# On a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci number 

Jenifer Arulmani ${ }^{1 *}$


#### Abstract

In this paper we defined a new subclass of bi-univalent functions related to shell-like curves connected with Fibonacci number using the Frasin differential operator. We find some coefficient bounds and solve the linear functional $\left|a_{3}-\mu a_{2}^{2}\right|$. Also we obtained various results proved by several authors as particular cases.


Keywords
Bi-Univalent, Shell-like, Fibonacci Number, Differential operator.
AMS Subject Classification
30C45.
${ }^{1}$ Department of Mathematics, Presidency College(Autonomous), Chennai-600005, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ jeniferarulmani06@gmail.com;
Article History: Received 12 February 2020; Accepted 29 May 2020 ©2020 MJM.

## Contents

1 Introduction 803
2 Coefficient estimate for the functions in the class $\alpha-$ $\operatorname{SLM}_{\sum}(n, m, \lambda, \tilde{p}(z))$ 805
3 Fekete-Szego Inequality for the function class $\alpha-$ $S L M_{\sum}(n, m, \lambda, \tilde{p}(z))$ ..... 806
References ..... 807

## 1. Introduction

We denote by $A$ the class of regular functions defined in the open unit disk $\Delta=\{z /|z|<1\}$ with the normalization conditions $f(0)=f^{\prime}(0)-1=0$ and the Taylor series expansion,

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

Consider $S$ to be the class of univalent functions in $A$. For any two analytic functions $f(z)$ and $g(z)$ in $\Delta$. We say that $f(z)$ is subordinate to $g(z)$ [9], (symbolically, $\mathrm{f} \prec \mathrm{g}$ ) if there exists a function $\phi(z)$ analytic in $\Delta$ satisfying $\phi(0)=0$ and $|\phi(z)|<1$ such that

$$
f(z)=g(\phi(z)),(|z|<1)
$$

By the Koebe-one quater theorem[4](Theorem.2.3 pg.31), we know that '"The range of every function of the class $S$ contains a disk $\{w:|w|<1 / 4\}$ ". Hence there exists inverse $f^{-1}$ for
every function $f \in S$, defined by

$$
\begin{gathered}
f^{-1}(f(z))=z,(z \in \Delta) ; \text { and } \\
f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f): r_{0}(f) \geq 1 / 4\right)
\end{gathered}
$$

Where the inverse of $f$ is given by,

$$
\begin{aligned}
f^{-1}(w)= & w-a_{2} w^{2}+\left(2 a_{2}^{2} w^{2}-a_{3}\right) w^{3} \\
& -\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \\
= & g(w)
\end{aligned}
$$

A function $f \in A$ is said to be bi-univalent if both $f$ and $f^{-1}$ (its inverse) are univalent in $\Delta$. We denote by $\sum$ the class of bi-univalent and analytic functions in $\Delta$ of the form (1.1). Using the binomial series,

$$
(1-\lambda)^{m}=\sum_{j=0}^{m}\binom{m}{j}(-1)^{j} \lambda^{j}
$$

$m \in \mathbb{N}=1,2, \ldots$ and $j \in \mathbb{N}_{0}=0,1,2, \ldots$
Frasin [5] defined the following differential operator for function $f \in A$,

$$
\begin{aligned}
D^{0} f(z) & =f(z) \\
D_{m, \lambda}^{1} f(z) & =(1-\lambda)^{m} f(z)+\left(1-(1-\lambda)^{m}\right) z f^{\prime}(z) \\
& =D_{m, \lambda} f(z),(\lambda>0 ; m \in \mathbb{N})
\end{aligned}
$$

In general,

$$
\begin{aligned}
D_{m, \lambda}^{n} & =D_{m, \lambda}\left(D_{m, \lambda}^{n-1} f(z)\right), n \in \mathbb{N}_{0} \\
& =z+\sum_{k=2}^{\infty}\left[1+(k-1) c_{j}^{m}(\lambda)\right]^{n} a_{k} z^{k}
\end{aligned}
$$

where, $c_{j}^{m}(\boldsymbol{\lambda})=\sum_{j=1}^{m}\binom{m}{j}(-1)^{j+1} \lambda^{j}$.

