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Abstract
The concept of Lucky k-polynomials was recently introduced for null and complete split graphs. This paper
extends on the introductory work and presents Lucky χ-polynomials (k = χ(G)) for graphs of order 5. The
methodical work done for graphs of order 5 serves mainly to set out the fundamental method to be used for all
other classes of graphs. Finally, further problems for research related to this concept are presented.
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1. Introduction
For general notation and concepts in graphs see [1,2,7].

Unless stated otherwise, all graphs will be finite and simple
graphs. The set of vertices and the set of edges of a graph
G are denoted by, V (G) and E(G) respectively. The number
of vertices is called the order of G say, n and the number of
edges is called the size of G denoted by, ε(G). If G has order
n ≥ 1 and has no edges (ε(G) = 0) then G is called a null
graph denoted by, Nn.

For a set of distinct colours C = {c1,c2,c3, . . . ,c`} a ver-
tex colouring of a graph G is an assignment ϕ : V (G) 7→ C .
A vertex colouring is said to be a proper vertex colouring of

a graph G if no two distinct adjacent vertices have the same
colour. The cardinality of a minimum set of distinct colours
in a proper vertex colouring of G is called the chromatic
number of G and is denoted χ(G). We call such a colouring
a χ-colouring or a chromatic colouring of G. A chromatic
colouring of G is denoted by ϕχ(G). Generally a graph G
of order n is k-colourable for χ(G)≤ k ≤ n. The number of
times a colour ci is allocated to vertices of a graph G is de-
noted by θG(ci) or if the context is clear simply, θ(ci).

Generally the set, c(V (G))⊆ C . A set {ci ∈ C : c(v) = ci
for at least one v ∈ V (G)} is called a colour class of the
colouring of G. If C is the chromatic set it can be agreed that
c(G) means set c(V (G)) hence, c(G)⇒ C and |c(G)|= |C |.
For the set of vertices X ⊆ V (G), the subgraph induced by
X is denoted by, 〈X〉. The colouring of 〈X〉 permitted by
ϕ : V (G) 7→ C is denoted by, c(〈X〉).

In this paper, Section 2 deals with the introduction to
Lucky χ-polynomials (k = χ(G)). Section 3 presents Lucky
χ-polynomials of all graphs of order 5. Section 4 concludes
the paper and presents problems for further research.

2. Lucky χ-Polynomials

In a proper colouring of G all edges are good i.e. uv⇔
c(u) 6= c(v). For any proper colouring ϕ(G) of a graph G
the addition of all good edges, if any, is called the chromatic
completion of G in respect of ϕ(G). The additional edges are
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called chromatic completion edges. The set of such chromatic
completion edges is denoted by, Eϕ(G). The resultant graph
Gϕ is called a chromatic completion graph of G. See [3].

The chromatic completion number of a graph G denoted
by, ζ (G) is the maximum number of good edges that can
be added to G over all chromatic colourings (χ-colourings).
Hence, ζ (G) = max{|Eχ(G)| : over all ϕχ(G)}.

A χ-colouring which yields ζ (G) is called a Lucky χ-
colouring or simply, a Lucky colouring1 and is denoted by,
ϕL (G). The resultant graph Gζ is called a minimal chromatic
completion graph of G. It is trivially true that G ⊆ Gζ . Fur-
thermore, the graph induced by the set of completion edges,
〈Eχ〉 is a subgraph of the complement graph, G. See [3] for an
introduction to chromatic completion of a graph. Also see [4]
for the notion of stability in respect of chromatic completion.

In an improper colouring an edge uv for which, c(u)= c(v)
is called a bad edge. See [6] for an introduction to defect
colourings of graphs. It is observed that the number of edges
of G which are omitted from Eχ is the minimum number of
bad edges in a bad chromatic completion of a graph G.

In [5] the introduction to Lucky k-polynomial for null
graphs was presented. We recall the next definition, Theorem
2.1 and Lemma 2.1 from [3].

Definition 2.1. [3] For two positive integers 2≤ `≤ n the di-
vision, n

` = b
n
` c+r, with r some positive integer and ` > r≥ 0.

