Malaya Journal of Matematik

MIM

an international journal of mathematical sciences with computer applications...

www.malayajournal.org

The b-chromatic number of some degree splitting graphs

S. K. Vaidya^{a,*} and Rakhimol V. Isaac^b

^aDepartment of Mathematics, Saurashtra University, Rajkot - 360005, Gujarat, India.

Abstract

A b-coloring of a graph G is a variant of proper coloring in which each color class contains a vertex that has a neighbor in all the other color classes. We investigate some results on b-coloring in the context of degree splitting graph of P_n , $B_{n,n}$, S_n and G_n .

Keywords: graph coloring, b-coloring, b-vertex, degree splitting graph.

2010 MSC: 05C15; 05C76,.

©2012 MJM. All rights reserved.

1 Introduction

In this paper we deal with finite, connected and undirected graph G = (V(G), E(G)) without loops and multiple edges. The notations and terminology here are used in the sense of Clark and Holton [1]. A *proper k-coloring* of a graph G is a function $c: V(G) \to \{1, 2, ..., k\}$ such that $c(u) \neq c(v)$ for all $uv \in E(G)$. The color class c_i is the subset of vertices of G that is assigned to color i. The chromatic number $\chi(G)$ is the minimum number k for which G admits proper k-coloring.

The concept of *b*-coloring was introduced by Irving and Manlove [2]. If G has a *b*-coloring by *k* colors for every integer *k* satisfying $\chi(G) \le k \le \varphi(G)$ then G is called *b*-continuous. The *b*-spectrum $S_b(G)$ of a graph G is the set of integers *k* such that G has a *b*-coloring by *k* colors.

The concept of *b*-coloring is explored by many researchers. The bounds for the *b*-chromatic number of a graph is investigated by Kouider and Mahéo [3] while *b*-chromatic number for Peterson graph and power of a cycle is discussed by Chandrakumar and Nicholas [6]. The b-continuity of chordal graphs is discussed by Faik [7].

Definition 1.1. ([2], [4])The m-degree of a graph G, denoted by m(G), is the largest integer m such that G has m vertices of degree at least m-1.

Proposition 1.2. ([1]) For any graph G, $\chi(G) \ge 3$ if and only if G has an odd cycle.

Proposition 1.3. ([2]) If G admits a b-coloring with m colors, then G must have at least m vertices with degree at least m-1.

Proposition 1.4. ([3]) $\chi(G) \leq \varphi(G) \leq m(G)$.

It is obvious that if $\chi(G) = k$, then every coloring of a graph G by k colors is a b-coloring of G.

^bDepartment of Mathematics, Christ College, Rajkot - 360005, Gujarat, India.

^{*}Corresponding author.

Proposition 1.5. ([5]) If P_n , C_n , K_n , $K_{m,n}$ and W_n : $C_n + K_1$ are respectively path, cycle, complete graph, complete bipartite graph and wheel graph, then

- 1. $\chi(C_{2n}) = 2$, $\chi(C_{2n+1}) = 3$.
- 2. $\chi(W_n) = 3$, if n is odd and $\chi(W_n) = 4$, if n is even.
- 3. $\chi(K_{m,n}) = 2$.
- 4. $\varphi(P_n) = 2$, if 1 < n < 5 and $\varphi(P_n) = 3$, if $n \ge 5$.
- 5. $\varphi(C_n) = 2$, if n = 4 and $\varphi(C_n) = 3$, if $n \neq 4$.
- 6. $\varphi(W_n) = 3$, if n = 4 and $\varphi(W_n) = 4$, if $n \neq 4$.
- 7. $\chi(K_n) = \varphi(K_n) = n$.

2 Main Results

Definition 2.1. Let G = (V(G), E(G)) be a graph with $V(G) = S_1 \cup S_2 \cup \cup S_t \cup T$ where each S_i is a set of all vertices of the same degree with at least two elements and $T = V(G) \setminus \bigcup_{i=1}^t S_i$. The degree splitting graph of G, denoted by DS(G), is obtained from G by adding vertices $w_1, w_2, ..., w_t$ and joining w_i to each vertex of S_i for $1 \le i \le t$.

