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Abstract

A b-coloring of a graph G is a variant of proper coloring in which each color class contains a vertex that
has a neighbor in all the other color classes. We investigate some results on b-coloring in the context of degree
splitting graph of Pn, Bn,n, Sn and Gn.
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1 Introduction

In this paper we deal with finite, connected and undirected graph G = (V(G), E(G)) without loops and
multiple edges. The notations and terminology here are used in the sense of Clark and Holton [1]. A proper
k-coloring of a graph G is a function c : V(G) → {1, 2, ..., k} such that c(u) 6= c(v) for all uv ∈ E(G). The color
class ci is the subset of vertices of G that is assigned to color i. The chromatic number χ(G) is the minimum
number k for which G admits proper k-coloring.

A proper k-coloring c of a graph G is a b-coloring if for every color class ci, there is a vertex with color i
which has at least one neighbor in every other color classes. Such vertex is called a b-vertex. The b-chromatic
number of a graph G, denoted by ϕ(G), is the largest integer k for which G admits a b-coloring.

The concept of b-coloring was introduced by Irving and Manlove [2]. If G has a b-coloring by k colors for
every integer k satisfying χ(G) ≤ k ≤ ϕ(G) then G is called b-continuous. The b-spectrum Sb(G) of a graph G
is the set of integers k such that G has a b-coloring by k colors.

The concept of b-coloring is explored by many researchers. The bounds for the b-chromatic number of a
graph is investigated by Kouider and Mahéo [3] while b-chromatic number for Peterson graph and power of
a cycle is discussed by Chandrakumar and Nicholas [6]. The b-continuity of chordal graphs is discussed by
Faik [7].

Definition 1.1. ([2], [4])The m-degree of a graph G, denoted by m(G), is the largest integer m such that G has m
vertices of degree at least m− 1.

Proposition 1.2. ([1]) For any graph G, χ(G) ≥ 3 if and only if G has an odd cycle.

Proposition 1.3. ([2]) If G admits a b-coloring with m colors, then G must have at least m vertices with degree at least
m− 1.

Proposition 1.4. ([3]) χ(G) ≤ ϕ(G) ≤ m(G).

It is obvious that if χ(G) = k, then every coloring of a graph G by k colors is a b-coloring of G.
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Proposition 1.5. ([5]) If Pn, Cn, Kn, Km,n and Wn : Cn + K1 are respectively path, cycle, complete graph, complete
bipartite graph and wheel graph, then

1. χ(C2n) = 2, χ(C2n+1) = 3.

2. χ(Wn) = 3, if n is odd and χ(Wn) = 4, if n is even.

3. χ(Km,n) = 2.

4. ϕ(Pn) = 2, if 1 < n < 5 and ϕ(Pn) = 3, if n ≥ 5.

5. ϕ(Cn) = 2, if n = 4 and ϕ(Cn) = 3, if n 6= 4.

6. ϕ(Wn) = 3, if n = 4 and ϕ(Wn) = 4, if n 6= 4.

7. χ(Kn) = ϕ(Kn) = n.

2 Main Results

Definition 2.1. Let G = (V(G), E(G)) be a graph with V(G) = S1 ∪ S2 ∪ .... ∪ St ∪ T where each Si is a set of all

vertices of the same degree with at least two elements and T = V(G) \
t⋃

i=1
Si. The degree splitting graph of G, denoted

by DS(G), is obtained from G by adding vertices w1, w2, ..., wt and joining wi to each vertex of Si for 1 ≤ i ≤ t.

Lemma 2.2. χ(DS(Pn)) =

{
2, n = 3
3, n 6= 3.

Proof. The path Pn has two pendant vertices and the remaining n− 1 vertices are of degree two. Thus V(Pn) =

{vi ; 1 ≤ i ≤ n} = S1 ∪ S2 where S1 = {v1, vn} and S2 = {vi ; 2 ≤ i ≤ n− 1}. For obtaining DS(Pn) from Pn,
add two vertices w1 and w2 corresponding to S1 and S2 respectively. Thus V(DS(Pn)) = V(Pn)∪{w1, w2} and
E(DS(Pn)) = E(Pn) ∪ {w1vi where vi ∈ S1; i = 1, n} ∪ {w2vj where vj ∈ S2; 2 ≤ j ≤ n− 1}. |V(DS(Pn))| =
n + 2 and |E(DS(Pn))| = 2n− 1.