Hence, n = bn
`
c+ bn

`
c+ · · ·+ bn

`
c︸ ︷︷ ︸

(`−r)−terms

+dn
`
e+ dn

`
e+ · · ·+ dn

`
e︸ ︷︷ ︸

(r≥0)−terms

.
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(bn
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,dn
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) is called a completion

`-partition of n.

To ease the formulation of the next result let, ti = b n
` c, i =

1,2,3, . . . ,(`− r) and t ′j = d n
` e, j = 1,2,3, . . . ,r. Call, L =

`−r−1
∑

i=1

`−r
∏

k=i+1
titk +

`−r
∑

i=1

r
∏
j=1

tit ′j +
r−1
∑
j=1

r
∏

k= j+1
t ′jt
′
k, the `-completion

sum-product of n.

Theorem 2.1. (Lucky′s T heorem)2[3] For a positive integer
n≥ 2 and 2≤ p≤ n let integers,
1≤ a1,a2,a3, . . . ,ap−r,a′1,a

′
2,a
′
3, . . . ,a

′
r ≤ n−1 be such that

n =
p−r
∑

i=1
ai +

r
∑
j=1

a′j then, the `-completion sum-product

1Note that for many graphs a Lucky colouring is equivalent to an equitable
χ-colouring (or k-colouring). Since it is not generally the case the alias
is meant to associate the paper with Lucky’s Theorem and the notion of
chromatic completion in [3].

2Dedicated to late Lucky Mahlalela who was a disabled, freelance traffic
pointsman in the City of Tshwane. Sadly he was brutally murdered.

L =max{
p−r−1

∑
i=1

p−r
∏

k=i+1
aiak+

p−r
∑

i=1

r
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j=1
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r
∏

k= j+1
a′ja
′
k} over

all possible, n =
p−r
∑

i=1
ai +

r
∑
j=1

a′j.

From Theorem 2.1 the next lemma followed which pre-
scribes a particular colouring convention.

Lemma 2.1. [3] If a subset of m vertices say, X ⊆V (G) can
be chromatically coloured by t distinct colours then allocate
colours as follows:

1. For t vertex subsets each of cardinality s = bm
t c allocate

a distinct colour followed by:

2. Colour one additional vertex (from the r ≥ 0 which are
uncoloured), each in a distinct colour,

if the graph structure permits such colour allocation. This
chromatic colouring permits the maximum number of chro-
matic completion edges between the vertices in X amongst all
possible chromatic colourings of X .

It is known from [3] that for a graph which does not
permit a colour allocation as prescribed in Lemma 2.1, an
optimal near-completion `-partition of the vertex set exists
which yields the maximum chromatic completion edges. Note
that the colouring in accordance with Lemma 2.1 is essentially
a special case of an optimal near-completion `-partition of the
vertex set V (G) in that, the vertex partion yielding the colour
clusters complies with Theorem 2.1. If ϕ(G) assigns k colours
in accordance with an optimal near-completion k-partition of
the vertex set (inclusive of Lemma 2.1) the colouring is called
a Lucky k-colouring. The next result follows immediately.

Theorem 2.2. (a) If ϕ(G) assigned k colours in accordance
with an optimal near-completion k-partition of the vertex set
(inclusive of Lemma 2.1) then the resultant graph Gϕ has
χ(Gϕ) = k.
(b) Gϕ is a super graph (order n) of G such that, ε(Gϕ) =
max{ε(H) : over all super graphs H (order n) of G such that,
χ(H) = k}.

Proof. (a) Assume it is possible to replace any colour cluster
with the colour of another cluster in Gϕ to obtain a proper
(k− 1)-colouring, then at least one bad edge arises which
is a contradiction. Hence, since the number of chromatic
completion edges is a maximum over all possible proper k-
colourings the contradiction implies that Gϕ has χ(Gϕ) = k.
(b) A direct consequence of Definition 2.1, Lemma 2.1 or
an optimal near-completion k-partition read together with the
definition of ζ (G).

Henceforth, a chromatic colouring (k = χ(G)) in accor-
dance with either Lemma 2.1 or an optimal near-completion
χ-partition will be called a Lucky χ-colouring or simply a
Lucky colouring denoted by, ϕL (G).
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Also, for a set of colours C , |C |= λ ≥ χ(G)≥ 2 a graph
G of order n can always be coloured properly in PG(λ ,n)
distinct ways. The polynomial PG(λ ,n) is called the chro-
matic polynomial of G.