Lemma 2.2.
$$\chi(DS(P_n)) = \begin{cases} 2, & n = 3 \\ 3, & n \neq 3. \end{cases}$$

Proof. The path P_n has two pendant vertices and the remaining n-1 vertices are of degree two. Thus $V(P_n)=\{v_i ; 1 \leq i \leq n\} = S_1 \cup S_2$ where $S_1=\{v_1,v_n\}$ and $S_2=\{v_i ; 2 \leq i \leq n-1\}$. For obtaining $DS(P_n)$ from P_n , add two vertices w_1 and w_2 corresponding to S_1 and S_2 respectively. Thus $V(DS(P_n))=V(P_n)\cup\{w_1,w_2\}$ and $E(DS(P_n))=E(P_n)\cup\{w_1v_i \text{ where } v_i \in S_1; i=1,n\}\cup\{w_2v_j \text{ where } v_j \in S_2; 2 \leq j \leq n-1\}$. $|V(DS(P_n))|=n+2$ and $|E(DS(P_n))|=2n-1$.

When n=3, the graph $DS(P_3)$ is isomorphic to C_4 . Then by Proposition 1.5, $\chi(DS(P_3))=2$. But when $n \neq 3$, $DS(P_n)$ contains a cycle C_3 . Then by Proposition 1.2, $\chi(DS(P_n)) \geq 3$. If we assign the proper coloring as $c(w_1) = c(w_2) = 1$, $c(v_{2k+1}) = 2$, $c(v_{2k}) = 3$; $k \in \mathbb{N}$ then $\chi(DS(P_n)) = 3$.

Theorem 2.3.
$$\varphi(DS(P_n)) = \begin{cases} 2, & n = 3 \\ 3, & n = 2, 4 \\ 4, & n \ge 5. \end{cases}$$

Proof. The graphs $DS(P_2)$ and $DS(P_3)$ are isomorphic to C_3 and C_4 respectively. Then by Proposition 1.5, $\varphi(DS(P_2)) = 3$ and $\varphi(DS(P_3)) = 2$.

In the graph $DS(P_4)$ there are four vertices of degree 2. Then the m-degree, $m(DS(P_4))=3$. Then by Proposition 1.4, $\varphi(DS(P_4)) \leq 3$. Moreover $DS(P_4)$ induces a path of length greater than four, $\varphi(DS(P_4)) \geq 3$. Hence $\varphi(DS(P_4))=3$.

For $n \ge 5$, the graph $DS(P_n)$ has at least four vertices of degree at least 3. Then the m-degree, $m(DS(P_n)) = 4$. Then by Proposition 1.4, $\varphi(DS(P_n)) \le 4$. Moreover $DS(P_n)$ induces a path of length greater than four, $\varphi(DS(P_n)) \ge 3$. We suppose that $DS(P_n)$ has a b-coloring using four colors. By assigning the proper coloring as $c(w_1) = c(w_2) = 1$, $c(v_{3k-2}) = 2$, $c(v_{3k-1}) = 3$, $c(v_{3k}) = 4$; $k \in \mathbb{N}$ then the vertices w_2 , v_4 , v_2 and v_3 are the b-vertices for the color classes 1, 2, 3 and 4 respectively. Thus $\varphi(DS(P_n)) = 4$. Hence the result.

Definition 2.4. The bistar $B_{n,n}$ is a graph obtained by joining the center(apex) vertices of two copies of $K_{1,n}$ by an edge.

Lemma 2.5. *For all n,*
$$\chi(DS(B_{n,n})) = 3$$
.

Proof. In $B_{n,n}$, $V(B_{n,n}) = \{u, v, u_i, v_i; 1 \le i \le n\}$ and $E(B_{n,n}) = \{uu_i, vv_i; 1 \le i \le n\} \cup \{uv\}$. The graph bistar $B_{n,n}$ contains two types of vertices - pendant vertices and vertices of degree n+1. Thus $V(B_{n,n}) = S_1 \cup S_2$ where $S_1 = \{u_i, v_i; 1 \le i \le n\}$ and $S_2 = \{u, v\}$. For obtaining $DS(B_{n,n})$ from $B_{n,n}$, we add two

vertices w_1 and w_2 corresponding to S_1 and S_2 respectively. Thus $V(DS(B_{n,n})) = V(B_{n,n}) \cup \{w_1, w_2\}$ and $E(DS(B_{n,n})) = E(B_{n,n}) \cup \{u_i w_1, v_i w_1, u w_2, v w_2\}$. Hence $|V(DS(B_{n,n}))| = 2n + 4$ and $|E(DS(B_{n,n}))| = 4n + 3$. As the graph $DS(B_{n,n})$ contains a C_3 , $\chi(DS(B_{n,n})) \geq 3$. If we assign the proper coloring as $c(w_2) = 1$, c(u) = 2, c(v) = 3, $c(w_1) = 2$, $c(u_i) = c(v_i) = 1$, for i = 1, 2, ..., n, then $\chi(DS(B_{n,n})) = 3$ for all n.