When n = 3, the graph DS(P3) is isomorphic to C4. Then by Proposition 1.5, χ(DS(P3)) = 2. But when
n 6= 3, DS(Pn) contains a cycle C3. Then by Proposition 1.2, χ(DS(Pn)) ≥ 3. If we assign the proper coloring
as c(w1) = c(w2) = 1, c(v2k+1) = 2, c(v2k) = 3; k ∈ N then χ(DS(Pn)) = 3.

Theorem 2.3. ϕ(DS(Pn)) =


2, n = 3
3, n = 2, 4
4, n ≥ 5.

Proof. The graphs DS(P2) and DS(P3) are isomorphic to C3 and C4 respectively. Then by Proposition 1.5,
ϕ(DS(P2)) = 3 and ϕ(DS(P3)) = 2.

In the graph DS(P4) there are four vertices of degree 2. Then the m-degree, m(DS(P4)) =3. Then by
Proposition 1.4, ϕ(DS(P4)) ≤ 3. Moreover DS(P4) induces a path of length greater than four, ϕ(DS(P4)) ≥ 3.
Hence ϕ(DS(P4)) = 3.

For n ≥ 5, the graph DS(Pn) has at least four vertices of degree at least 3. Then the m-degree, m(DS(Pn)) =

4. Then by Proposition 1.4, ϕ(DS(Pn)) ≤ 4. Moreover DS(Pn) induces a path of length greater than four,
ϕ(DS(Pn)) ≥ 3. We suppose that DS(Pn) has a b-coloring using four colors. By assigning the proper coloring
as c(w1) = c(w2) = 1, c(v3k−2) = 2, c(v3k−1) = 3, c(v3k) = 4; k ∈ N then the vertices w2, v4, v2 and v3 are the
b-vertices for the color classes 1, 2, 3 and 4 respectively. Thus ϕ(DS(Pn)) = 4. Hence the result.

Definition 2.4. The bistar Bn,n is a graph obtained by joining the center(apex) vertices of two copies of K1,n by an edge.

Lemma 2.5. For all n, χ(DS(Bn,n)) = 3.

Proof. In Bn,n, V(Bn,n) = {u, v, ui, vi; 1 ≤ i ≤ n} and E(Bn,n) = {uui, vvi; 1 ≤ i ≤ n} ∪ {uv}. The graph
bistar Bn,n contains two types of vertices - pendant vertices and vertices of degree n + 1. Thus V(Bn,n) = S1
∪ S2 where S1 = {ui, vi; 1 ≤ i ≤ n} and S2 = {u, v}. For obtaining DS(Bn,n) from Bn,n, we add two
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vertices w1 and w2 corresponding to S1 and S2 respectively. Thus V(DS(Bn,n)) = V(Bn,n) ∪ {w1, w2} and
E(DS(Bn,n)) = E(Bn,n) ∪ {uiw1, viw1, uw2, vw2}. Hence |V(DS(Bn,n))| = 2n + 4 and |E(DS(Bn,n))| = 4n + 3.

As the graph DS(Bn,n) contains a C3, χ(DS(Bn,n)) ≥ 3. If we assign the proper coloring as c(w2) = 1,
c(u) = 2, c(v) = 3, c(w1) = 2, c(ui) = c(vi) = 1, for i = 1, 2, .., n, then χ(DS(Bn,n)) = 3 for all n.

Theorem 2.6. For all n, ϕ(DS(Bn,n)) = 3.

Proof. By Lemma 2.5, ϕ(DS(Bn,n)) ≥ χ(DS(Bn,n)) = 3. The graph DS(Bn,n) has at least three vertices
of degree at least two. Then m(DS(Bn,n)) = 3 and hence by Proposition 1.4, ϕ(DS(Bn,n)) ≤ 3. Thus
ϕ(DS(Bn,n)) = 3 for all n.

Definition 2.7. A shell Sn is the graph obtained by taking n− 3 concurrent chords in cycle Cn. That is, Sn =Pn−1 +K1.

Lemma 2.8. χ(DS(Sn)) =

{
4, n = 3
3, n 6= 3.

Proof. In the shell graph Sn, V(Sn) = {u, v1, v2, ..., vn−1} where u is the apex vertex and E(Sn) = {uvi ;
1 ≤ i ≤ n− 1} ∪ {vivi+1; 1 ≤ i ≤ n− 2}. Clearly |V(Sn)| = n and |E(Sn)| = 2n− 3.
There are three types of vertices

(i) vertices of degree 2,

(ii) vertices of degree 3,

(iii) a vertex of degree n− 1.