## Remarks:

1. For $m=1$, we get the Al-oboudi differential operator, $D_{1, \lambda}^{n}[1]$.
2. For $m=\lambda=1$, we get the Salagean differential operator, $D^{n}$ [11].

For $f \in A$ the class $S L$ of shell-like functions which is the subclass of the class $S^{*}$ of starlike functions was first introduced by Sokol[12] in 1999 as below,

Definition 1.1. [12] A function $f \in A$ having the series expansion (1.1) is said to be in the class SL of starlike shell-like functions if it satisfies the following conditions:

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

where $\tau=\frac{(1-\sqrt{5})}{(2)} \simeq-0.618$.
In the year 2011, Dziok et al.[2], introduced the class $K S L$ of convex functions related to a shell-like curves as follows:

Definition 1.2. [2] A function $f \in A$ of the form (1.1) belongs to the class KSL of convex shell-like functions if it satisfies the following condition:

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

where $\tau=\frac{(1-\sqrt{5})}{(2)} \simeq-0.618$.
Again Dziok et al. [3] in the year 2011, defined the following class $S L M_{\alpha}$ of $\alpha$-convex shell-like functions.

Definition 1.3. [3] A function $f \in A$ of the form (1.1) belongs to the class $S L M_{\alpha}$ of $\alpha$-convex shell-like functions if it satisfies the following condition:

$$
(1-\alpha)\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}+\alpha\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \prec \tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

where $\tau=\frac{(1-\sqrt{5})}{(2)} \simeq-0.618$.
We note that $S L M_{0} \equiv S L$ and $S L M_{1} \equiv K S L$. We consider $\tau=\frac{(1-\sqrt{5})}{(2)} \simeq-0.618$ and $\tilde{p}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}$ throughout this paper.
The function $\tilde{p}(z)$ does not belongs to the class $S$. Since $\tilde{p}(z)$ is univalent in the disc
$|z|<\tau^{2} \simeq 0.38$. We can observe the following from $\tilde{p}(z)$ [6]; $\tilde{p}(0)=\tilde{p}\left(\frac{-1}{2 \tau}\right)=1 ; \tilde{p}$ takes the unit circle to a curve described by $(10 x-\sqrt{5}) y^{2}=(\sqrt{5} x-1)^{2}$, which is translated and revolved trisectrix of Maclaurin. The curve $\tilde{p}\left(r e^{i t}\right)$ is a closed curve without any loops for $0<r \leq r_{0}=\tau^{2} \simeq 0.38$. For $r_{0}<r<1$, it has a loop, and for $r=1$ it has a vertical
asymptote. In the year 2016, Raina and Sokol [10] proved the following,

$$
\begin{aligned}
\tilde{p}(z) & =\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}} \\
& =1+\sum_{n=1}^{\infty}\left(u_{n-1}+u_{n+1}\right) \tau^{n} z^{n}
\end{aligned}
$$

where $u_{n}=\frac{(1-\tau)^{n}-\tau^{n}}{\sqrt{5}}$, such that

$$
\begin{equation*}
u_{n}=u_{n-2}+u_{n-1} \text { for } n=2,3, \ldots \tag{1.2}
\end{equation*}
$$

By simple calculation we can decompose all the higher powers $\tau^{n}$ as a linear combination of $\tau$ and 1 . The resulting recurrence relationships yield Fibonacci number $u_{n}$,

$$
\tau^{n}=u_{n} \tau+u_{n-1}
$$

Thus $\tilde{p}(z)$ is related to Fibonacci number. So we can rewrite $\tilde{p}(z)$ as ,

$$
\begin{equation*}
\tilde{p}(z)=1+\sum_{n=1}^{\infty} \tilde{p_{n}} \tau^{n} z^{n} \tag{1.3}
\end{equation*}
$$

where $\tilde{p_{n}}=\left(u_{n-1}+u_{n+1}\right)$. Now using (1.2) in (1.3) we have,

$$
\begin{equation*}
\tilde{p}(z)=1+\tau z+3 \tau^{2} z^{2}+4 \tau^{3} z^{3}+\ldots \tag{1.4}
\end{equation*}
$$