Theorem 2.6. For all n, $\varphi(DS(B_{n,n})) = 3$.

Proof. By Lemma 2.5, $\varphi(DS(B_{n,n})) \geq \chi(DS(B_{n,n})) = 3$. The graph $DS(B_{n,n})$ has at least three vertices of degree at least two. Then $m(DS(B_{n,n})) = 3$ and hence by Proposition 1.4, $\varphi(DS(B_{n,n})) \leq 3$. Thus $\varphi(DS(B_{n,n})) = 3$ for all n.

Definition 2.7. A shell S_n is the graph obtained by taking n-3 concurrent chords in cycle C_n . That is, $S_n = P_{n-1} + K_1$.

Lemma 2.8.
$$\chi(DS(S_n)) = \begin{cases} 4, & n = 3 \\ 3, & n \neq 3. \end{cases}$$

Proof. In the shell graph S_n , $V(S_n) = \{u, v_1, v_2, ..., v_{n-1}\}$ where u is the apex vertex and $E(S_n) = \{uv_i; 1 \le i \le n-1\} \cup \{v_iv_{i+1}; 1 \le i \le n-2\}$. Clearly $|V(S_n)| = n$ and $|E(S_n)| = 2n-3$. There are three types of vertices

- (i) vertices of degree 2,
- (ii) vertices of degree 3,
- (iii) a vertex of degree n-1.

Thus $V(S_n) = \{u, v_1, v_2, ..., v_{n-1}\} = S_1 \cup S_2 \cup T \text{ where } S_1 = \{v_1, v_{n-1}\}, S_2 = \{v_i ; 2 \leq i \leq n-2\} \text{ and } T = \{u\} = V(S_n) \setminus \bigcup_{i=1}^2 S_i$. For obtaining $DS(S_n)$ from S_n , we add two vertices w_1 and w_2 corresponding to S_1 and S_2 respectively. Thus $V(DS(S_n)) = V(S_n) \cup \{w_1, w_2\}$ and $E(DS(S_n)) = E(S_n) \cup \{v_1w_1, v_{n-1}w_1\} \cup \{v_iw_2; 2 \leq i \leq n-2\}.$

When n = 3, the graph $DS(S_3)$ is isomorphic to K_4 . Then by Proposition 1.5, $\chi(DS(S_3)) = 4$. But when $n \neq 3$, $DS(S_n)$ contains a C_3 , then by Proposition 1.2, $\chi(DS(S_n)) \geq 3$. If we assign the colors as $c(w_1) = c(w_2) = c(u) = 1$, $c(v_{2k+1}) = 2$, $c(v_{2k}) = 3$; $k \in \mathbb{N}$, then $\chi(DS(S_n)) = 3$.

Theorem 2.9.
$$\varphi(DS(S_n)) = \begin{cases} 3, & n = 4 \\ 4, & n \neq 4. \end{cases}$$

Proof. When n = 3, the graph $DS(S_3)$ is isomorphic to K_4 , by Proposition 1.5, $\varphi(DS(S_3)) = 4$.

When n=4, the graph $DS(S_4)$ has four vertices of degree at least three. Then $m(DS(S_4))=4$. Then by Proposition 1.4, $\varphi(DS(S_4))\leq 4$. Suppose that $DS(S_4)$ does have a b-chromatic 4-coloring. By assigning the proper coloring as c(u)=1, $c(v_1)=2$, $c(v_2)=3$, $c(v_3)=4$ which in turn forces to assign $c(w_1)$ is either by the color 1 or 3 and $c(w_2)$ is either by the color 2 or 4. This proper coloring gives the b-vertices for the color classes 1 and 3 but not for 2 and 4. Similarly all other proper coloring using 4 colors will generate b-vertices at most for two color classes only. Hence $\varphi(DS(S_4))\neq 4$. Thus $\varphi(DS(S_4))\leq 3$. Also by Lemma 2.8, $\varphi(DS(S_4))\geq 3$. Hence $\varphi(DS(S_4))=3$.

When n=5 and 6, the graph $DS(S_n)$ has the m-degree four. Thus $\varphi(DS(S_n)) \leq 4$. Suppose that $DS(S_n)$ does have a b-chromatic 4-coloring. By assigning the proper coloring as c(u)=1, $c(v_1)=c(v_4)=2$, $c(v_2)=3$, $c(v_3)=c(w_1)=4$ which gives the b-vertices u,v_1,v_2,v_3 for the color classes 1, 2, 3, and 4 respectively. Thus $\varphi(DS(S_n))=4$.