Thus V(Sn) = {u, v1, v2, ..., vn−1} =S1 ∪ S2 ∪ T where S1 = {v1, vn−1}, S2 = {vi ; 2 ≤ i ≤ n − 2} and

T = {u} = V(Sn) \
2⋃

i=1
Si . For obtaining DS(Sn) from Sn, we add two vertices w1 and w2 corresponding to

S1 and S2 respectively. Thus V(DS(Sn)) = V(Sn) ∪ {w1, w2} and E(DS(Sn)) = E(Sn) ∪ {v1w1, vn−1w1} ∪
{viw2; 2 ≤ i ≤ n− 2}.

When n = 3, the graph DS(S3) is isomorphic to K4. Then by Proposition 1.5, χ(DS(S3)) = 4. But when
n 6= 3, DS(Sn) contains a C3, then by Proposition 1.2, χ(DS(Sn)) ≥ 3. If we assign the colors as c(w1) =

c(w2) = c(u) = 1, c(v2k+1) = 2, c(v2k) = 3; k ∈ N, then χ(DS(Sn)) = 3.

Theorem 2.9. ϕ(DS(Sn)) =

{
3, n = 4
4, n 6= 4.

Proof. When n = 3, the graph DS(S3) is isomorphic to K4, by Proposition 1.5, ϕ(DS(S3)) = 4.
When n = 4, the graph DS(S4) has four vertices of degree at least three. Then m(DS(S4)) = 4. Then by

Proposition 1.4, ϕ(DS(S4)) ≤ 4. Suppose that DS(S4) does have a b-chromatic 4-coloring. By assigning the
proper coloring as c(u) = 1, c(v1) = 2, c(v2) = 3, c(v3) = 4 which in turn forces to assign c(w1) is either by the
color 1 or 3 and c(w2) is either by the color 2 or 4. This proper coloring gives the b-vertices for the color classes
1 and 3 but not for 2 and 4. Similarly all other proper coloring using 4 colors will generate b-vertices at most
for two color classes only. Hence ϕ(DS(S4)) 6= 4. Thus ϕ(DS(S4)) ≤ 3. Also by Lemma 2.8, ϕ(DS(S4)) ≥ 3.
Hence ϕ(DS(S4)) = 3.

When n = 5 and 6, the graph DS(Sn) has the m-degree four. Thus ϕ(DS(Sn)) ≤ 4. Suppose that DS(Sn)

does have a b-chromatic 4-coloring. By assigning the proper coloring as c(u) = 1, c(v1) = c(v4) = 2, c(v2) = 3,
c(v3) = c(w1) = 4 which gives the b-vertices u, v1, v2, v3 for the color classes 1, 2, 3, and 4 respectively. Thus
ϕ(DS(Sn)) = 4.

When n ≥ 7, the graph DS(Sn) has the m-degree five. Thus ϕ(DS(Sn)) ≤ 5. Suppose that DS(Sn) does
have a b-chromatic 5-coloring. By assigning the proper coloring as c(v2) = 1, c(v1) = 2, c(u) = 4, c(v3) = 5,
c(w2) = 3, c(v4) = 2 which in turn forces to assign c(v5) = 1. This proper coloring gives the b-vertices for
the color classes 1, 2 and 5 but not for 3 and 4. Similarly all other proper coloring with 5 colors will generate
b-vertices at most for three color classes only. Hence ϕ(DS(Sn)) 6= 5. Thus ϕ(DS(Sn)) ≤ 4. If we assign the
colors as c(w1) = c(w2) = 1, c(v3k−2) = 2, c(v3k−1) = 3, c(v3k) = 4; k ∈ N gives the b-vertices u, v2, v3, v4 for
the color classes 1, 3, 4 and 2 respectively. Thus ϕ(DS(Sn)) = 4.
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Definition 2.10. The gear Graph, Gn, is obtained from the wheel by subdividing each of its rim edge.
That is, let Wn = Cn +K1 be the wheel graph with apex vertex v and the rim vertices v1, v2, ..., vn. To obtain the gear

graph Gn, subdivide each rim edge of wheel Wn by the vertices u1, u2, ..., un where each ui subdivides the edge vivi+1 for
i = 1, 2, .., n− 1 and un subdivides the edge v1vn. Then |V(Gn| = 2n + 1 and |E(Gn| = 3n.

Lemma 2.11. χ(DS(Gn)) =

{
3, n = 3
2, n 6= 3.

Proof. The gear graph Gn has three types of vertices

(i) vertices of degree 2,

(ii) vertices of degree 3

(iii) a vertex of degree n.