Motivated by the works of earlier authors we define a new subclass of bi-univalent functions related to shell-like curves connected to Fibonacci number using Frasin differential operator.

Definition 1.4. A function $f(z) \in \sum$ given by (1.1) is said to be in the class $\alpha-\operatorname{SLM}_{\Sigma}(n, m, \lambda, \tilde{p}(z))$ if the following conditions are satisfied,

$$
\begin{array}{r}
(1-\alpha) \frac{D_{m, \lambda}^{n+1} f(z)}{D_{m, \lambda}^{n} f(z)}+\alpha \frac{\left(D_{m, \lambda}^{n+1} f(z)\right)^{\prime}}{\left(D_{m, \lambda}^{n} f(z)\right)^{\prime}} \prec \tilde{p}(z)  \tag{1.5}\\
\quad\left(m \in \mathbb{N}, n \in \mathbb{N}_{0}, 0 \leq \alpha \leq 1, z \in \Delta\right)
\end{array}
$$

and

$$
\begin{gather*}
(1-\alpha) \frac{D_{m, \lambda}^{n+1} g(w)}{D_{m, \lambda}^{n} g(w)}+\alpha \frac{\left(D_{m, \lambda}^{n+1} g(w)\right)^{\prime}}{\left(D_{m, \lambda}^{n} g(w)\right)^{\prime}} \prec \tilde{p}(w)  \tag{1.6}\\
\left(m \in \mathbb{N}, n \in \mathbb{N}_{0}, 0 \leq \alpha \leq 1, w \in \Delta\right)
\end{gather*}
$$

## Remarks

1. $\alpha-\operatorname{SLM}_{\Sigma}(1, n, \lambda, \tilde{p}(z))=\operatorname{SLM}_{\alpha, \Sigma}^{\lambda}(n, \tilde{p}(z))$, the class of bi-univalent functions defined by Gurmeet singh et al. [7].
2. $\alpha-\operatorname{SLM}_{\Sigma}(1,0,1, \tilde{p}(z))=\operatorname{SLM}_{\alpha, \Sigma}(\tilde{p}(z))$, the class of bi-univalent functions defined by Guney et al. [6].
We consider $\mathbb{P}$ to be the class of Caratheodary functions. i.e., for $p(z) \in \mathbb{P}, \mathfrak{R}\{p(z)\}>0, p(z)$ is analytic in $\Delta$ and have the series expansion

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}, \quad z \in \Delta
$$

Lemma 1.5. If $p(z) \in \mathbb{P}$, then $\left|p_{n}\right| \leq 2$ for each $n=1,2, \ldots$

## 2. Coefficient estimate for the functions in the class $\alpha-\operatorname{SLM}_{\sum}(n, m, \lambda, \tilde{p}(z))$

Theorem 2.1. If $f(z)$ is in the class $\alpha-\operatorname{SLM}_{\sum}(n, m, \lambda, \tilde{p}(z))$ then,