From [5] it is known that for χ(G) ≤ n ≤ λ colours the
number of distinct proper k-colourings, χ(G)≤ k ≤ n in ac-
cordance to either, Lemma 2.1 or an optimal near-completion
k-partition is determined by a polynomial, called the Lucky
k-polynomial, LG(λ ,k).

Let the product be abbreviated to λ (n) = λ (λ − 1)(λ −
2) · · ·(λ −n+1). Hence, if λ = n then, λ (n) = λ (λ ) = λ !.

Theorem 2.3. Any 2-colourable graph G has LG(λ ,χ) =
λ (λ −1).

Proof. Since G is connected by assumption and χ(G) = 2,
it implies that G is 2-chromatic. Therefore, any optimal
near-completion 2-partition of V (G) say, {X1,X2} is unique.
Hence, the result.

In respect of the independence number, α(G) the next
result follows.

Theorem 2.4. For any graph G, α(G) ≥ max{θ(ci) : i =
1,2,3, . . . ,χ(G)overallLuckyχ− colourings} ≥ max{θ(c j) :
j = 1,2,3, . . . , `overallLucky`− colourings}.

Proof. It follows easily that for χ(G)≤ k1 ≤ k2 ≤ λ and the
optimal near-completion partition (by Lucky’s theorem or
otherwise), corresponding to a k1- and a k2-colouring yields
vertex partitions say, {X1,X2,X3, . . . ,Xk1} and {Y1,Y2,Y3, . . . ,
Yk2} such that,
max{|Xi| : i = 1,2,3, . . . ,k1} ≥ max{|Yj| : j = 1,2,3, . . . ,k2}.
Therefore, any such χ-colouring yields a colour cluster which
corresponds to an absolute maximum independent set of G
permitted by a proper colouring. Therefore the result.

In [5] a complete split graph was defined as a split graph
such that each vertex in the independent set is adjacent to all
the vertices of the clique (the clique is a smallest clique which
permits a maximum independent set). Note that a complete
graph Kn is also a complete split graph i.e. any subset of
n−1 vertices induces a smallest clique and the corresponding
1-element subset is a maximum independent set.

Theorem 2.5. If G is a complete split graph then, α(G) =
max{θ(ci) : i= 1,2,3, . . . ,χ(G) over all Lucky χ-colourings}.

Proof. If G is a complete split graph the result follows by
similar reasoning found in the proof of Theorem 2.5 read
together with Lemma 3.2 in [5].

3. Lucky χ-Polynomials of Graphs of
Order 5

Thus far connected graphs were considered. Now the re-
quirement is relaxed and up to isomorphism, all 34 graphs of

order 5 will be considered. Following from [5] we have that
for G = N5 or K5,LN5(λ ,1) = λ and LK5(λ ,5) = λ (λ −
1)(λ −2)(λ −3)(λ −4) for χ(G)≤ λ .

The path graph P1 ∼= K1. A path graph (simply, path) of
order n ≥ 2 has vertices which are consecutively labeled vi,
i = 1,2,3, . . . ,n with the edge set {vivi+1 : 1 ≤ i ≤ n+ 1}.
For path P1 it follows easily that LP1(λ ,χ) = LP1(λ ,1) = λ .
For 2-colourable graphs (therefore for paths of order n≥ 2)
it follows from Theorem 2.4 that, LPi(λ ,χ) = LPi(λ ,2) =
λ (λ −1), i≥ 2.

Theorem 2.3 also provides the result for the star S1,4, the
4-pan (or banner) and a fork (or chair).