Thus V(Gn) = {vi, ui, v} = S1 ∪ S2 ∪ T where S1 = {vi}, S2 = {ui}, T = {v}= V(Gn) \
2⋃

i=1
Si. For obtaining

DS(Gn) from Gn, we add two vertices w1 and w2 corresponding to S1 and S2 respectively. Thus V(DS(Gn)) =

V(Gn) ∪ {w1, w2} and E(DS(Gn)) = E(Gn) ∪ {viw1, uiw2}.
When n = 3, DS(G3) contains a K3 (formed by the vertices v, w1 and v2), χ(DS(G3)) ≥ 3. If we assign the

colors as c(v) = 1, c(w1) = 2, c(w2) = 3, c(ui) = 2, c(vi) = 3 for i = 1, 2, ..., n gives the proper coloring using
3 colors. Thus χ(DS(G3)) = 3. But when n 6= 3, DS(Gn) contains no odd cycles and it is a bipartite graph.
Hence by Proposition 1.5, χ(DS(Gn)) = 2.

Theorem 2.12. ϕ(DS(Gn)) =

{
5, n = 3
4, n 6= 3.

Proof. When n = 3, the graph DS(G3) contains five vertices of degree 4. Consequently m(DS(G3) = 5. Then
by Proposition 1.4, ϕ(DS(G3)) ≤ 5. Suppose that DS(G3) does have a b-chromatic 5-coloring. By assigning
the proper coloring as c(u1) = 1, c(u2) = 3, c(u3) = 2, c(v1) = 3, c(v2) = 2, c(v3) = 1, c(v) = 4, c(w2) = 4,
c(w1) = 5 then the vertices v3, v2, v1, v, and w1 are the b-vertices for the color classes 1, 2, 3, 4 and 5 respectively.
Thus ϕ(DS(G3)) = 5.

When n 6= 3, the graph DS(Gn) contains at least five vertices of degree 4. Then m(DS(Gn) = 5. Then by
Proposition 1.4, ϕ(DS(Gn)) ≤ 5. Suppose that DS(Gn) does have a b-chromatic 5-coloring. By assigning the
proper coloring as c(v) = 1, c(v1) = 2, c(v2) = 3, c(v3) = 4, c(v4) = 5 gives the b- vertex v for the color
class 1. Again assume that c(u1) = 4 and c(un) = 3 which in turn forces to assign c(w1) = 5 which is not
possible as the adjacent vertices w1 and v4 will receive the same color. Thus v1 is not a b- vertex for the color
class 2. Similarly we can prove that no vi’s are b-vertices when five colors are used for b-coloring. Hence
ϕ(DS(Gn)) 6= 5. But if we assign the colors as c(v) = 1, c(v3k−2) = 2, c(v3k−1) = 3, c(v3k) = 4; k ∈ N which
gives the b- vertices v, v1, v2 and v3 for the color classes 1, 2, 3 and 4 respectively. Thus ϕ(DS(Gn)) = 4. Hence
the result.

We have the following obvious result stating the b-spectrum of DS(Gn) as any proper coloring with χ(G)

colors is a b-coloring.

Corollary 2.13. Sb(DS(Gn)) =

{
{3, 4, 5} , n = 3
{2, 3, 4} , n 6= 3

and DS(Gn) is b-continuous.

Proof. When n = 3, by assigning the colors as c(v) = 1, c(v1) = 2, c(v2) = 3, c(v3) = 4, c(w1) = c(w2) = 4
and c(ui) = 1 for i = 1, 2 and 3, the graph DS(G3) has the b-chromatic 4-coloring. But when n 6= 3, by
assigning the colors as c(v) = c(w1) = c(w2) = 1, c(vi) = 2, c(ui) = 3 for i = 1, 2, .., n, DS(Gn) has the
b-chromatic 3-coloring. Thus by Lemma 2.11 and Theorem 2.12, DS(Gn) is b-continuous and the b-spectrum

Sb(DS(Gn)) =

{
{3, 4, 5} , n = 3
{2, 3, 4} , n 6= 3.



S. K. Vaidya et al. / The b-chromatic number... 253

3 Concluding Remarks

The study of b-coloring is important due to its applications in many real life problems like scheduling
problem, channel assignment problem, routing networks etc. Here we investigate b-chromatic number and
related parameters for the degree splitting graph of some graphs. We show that the degree splitting graph of
Gn is b-continuous. The degree splitting graph of Pn, Bn,n and Sn are obviously b-continuous as any proper
coloring with χ(G) colors is a b-coloring.
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