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{\left(c_{j}^{m}(\lambda)[\tau \varsigma+\psi]\right)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau|\left[\psi-\tau(1+3 \alpha) c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}\right]}{2 \Psi[\tau \varsigma+\psi]}
$$

where
$\varsigma=2(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}-(1+3 \alpha)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}$,
$\psi=(1+\alpha)^{2} c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}(1-3 \tau)$ and
$\Psi=(1+2 \alpha)\left(c_{j}^{m}(\lambda)\right)^{2}\left(1+2 c_{j}^{m}(\lambda)\right)^{n}$.
Proof. Since $f \in \alpha-S L M_{\Sigma}(n, m, \lambda, \tilde{p}(z))$, from the definition 1.4, we have

$$
\begin{equation*}
(1-\alpha) \frac{D_{m, \lambda}^{n+1} f(z)}{D_{m, \lambda}^{n} f(z)}+\alpha \frac{\left(D_{m, \lambda}^{n+1} f(z)\right)^{\prime}}{\left(D_{m, \lambda}^{n} f(z)\right)^{\prime}}=\tilde{p}(r(z)) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{D_{m, \lambda}^{n+1} g(w)}{D_{m, \lambda}^{n} g(w)}+\alpha \frac{\left(D_{m, \lambda}^{n+1} g(w)\right)^{\prime}}{\left(D_{m, \lambda}^{n} g(w)\right)^{\prime}}=\tilde{p}(s(w)) \tag{2.2}
\end{equation*}
$$

where $r(z)$ and $s(w)$ are analytic functions in $\Delta$ with $r(0)=s(0)=0$ and $|r(z)|<1$ and $|s(w)|<1$.
Now define the function,

$$
h(z)=\frac{1+r(z)}{1-r(z)}=1+r_{1} z+r_{2} z^{2}+\ldots
$$

Then,

$$
\begin{equation*}
\tilde{p}(r(z))=1+\frac{r_{1}}{2} \tau z+\frac{1}{2}\left(r_{2}-\frac{r_{1}^{2}}{2}+\frac{3 r_{1}^{2}}{2} \tau\right) \tau z^{2}+\ldots \tag{2.3}
\end{equation*}
$$

Similarly we define the function,

$$
k(w)=\frac{1+s(z)}{1-s(z)}=1+s_{1} z+s_{2} z^{2}+\ldots
$$

Then,

$$
\begin{equation*}
\tilde{p}(s(w))=1+\frac{s_{1}}{2} \tau w+\frac{1}{2}\left(s_{2}-\frac{s_{1}^{2}}{2}+\frac{3 s_{1}^{2}}{2} \tau\right) \tau w^{2}+\ldots \tag{2.4}
\end{equation*}
$$

and by considering the LHS of (2.1), we have

$$
\begin{aligned}
& \quad(1-\alpha) \frac{D_{m, \lambda}^{n+1} f(z)}{D_{m, \lambda}^{n} f(z)}+\alpha \frac{\left(D_{m, \lambda}^{n+1} f(z)\right)^{\prime}}{\left(D_{m, \lambda}^{n} f(z)\right)^{\prime}} \\
& =1+(1+\alpha) c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{n} a_{2} z+\left[2(1+2 \alpha) c_{j}^{m}(\lambda)\right. \\
& \\
& \quad+\ldots
\end{aligned}
$$

and

$$
\begin{gathered}
(1-\alpha) \frac{D_{m, \lambda}^{n+1} g(w)}{D_{m, \lambda}^{n} g(w)}+\alpha \frac{\left(D_{m, \lambda}^{n+1} g(w)\right)^{\prime}}{\left(D_{m, \lambda}^{n} g(w)\right)^{\prime}} \\
=1-(1+\alpha) c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{n} a_{2} w+\left[2(1+2 \alpha) c_{j}^{m}(\lambda)\right. \\
\left(1+2 c_{j}^{m}(\lambda)\right)^{n}\left(2 a_{2}^{2}-a_{3}\right)-(1+3 \alpha) c_{j}^{m}(\lambda) \\
\left.\left(1+c_{j}^{m}(\lambda)\right)^{2 n} a_{2}^{2}\right] w^{2}+\ldots
\end{gathered}
$$