3.1 Bell partitions
We recursively obtain the bell partitions for the set V (G) =
{v1,v2,v3,v4,v5} as follows:
For the set {v1} we obtain the Bell partition, {{v1}}.
For the set {v1,v2} we obtain the Bell partitions, {{v1,v2}},
{{v1},{v2}}.
For the set {v1,v2,v3} we obtain the Bell partitions,

{{v1,v2,v3}}, {{v1,v2},{v3}}, {{v1},{v2},{v3}},
{{v1,v3},{v2}}, {{v1},{v2,v3}}

For the set {v1,v2,v3,v4} we obtain the Bell partitions,
{{v1,v2,v3,v4}}, {{v1,v2,v3},{v4}}, {{v1,v2},{v3},{v4}},
{{v1,v2,v4},{v3}}, {{v1,v2},{v3,v4}}, {{v1},{v2},{v3},{v4}},
{{v1,v4},{v2},{v3}}, {{v1},{v2,v4},{v3}}, {{v1},{v2},{v3,v4}},
{{v1,v3},{v2},{v4}}, {{v1,v3,v4},{v2}}, {{v1,v3},{v2,v4}},
{{v1},{v2,v3},{v4}}, {{v1,v4},{v2,v3}}, {{v1},{v2,v3,v4}}.

For the set {v1,v2,v3,v4,v5} we obtain the Bell partitions,

{{v1,v2,v3,v4,v5}}, {{v1,v2,v3,v4},{v5}},
{{v1,v2,v3,v5},{v4}}, {{v1,v2,v3},{v4,v5}},
{{v1,v2,v3},{v4},{v5}}, {{v1,v2,v5},{v3},{v4}},
{{v1,v2},{v3,v5},{v4}}, {{v1,v2},{v3},{v4,v5}},
{{v1,v2},{v3},{v4},{v5}}, {{v1,v2,v4,v5},{v3}},
{{v1,v2,v4},{v3,v5}}, {{v1,v2,v4},{v3},{v5}},
{{v1,v2,v5},{v3,v4}}, {{v1,v2},{v3,v4,v5}},
{{v1,v2},{v3,v4},{v5}}, {{v1,v5},{v2},{v3},{v4}},
{{v1},{v2,v5},{v3},{v4}}, {{v1},{v2},{v3,v5},{v4}},
{{v1},{v2},{v3},{v4,v5}}, {{v1},{v2},{v3},{v4},{v5}},
{{v1,v4,v5},{v2},{v3}}, {{v1,v4},{v2,v5},{v3}},
{{v1,v4},{v2},{v3,v5}}, {{v1,v4},{v2},{v3},{v5}},
{{v1,v5},{v2,v4},{v3}}, {{v1},{v2,v4,v5},{v3}},
{{v1},{v2,v4},{v3,v5}}, {{v1},{v2,v4},{v3},{v5}},
{{v1,v5},{v2},{v3,v4}}, {{v1},{v2,v5},{v3,v4}},
{{v1},{v2},{v3,v4,v5}}, {{v1},{v2},{v3,v4},{v5}},
{{v1,v3,v5},{v2},{v4}}, {{v1,v3},{v2,v5},{v4}},
{{v1,v3},{v2},{v4,v5}}, {{v1,v3},{v2},{v4},{v5}},
{{v1,v3,v4,v5},{v2}}, {{v1,v3,v4},{v2,v5}},
{{v1,v3,v4},{v2},{v5}}, {{v1,v3,v5},{v2,v4}},
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{{v1,v3},{v2,v4,v5}}, {{v1,v3},{v2,v4},{v5}},
{{v1,v5},{v2,v3},{v4}}, {{v1},{v2,v3,v5},{v4}},
{{v1},{v2,v3},{v4,v5}}, {{v1},{v2,v3},{v4},{v5}},
{{v1,v4,v5},{v2,v3}}, {{v1,v4},{v2,v3,v5}},
{{v1,v4},{v2,v3},{v5}}, {{v1,v5},{v2,v3,v4}},
{{v1},{v2,v3,v4,v5}}, {{v1},{v2,v3,v4},{v5}}.

3.2 Category 1: χ(G) = 2
If adjacency within a graph permits then consider partitions
of the form, {{3-element},{2-element}}. Hence select,
{{v1,v2,v3},{v4,v5}}, {{v1,v2,v4},{v3,v5}},
{{v1,v2,v5},{v3,v4}}, {{v1,v2},{v3,v4,v5}},
{{v1,v3,v4},{v2,v5}}, {{v1,v3,v5},{v2,v4}},
{{v1,v3},{v2,v4,v5}}, {{v1,v4,v5},{v2,v3}},
{{v1,v4},{v2,v3,v5}}, {{v1,v5},{v2,v3,v4}}.

