
K_m: ’))
n = int(input(’Number of
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vertices in the star graph K1n:
’))
pineapple()
answer = input(’Do you want to
exit? (y) for yes ’)
if answer == ’y’:

break

Output:Number of vertices in the complete graph Km: 10
Number of vertices in the star graph K1n: 10
3 S C- achromatic sum of this pineapple graph = 550.0

Do you want to exit? (y) for yes y
Program 7.3. Python program to calculate the 3-
successive c-edge achromatic sum of complete graphs.

import networkx as gp
import matplotlib.pyplot as mplot
def vertices_v():

evensum = m**2-m-1
print(’3 S C- Achromatic sum =
{0}’.format(evensum))
G = gp.complete_graph(m)
gp.draw_circular(G)
mplot.show()

if __name__ == ’__main__’:

while True:
m = int(input(’Number of vertices in
the complete graph K_n: ’))
vertices_v()
answer = input(’Do you want to exit?
(y) for yes ’)
if answer == ’y’:

break

Output:Number of vertices in the complete graph Kn: 12
3 S C- Achromatic sum = 131

Do you want to exit? (y) for yes y

8. Conclusion and Open Problems
In this paper, we initiated the study of 3-successive

c-edge Colorings of graphs. We found exact values of ψ
′
3s

for several classes of graphs. In section 3, we determined
the 3-successive c-edge colorings of product graphs. It
is an open problem to characterize the connected graphs
for which ψ

′
3s(G) = 2. In section 4, we introduced the

concept of 3-successive c-edge achromatic sum and found
the 3-successive c-edge achromatic sum of certain classes
of graphs. Section 5, deals with certain python programes
to compute 3-successive c-edge achromatic sum of cy-
cles, complete graphs and Pineapple graphs. It is again
open to find out general formulas for 3-successive c-edge
achromatic sum of product graphs such as Cartesian, Lex-
icographic etc.
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