Using (2.3), (2.4), and the above two equations in (2.1) and (2.2) and equating the coefficients of $z, z^{2}, w$ and $w^{2}$ we have the following equations,

$$
\begin{align*}
& c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{n}(1+\alpha) a_{2}=\frac{r_{1}}{2} \tau  \tag{2.5}\\
& 2(1+2 \alpha) c_{j}^{m}(\lambda)\left(1+2 c_{j}^{m}(\lambda)\right)^{n} a_{3}-(1+3 \alpha) c_{j}^{m}(\lambda) \\
& \left(1+c_{j}^{m}(\lambda)\right)^{2 n} a_{2}^{2}=\left(r_{2}-\frac{r_{1}^{2}}{2}\right) \frac{\tau}{2}+\frac{3 r_{1}^{2}}{4} \tau^{2}  \tag{2.6}\\
& -c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{n}(1+\alpha) a_{2}=\frac{s_{1}}{2} \tau \tag{2.7}
\end{align*}
$$

$$
\begin{array}{r}
2(1+2 \alpha) c_{j}^{m}(\lambda)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}\left(2 a_{2}^{2}-a_{3}\right)-(1+3 \alpha) c_{j}^{m}(\lambda) \\
\left(1+c_{j}^{m}(\lambda)\right)^{2 n} a_{2}^{2}=\left(s_{2}-\frac{s_{1}^{2}}{2}\right) \frac{\tau}{2}+\frac{3 s_{1}^{2}}{4} \tau^{2} \tag{2.8}
\end{array}
$$

from (2.5) and (2.6),

$$
\begin{equation*}
r_{1}=-s_{1} \tag{2.9}
\end{equation*}
$$

also

$$
2\left[c_{j}^{m}(\lambda)\right]^{2}\left[1+c_{j}^{m}(\lambda)\right]^{2 n}(1+\alpha)^{2} a_{2}^{2}=\frac{1}{4}\left(r_{1}^{2}+s_{1}^{2}\right) \tau^{2}
$$

$$
\begin{equation*}
r_{1}^{2}+s_{1}^{2}=\frac{8\left[c_{j}^{m}(\lambda)\right]^{2}\left[1+c_{j}^{m}(\lambda)\right]^{2 n}(1+\alpha)^{2}}{\tau^{2}} \tag{2.10}
\end{equation*}
$$

Adding (2.6) and (2.8), we get

$$
\begin{gather*}
a_{2}^{2}\left[4 c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}-2 c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}\right. \\
(1+3 \alpha)]=\left(r_{2}+s_{2}\right) \frac{\tau}{2}-\frac{1}{4}\left(r_{1}^{2}+s_{1}^{2}\right) \tau+\frac{3}{4}\left(r_{1}^{2}+s_{1}^{2}\right) \tau^{2} . \tag{2.11}
\end{gather*}
$$

Using (2.10) in the above equation we get

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(r_{2}+s_{2}\right) \tau^{2}}{4\left(c_{j}^{m}(\lambda)[\tau \varsigma+\psi]\right)} \tag{2.12}
\end{equation*}
$$

where $\varsigma=2(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}-(1+3 \alpha)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}$ and $\psi=(1+\alpha)^{2} c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}(1-3 \tau)$.

By using Lemma.1.5 and triangular inequality we get the required inequality for $\left|a_{2}\right|$.
To estimate $\left|a_{3}\right|$ first we subtract (2.8) from (2.6) and then by using (2.9), we get

$$
\begin{equation*}
4 c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}\left(a_{3}-a_{2}^{2}\right)=\left(r_{2}-s_{2}\right) \frac{\tau}{2} . \tag{2.13}
\end{equation*}
$$

Now by using (2.12) in the above equation we get the coefficient bound for $\left|a_{3}\right|$.