Without loss of generality consider the graph G1 = P2∪
3K1 and assume P2 is on vertices v1,v2.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3,v4},{v2,v5}}, {{v1,v3,v5},{v2,v4}},
{{v1,v3},{v2,v4,v5}}, {{v1,v4,v5},{v2,v3}},
{{v1,v4},
{v2,v3,v5}}, {{v1,v5},{v2,v3,v4}}.
Therefore, LG1(λ ,χ) = LG1(λ ,2) = 6λ (λ −1).

Without loss of generality consider the graph G2 = P3∪
2K1 and assume P3 is on vertices v1,v2,v3.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3,v4},{v2,v5}}, {{v1,v3,v5},{v2,v4}},
{{v1,v3},{v2,v4,v5}}.
Therefore, LG2(λ ,χ) = LG2(λ ,2) = 3λ (λ −1).

Without loss of generality consider the graph G3 = 2P2∪
K1 and assume first P2 is on vertices v1,v2 and second P2 is
on vertices v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3,v5},{v2,v4}}, {{v1,v3},{v2,v4,v5}},
{{v1,v4,v5},{v2,v3}}, {{v1,v4},{v2,v3,v5}}.
Therefore, LG3(λ ,χ) = LG3(λ ,2) = 4λ (λ −1).

Without loss of generality consider the graph G4 = S1,3∪
K1 and assume that the star has central vertex v1 with pendant
vertices v2,v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence

select,
{{v1,v5},{v2,v3,v4}}.
Therefore, LG4(λ ,χ) = LG4(λ ,2) = λ (λ −1).

Without loss of generality consider the graph G5 = P3∪P2
and assume that P3 has vertices v1,v2,v3.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3,v4},{v2,v5}}, {{v1,v3,v5},{v2,v4}}.
Therefore, LG5(λ ,χ) = LG5(λ ,2) = 2λ (λ −1).

Without loss of generality consider the graph G6 =P4∪K1
and assume that P4 has vertices v1,v2,v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3,v5},{v2,v4}}, {{v1,v3},{v2,v4,v5}}.
Therefore, LG6(λ ,χ) = LG6(λ ,2) = 2λ (λ −1).

Without loss of generality consider the graph G7 =C4∪K1
and assume that C4 has vertices v1,v2,v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3,v5},{v2,v4}}, {{v1,v3},{v2,v4,v5}}.
Therefore, LG7(λ ,χ) = LG7(λ ,2) = 2λ (λ −1).

Without loss of generality consider the cycle C4 on ver-
tices v1,v2,v3,v4. Obtain G8 by adding vertex v5 with the
edges v2v5, v4v5.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1,v3,v5},{v2,v4}}.
Therefore, LG8(λ ,χ) = LG8(λ ,3) = λ (λ −1).

Theorem 3.1. All graphs G of order 5 with χ(G) = 2 except
S1,4, have equitable chromatic number equal to chromatic
number.

Proof. The result is a direct consequence of the analysis
above.

3.3 Category 2: χ(G) = 3
If adjacency within a graph permits only consider partitions of
the form, {{2-element},{2-element},{1-element}}. Hence
select,
{{v1,v2},{v3,v5},{v4}}, {{v1,v2},{v3},{v4,v5}},
{{v1,v2},{v3,v4},{v5}}, {{v1,v4},{v2,v5},{v3}},
{{v1,v4},{v2},{v3,v5}}, {{v1,v5},{v2,v4},{v3}},
{{v1},{v2,v4},{v3,v5}}, {{v1,v5},{v2},{v3,v4}},
{{v1},{v2,v5},{v3,v4}}, {{v1,v3},{v2,v5},{v4}},
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{{v1,v3},{v2},{v4,v5}}, {{v1,v3},{v2,v4},{v5}},
{{v1,v5},{v2,v3},{v4}}, {{v1},{v2,v3},{v4,v5}},
{{v1,v4},{v2,v3},{v5}}.