For $m=1$ in theorem 2.1 we get the following corollary,
Corollary 2.2. If $f(z) \in S L M_{\alpha, \Sigma}^{\lambda}(n, \tilde{p}(z))$, then

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{\xi}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau|(1+\lambda)^{2 n}\left[\lambda^{2}(1+\alpha)^{2}(1-3 \tau)-\tau(1+3 \alpha) \lambda\right]}{2 \xi \lambda(1+2 \alpha)(1+2 \lambda)^{n}}
$$

where $\xi=\lambda\left[\tau\left\{2(1+2 \alpha)(1+2 \lambda)^{n}-(1+3 \alpha)(1+\lambda)^{2 n}\right\}+\right.$ $\left.(1+\alpha)^{2} \lambda(1+\lambda)^{2 n}(1-3 \tau)\right]$ which agrees with the results of Gurmeet singh et al.[7] Theorem.6.

For $m=\lambda=1$ in theorem 2.1 gives the following corollary,
Corollary 2.3. If $f(z) \in \operatorname{SLM}_{\alpha, \Sigma}(n, \tilde{p}(z))$, then

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{4^{n}(1+\alpha)^{2}+\left[2(1+2 \alpha) 3^{n}-\eta 4^{n}\right] \tau}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau| 4^{n}\left[(1+\alpha)^{2}-\eta \tau\right]}{2(1+2 \alpha) 3^{n}\left[4^{n}(1+\alpha)^{2}+\left[2(1+2 \alpha) 3^{n}-\eta 4^{n}\right] \tau\right]}
$$

where $\eta=3 \alpha^{2}+9 \alpha+4$ which agrees with the results of Gurmeet singh et al.[7] Corollary.7.

On substituting $m=\lambda=1$ and $n=0$ in theorem2.1 gives the following corollary,

Corollary 2.4. If $f(z) \in S L_{\alpha, \Sigma}(\tilde{p}(z))$, then

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{(1+\alpha)^{2}-(1+\alpha)(2+3 \alpha) \tau}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau|\left[(1+\alpha)^{2}-\left(3 \alpha^{2}+9 \alpha+4\right) \tau\right]}{\left.2(1+2 \alpha)\left[(1+\alpha)^{2}-(1+\alpha)(2+3 \alpha) \tau\right]\right)}
$$

which agrees with the results of Guney et al.[6] Corollary.1.
On substituting $m=\lambda=1$ and $n=\alpha=0$ in theorem2.1 gives the following corollary,

Corollary 2.5. If $f(z) \in S L_{\Sigma}(\tilde{p}(z))$, then

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{1-2 \tau}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau|(1-4 \tau)}{2(1-2 \tau)}
$$

which agrees with the results of Guney et al.[6] Corollary.1.
Also for $m=\lambda=\alpha=1$ and $n=0$ in theorem 2.1 gives the following corollary,

Corollary 2.6. If $f(z) \in K S L_{\Sigma}(\tilde{p}(z))$, then

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{4-10 \tau}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|\tau|(1-4 \tau)}{3(2-5 \tau)}
$$

which agrees with the results of Guney et al.[6] Corollary.2.

## 3. Fekete-Szego Inequality for the function class $\alpha-S L M_{\Sigma}(n, m, \lambda, \tilde{p}(z))$

Theorem 3.1. If $f(z)$ is in the class $\alpha-\operatorname{SLM}_{\sum}(n, m, \lambda, \tilde{p}(z))$ then,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2 c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}} & ,|\mu-1| \leq \frac{Y}{X}  \tag{3.1}\\ \frac{|1-\mu| \tau^{2}}{Y} & ,|\mu-1| \geq \frac{Y}{X}\end{cases}
$$

where

$$
\begin{aligned}
Y= & c_{j}^{m}(\lambda)\left(\tau \left[2(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}\right.\right. \\
& \left.-(1+3 \alpha)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}\right] \\
& \left.+c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}(1+\alpha)^{2}(1-3 \tau)\right)
\end{aligned}
$$

and $X=2|\tau| c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}$
Proof. From (2.12) and (2.13), we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{\tau\left(c_{2}-d_{2}\right)}{8 c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}}+\left(c_{2}+d_{2}\right) \chi(\mu) \tag{3.2}
\end{equation*}
$$

where

$$
\chi(\mu)=\frac{(1-\mu) \tau^{2}}{4 c_{j}^{m}(\lambda)(\tau \varsigma+\phi)}
$$

with $\varsigma=2(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}-(1+3 \alpha)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}$ and $\phi=c_{j}^{m}(\lambda)\left(1+c_{j}^{m}(\lambda)\right)^{2 n}(1+\alpha)^{2}(1-3 \tau)$.

The above equation can be expressed as,

$$
\begin{align*}
a_{3}-\mu a_{2}^{2} & =\left[\chi(\mu)+\frac{\tau}{8 c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}}\right] c_{2} \\
& +\left[\chi(\mu)-\frac{\tau}{8 c_{j}^{m}(\lambda)(1+2 \alpha)\left(1+2 c_{j}^{m}(\lambda)\right)^{n}}\right] d_{2} \tag{3.3}
\end{align*}
$$

Taking modulus on the above equation, we obtain,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2 \delta} & , 0 \leq|\chi(\mu)| \leq \frac{|\tau|}{8 \delta}  \tag{3.4}\\ 4|\chi(\mu)| & ,|\chi(\mu)| \geq \frac{|\tau|}{8 \delta} .\end{cases}
$$

where $\delta=c_{j}^{m}(\boldsymbol{\lambda})(1+2 \alpha)\left(1+2 c_{j}^{m}(\boldsymbol{\lambda})\right)^{n}$. Using the above equation we can get the desired bound for the Fekete-Szego problem.

By varying the parameters in Theorem.3.1 we get the following corollaries.
When we consider $m=1$ in Theorem3.1 we get the following corollary, which is proved by Gurmeet Singh et al.[8] in Theorem. 11 .
Corollary 3.2. If $f(z) \in S L M_{\alpha, \Sigma}^{\lambda}(n, \tilde{p}(z))$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2 \lambda(1+2 \alpha)(1+2 \lambda)^{n}} & ,|\mu-1| \leq \frac{X}{2|\tau| \lambda(1+2 \alpha)(1+2 \lambda)^{n}}  \tag{3.5}\\ \frac{|1-\mu| \tau^{2}}{X} & ,|\mu-1| \geq \frac{X}{2|\tau| \lambda(1+2 \alpha)(1+2 \lambda)^{n}}\end{cases}
$$

where

$$
\begin{aligned}
X= & \lambda\left(\tau\left[2(1+2 \alpha)(1+2 \lambda)^{n}-(1+3 \alpha)(1+\lambda)^{2 n}\right]\right. \\
& \left.+\lambda(1+\lambda)^{2 n}(1+\alpha)^{2}(1-3 \tau)\right)
\end{aligned}
$$

If we consider $m=\lambda=1$ in Theorem3.1 we get the following corollary, which is proved by Gurmeet Singh et al.[8] in Corollary. 12.

Corollary 3.3. If $f(z) \in S L M_{\alpha, \Sigma}(n, \tilde{p}(z))$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2(1+2 \alpha) 3^{n}} & ,|\mu-1| \leq \frac{Z}{2|\tau|(1+2 \alpha) 3^{n}}  \tag{3.6}\\ \frac{|1-\mu| \tau^{2}}{Z} & ,|\mu-1| \geq \frac{Z}{2|\tau|(1+2 \alpha) 3^{n}}\end{cases}
$$

where

$$
Z=\left(2(1+2 \alpha) 3^{n}-\left(3 \alpha^{2}+9 \alpha+4\right) 4^{n}\right) \tau+(1+\alpha)^{2} 4^{n}
$$

If we consider $m=\lambda=1$ and $n=0$ in Theorem3.1 we get the following corollary, which is proved by Guney et al.[6] in Theorem. 11.
Corollary 3.4. If $f(z) \in S L M_{\alpha, \Sigma}(\tilde{p}(z))$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2(1+2 \alpha)} & ,|\mu-1| \leq \frac{P}{2|\tau|(1+2 \alpha)}  \tag{3.7}\\ \frac{|1-\mu| \tau^{2}}{P} & ,|\mu-1| \geq \frac{P}{2|\tau|(1+2 \alpha)}\end{cases}
$$

where $P=(1+\alpha)[(1+\alpha)-(2+3 \alpha) \tau]$

If we consider $m=\lambda=1$ and $n=\alpha=0$ in Theorem3.1 we get the following corollary, which is proved by Guney et al.[6] in corollary.4.