The cycle graph C1 ∼= K1 and C2 ∼= P2. A cycle graph
(simply, cycle) or order n≥ 3 has vertices which are consec-
utively labeled vi, i = 1,2,3, . . . ,n with the edge set {vivi+1 :
1≤ i≤ n−1}∪{vnv1}. For cycles C1, C2, C3 it follows easily
that, LC1(λ ,χ) = LC1(λ ,1) = λ , LC2(λ ,χ) = LC2(λ ,2) =
λ (λ − 1) and LC3(λ ,χ) = LC3(λ ,3) = λ (λ − 1)(λ − 2).
Since all even cycles are connected 2-colourable graphs, The-
orem 2.4 provides the result.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v4},{v2,v5},{v3}}, {{v1,v4},{v2},{v3,v5}},
{{v1},{v2,v4},{v3,v5}}, {{v1,v3},{v2,v5},{v4}},
{{v1,v3},{v2,v4},{v5}}.
Therefore, LC5(λ ,χ) = LC5(λ ,3) = 5λ (λ −1)(λ −2).

Without loss of generality consider the graph G9 =C4 +
K1 and assume that C4 has vertices v1,v2,v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1,v3},{v2,v4},{v5}}.
Therefore, LG9(λ ,χ) = LG9(λ ,3) = λ (λ −1)(λ −2).

Without loss of generality consider the graph G10 =C3∪
2K1 and assume that C3 has vertices v1,v2,v3.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v4},{v2,v5},{v3}}, {{v1,v4},{v2},{v3,v5}},
{{v1,v5},{v2,v4},{v3}}, {{v1},{v2,v4},{v3,v5}},
{{v1,v5},{v2},{v3,v4}}, {{v1},{v2,v5},{v3,v4}}.
Therefore, LG10(λ ,χ) = LG10(λ ,3) = 6λ (λ −1)(λ −2).

Without loss of generality consider the graph G11 = (C4 +
K1)− v1v5 and assume that C4 has vertices v1,v2,v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1,v5},{v2,v4},{v3}}, {{v1,v3},{v2,v4},{v5}}.
Therefore, LG11(λ ,χ) = LG11(λ ,3) = 2λ (λ −1)(λ −2).

Without loss of generality consider the graph G12 = P4 +
K1 (a 3-fan) and assume that P4 has vertices v1,v2,v3,v4.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1,v3},{v2,v4},{v5}}.
Therefore, LG12(λ ,χ) = LG12(λ ,3) = λ (λ −1)(λ −2).

Without loss of generality consider the cycle C3 on ver-
tices v1,v2,v3 and form grah H by adding a pendant vertex v4
to v1. Now consider the graph G14 = H ∪ v5. Only consider
partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v5},{v2,v4},{v3}}, {{v1},{v2,v4},{v3,v5}},
{{v1,v5},{v2},{v3,v4}}, {{v1},{v2,v5},{v3,v4}}.
Therefore, LG14(λ ,χ) = LG14(λ ,3) = 4λ (λ −1)(λ −2).

Without loss of generality consider the wheel W1,4 with
central vertex v1. Let G15 =W1,4−{v2v5,v3v4} (or butterfly
graph). Only consider partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1},{v2,v4},{v3,v5}}, {{v1},{v2,v5},{v3,v4}}.
Therefore, LG15(λ ,χ) = LG15(λ ,3) = 2λ (λ −1)(λ −2).

Without loss of generality consider the complete graph K4
on vertices v1,v2,v3,v4 and form grah H by adding a pendant
vertex v5 to v1. Now consider the graph G16 = H−v1v3. Only
consider partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3},{v2,v5},{v4}}, {{v1,v3},{v2},{v4,v5}}.
Therefore, LG16(λ ,χ) = LG16(λ ,3) = 2λ (λ −1)(λ −2).

Without loss of generality consider the complete graph K4
on vertices v1,v2,v3,v4 and form grah H by adding a pendant
vertex v5 to v1. Now consider the graph G17 = H−v2v4. Only
consider partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1},{v2,v4},{v3,v5}}.
Therefore, LG17(λ ,χ) = LG17(λ ,3) = λ (λ −1)(λ −2).

Without loss of generality consider the complete graph
G18 =C3∪P2 with C3 on vertices on vertices v1,v2,v3. Only
consider partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
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select,
{{v1,v4},{v2,v5},{v3}}, {{v1,v4},{v2},{v3,v5}},
{{v1,v5},{v2,v4},{v3}}, {{v1},{v2,v4},{v3,v5}},
{{v1,v5},{v2},{v3,v4}}, {{v1},{v2,v5},{v3,v4}}.
Therefore, LG18(λ ,χ) = LG18(λ ,3) = 5λ (λ −1)(λ −2).