Corollary 3.5. If $f(z) \in \operatorname{SLM}_{\Sigma}(\tilde{p}(z))$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{2} & ,|\mu-1| \leq \frac{1-2 \tau}{2|\tau|} \\ \frac{|1-\mu| \tau^{2}}{1-2 \tau} & ,|\mu-1| \geq \frac{1-2 \tau}{2|\tau|}\end{cases}
$$

If we consider $m=\lambda=\alpha=1$ and $n=0$ in Theorem3.1 we get the following corollary, which is proved by Guney et al.[6] in corollary.5.

Corollary 3.6. If $f(z) \in K S L_{\Sigma}(\tilde{p}(z))$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{6} & ,|\mu-1| \leq \frac{(2-5 \tau)}{3|\tau|} \\ \frac{|1-\mu| \tau^{2}}{2(2-5 \tau)} & ,|\mu-1| \geq \frac{(2-5 \tau)}{3|\tau|}\end{cases}
$$

## References

${ }^{[1]}$ F.M.Al-oboudi, On univalent functions defined by a generalized Salagean operator, International Journal of Mathematics and Mathematical Sciences, 27(2004), 1429-1436.
${ }^{[2]}$ J.Dizok, R.K.Raina and J.Sokol, Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers, Computers and Mathematics with Appl., 61(9)(2011), 2605-2613.
${ }^{[3]}$ J.Dizok, R.K.Raina and J.Sokol, On $\alpha$-convex functions related to a shell-like curve connected with Fibonacci numbers, Appl. Math. and Computations, 218(3)(2011), 996-1002.
${ }^{[4]}$ P.L.Duren, Univalent Functions, Springers, 1983.
${ }^{[5]}$ B.A.Frasin, A new differential operator of analytic functions involving binomial series, Bol. Soc. Paran. Mat., 38(5)(2020), 205-213.
${ }^{[6]}$ H.O. Gunney, G. Murugusundaramoorthy and J.Sokol, Subclasses of bi-univalent functions reated to shell-like curves connected with Fibonacci number, Acta Univ. Sapientiae, Mathematica, 10(2018), 70-84.
${ }^{[7]}$ Gurmeet Singh, Gurcharanjit Singh and Gagandeep Singh, A subclass of Bi -univalent functions defined by generalized Salagean operator related to shell-like curves connected with Fibonacci number, Int. J. of Math. and Math. Sci., 2019, Article ID. 7628083.
${ }^{\text {[8] N.Y.Ozgur and J.Sokol, On starlike functions connected }}$ with k-Fibonacci number, Bull. Malays. Math. Sci. Soc., 3(1)(2015), 249-258.
[9] Ch.Pommerenke, Univalent Functions, Studia Mathematica, 1975.
${ }^{[10]}$ R.K.Raina, J.Sokol, Fekete-Szego problem for some starlike curves, Math.Slovoca, 66(2016), 135-140.
[11] G.S.Salagean, Subclasses of Univalent Functions, Lectures notes in Mathematics, Springers, 1013(1983).

On a subclass of bi-univalent functions related to shell-like curves connected with Fibonacci number - 808/808
[12] J.Sokol, On starlike functions connected with Fibonacci numbers, Folia Scientiarum Universitatis Technicae Resoviensis, 175(1999), 111-116.

$$
\operatorname{ISSN}(\mathrm{P}): 2319-3786
$$

Malaya Journal of Matematik
ISSN(O):2321-5666
$\star \star \star \star \star \star \star \star \star$