Without loss of generality consider the cycle C3 on ver-
tices v1,v2,v3. Obtain G19 by adding pendant vertex v4 to v1
and pendant vertex v5 to v2. Only consider partitions of the
form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v5},{v2,v4},{v3}}, {{v1},{v2,v4},{v3,v5}},
{{v1,v5},{v2},{v3,v4}}.
Therefore, LG19(λ ,χ) = LG19(λ ,3) = 3λ (λ −1)(λ −2).

Without loss of generality consider the cycle C4 on ver-
tices v1,v2,v3,v4. Obtain G20 by adding vertex v5 with the
edges v1v5, v2v5 (or house). Only consider partitions of the
form,
{{2-element},{2-element},
{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v3},{v2,v4},{v5}}, {{v1,v3},{v4,v5},{v2}},
{{v1},{v2,v4},{v3,v5}}.
Therefore, LG20(λ ,χ) = LG20(λ ,3) = 3λ (λ −1)(λ −2).

Without loss of generality consider the path P5 on vertices
v1,v2,v3,v4,v5. Obtain G21 by adding edge v3v5. Only con-
sider partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1,v4},{v2,v5},{v3}}, {{v1,v5},{v2,v4},{v3}},
{{v1,v3},{v2,v5},{v4}}, {{v1,v3},{v2,v4},{v5}}.
Therefore, LG21(λ ,χ) = LG21(λ ,3) = 4λ (λ −1)(λ −2).

Without loss of generality consider the complete graph
K4 on vertices v1,v2,v3,v4. Obtain H by deleting edge v1v3.
Obtain graph G22 = H ∪K1. Only consider partitions of the
form,
{{2-element},{2-element},
{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1,v3},{v2,v5},{v4}}, {{v1,v3},{v2},{v4.v5}}.

Therefore, LG22(λ ,χ) = LG22(λ ,3) = 2λ (λ −1)(λ −2).

Without loss of generality consider the cycle C3 on ver-
tices v1,v2,v3. Obtain G23 by adding two pendant vertices v4,
v5 to v1. Only consider partitions of the form,
{{2-element},{2-element},{1-element}} as above.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1},{v2,v4},{v3,v5}}, {{v1},{v2,v5},{v3,v4}}.
Therefore, LG23(λ ,χ) = LG23(λ ,3) = 2λ (λ −1)(λ −2).

Without loss of generality consider the graph G13 = K5−
{v1v3,v1v4,v3v4}. Only consider partitions of the form,
{{3-element},{1-element},{1-element}}.

Hence, select
{{v1,v2,v3},{v4},{v5}}, {{v1,v2,v5},{v3},{v4}},

{{v1,v2,v4},{v3},{v5}}, {{v1,v4,v5},{v2},{v3}},
{{v1},{v2,v4,v5},{v3}}, {{v1},{v2},{v3,v4,v5}},
{{v1,v3,v5},{v2},{v4}}, {{v1,v3,v4},{v2},{v5}},
{{v1},{v2,v3,v5},{v4}}, {{v1},{v2,v3,v4},{v5}}.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select, {{v1,v3,v4},{v2},{v5}}.
Therefore, LG13(λ ,χ) = LG13(λ ,3) = λ (λ −1)(λ −2).

Theorem 3.2. All graphs G of order 5 with χ(G) = 3 ex-
cept for G13, have equitable chromatic number equal to the
chromatic number.

Proof. The result is a direct consequence of the analysis
above.

3.4 Category 3: χ(G) = 4
If adjacency within a graph permits only consider partitions of
the form, {{2-element},{1-element},{1-element},
{1-element}}. Hence select,
{{v1,v2},{v3},{v4},{v5}}, {{v1,v5},{v2},{v3},{v4}},
{{v1},{v2,v5},{v3},{v4}}, {{v1},{v2},{v3,v5},{v4}},
{{v1},{v2},{v3},{v4,v5}}, {{v1,v4},{v2},{v3},{v5}},
{{v1},{v2,v4},{v3},{v5}}, {{v1},{v2},{v3,v4},{v5}},
{{v1,v3},{v2},{v4},{v5}}, {{v1},{v2,v3},{v4},{v5}}.

Without loss of generality consider the graph G24 = K5−
v1v2.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence,
{{v1,v2},{v3},{v4},{v5}}.
Therefore, LG24(λ ,χ) =LG24(λ ,4) = λ (λ −1)(λ −2)(λ −
3).

Without loss of generality consider the complete graph
K4 on vertices v1,v2,v3,v4. Obtain G25 by adding vertex v5
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together with the edges v1v5, v2v5.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence,
{{v1},{v2},{v3},{v4,v5}}, {{v1},{v2},{v4},{v3,v5}}.
Therefore, LG25(λ ,χ)=LG25(λ ,4)= 2λ (λ−1)(λ−2)(λ−
3).

Without loss of generality consider the graph G26 = K4∪
K1.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1},{v2},{v3},{v4,v5}}, {{v1},{v2},{v4},{v3,v5}},
{{v1},{v2,v5},{v3},{v4}}, {{v1,v5},{v2},{v3},{v4}}.
Therefore, LG26(λ ,χ)=LG26(λ ,4)= 4λ (λ−1)(λ−2)(λ−
3).

Without loss of generality consider the complete graph K4
on vertices v1,v2,v3,v4. Obtain G27 by adding pendant vertex
v5 to v1.

Now select permissible partitions i.e. those partitions for
which some subsets do not contain adjacent vertices. Hence
select,
{{v1},{v2},{v3},{v4,v5}}, {{v1},{v2},{v4},{v3,v5}},
{{v1},{v2,v5},{v3},{v4}}.
Therefore, LG27(λ ,χ)=LG27(λ ,4)= 3λ (λ−1)(λ−2)(λ−
3).

Theorem 3.3. All graphs G of order 5 with χ(G) = 4 have
equitable chromatic number equal to chromatic number.

Proof. The result is a direct consequence of the analysis
above.

4. Conclusion
Note that as observed in [5], the step before partitions

with adjacency conflict are eliminated, the number of opti-
mal near-completion `-partitions equals the corresponding
Stirling number of the second kind. Obviously with a Stir-
ling of the second kind partition generator the tedious step of
generating all corresponding Bell partitions can be eliminated.

Problem 1. If a Bell number or Stirling of the second
kind partition generator can be found utilise such tool to find
the Lucky k-polynomials for classical graph structures such
as cycles, sun graphs, Sn, n ≥ 3, wheel graphs, W1,n, n ≥ 3,
helm graphs, H1,n, n≥ 3 and so on for all permissible Lucky
k-colourings in respect of λ ≥ 2.
Problem 2. If possible characterize graphs for which the ver-
tex partitions have the form prescribed by Lucky’s theorem.

For the determination of Lucky k-polynomials it was con-
jectured that the deletion-contraction principle applies to
Lucky polynomials. That is:

LG(λ ,n) = LG−viv j(λ ,n)−LG\viv j(λ ,n−1), viv j ∈ E(G).

Fundamentally a graph G of order n > 0 is defined to be, an
ordered triple (V (G),E(G),ψG), with V (G) a non-empty set
of vertices, a set E(G) disjoint from V (G), of edges and an
incidence function ψG that associates with each edge of G
and unordered pair of, not necessarily distinct vertices of G.
Hence, any given graph G of order n > 0 can be reconstructed
from the null graph Nn by the addition of edges in accordance
to ψG.

For the determination of Lucky k-polynomials it was con-
jectured that the dual to the deletion-contraction principle,
i.e. the edge-addition-contraction principle applies to Lucky
polynomials. That is:

LG(λ ,n) = LG+viv j(λ ,n)+LG\viv j(λ ,n−1), viv j /∈ E(G).

Analysis of the Lucky χ-polynomials of all graphs of order
5 indicates conclusively that in general, both the conjectures
are invalid. However, a specialised conjecture may be proved
or disproved.

Conjecture. For the determination of Lucky k-polynomials
the deletion contraction principle or the edge addition con-
traction principle holds if and only if, χ(G) = χ(G− viv j) =
χ(G\viv j), or χ(G) = χ(G+ viv j) = χ(G\viv j).
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