When $n \geq 7$, the graph $DS(S_n)$ has the m-degree five. Thus $\varphi(DS(S_n)) \leq 5$. Suppose that $DS(S_n)$ does have a b-chromatic 5-coloring. By assigning the proper coloring as $c(v_2) = 1$, $c(v_1) = 2$, c(u) = 4, $c(v_3) = 5$, $c(w_2) = 3$, $c(v_4) = 2$ which in turn forces to assign $c(v_5) = 1$. This proper coloring gives the b-vertices for the color classes 1, 2 and 5 but not for 3 and 4. Similarly all other proper coloring with 5 colors will generate b-vertices at most for three color classes only. Hence $\varphi(DS(S_n)) \neq 5$. Thus $\varphi(DS(S_n)) \leq 4$. If we assign the colors as $c(w_1) = c(w_2) = 1$, $c(v_{3k-2}) = 2$, $c(v_{3k-1}) = 3$, $c(v_{3k}) = 4$; $k \in \mathbb{N}$ gives the b-vertices u, v_2 , v_3 , v_4 for the color classes 1, 3, 4 and 2 respectively. Thus $\varphi(DS(S_n)) = 4$.

Definition 2.10. The gear Graph, G_n , is obtained from the wheel by subdividing each of its rim edge.

That is, let $W_n = C_n + K_1$ be the wheel graph with apex vertex v and the rim vertices $v_1, v_2, ..., v_n$. To obtain the gear graph G_n , subdivide each rim edge of wheel W_n by the vertices $u_1, u_2, ..., u_n$ where each u_i subdivides the edge $v_i v_{i+1}$ for i = 1, 2, ..., n-1 and u_n subdivides the edge $v_1 v_n$. Then $|V(G_n)| = 2n + 1$ and $|E(G_n)| = 3n$.

Lemma 2.11.
$$\chi(DS(G_n)) = \begin{cases} 3, & n = 3 \\ 2, & n \neq 3. \end{cases}$$

Proof. The gear graph G_n has three types of vertices

- (i) vertices of degree 2,
- (ii) vertices of degree 3
- (iii) a vertex of degree *n*.

Thus $V(G_n) = \{v_i, u_i, v\} = S_1 \cup S_2 \cup T \text{ where } S_1 = \{v_i\}, S_2 = \{u_i\}, T = \{v\} = V(G_n) \setminus \bigcup_{i=1}^2 S_i$. For obtaining $DS(G_n)$ from G_n , we add two vertices w_1 and w_2 corresponding to S_1 and S_2 respectively. Thus $V(DS(G_n)) = V(G_n) \cup \{w_1, w_2\}$ and $E(DS(G_n)) = E(G_n) \cup \{v_i w_1, u_i w_2\}$.

When n = 3, $DS(G_3)$ contains a K_3 (formed by the vertices v, w_1 and v_2), $\chi(DS(G_3)) \ge 3$. If we assign the colors as c(v) = 1, $c(w_1) = 2$, $c(w_2) = 3$, $c(u_i) = 2$, $c(v_i) = 3$ for i = 1, 2, ..., n gives the proper coloring using 3 colors. Thus $\chi(DS(G_3)) = 3$. But when $n \ne 3$, $DS(G_n)$ contains no odd cycles and it is a bipartite graph. Hence by Proposition 1.5, $\chi(DS(G_n)) = 2$.

Theorem 2.12.
$$\varphi(DS(G_n)) = \begin{cases} 5, & n = 3 \\ 4, & n \neq 3. \end{cases}$$

Proof. When n=3, the graph $DS(G_3)$ contains five vertices of degree 4. Consequently $m(DS(G_3)=5$. Then by Proposition 1.4, $\varphi(DS(G_3)) \leq 5$. Suppose that $DS(G_3)$ does have a b-chromatic 5-coloring. By assigning the proper coloring as $c(u_1)=1$, $c(u_2)=3$, $c(u_3)=2$, $c(v_1)=3$, $c(v_2)=2$, $c(v_3)=1$, c(v)=4, $c(w_1)=5$ then the vertices v_3, v_2, v_1, v , and w_1 are the b-vertices for the color classes 1, 2, 3, 4 and 5 respectively. Thus $\varphi(DS(G_3))=5$.

When $n \neq 3$, the graph $DS(G_n)$ contains at least five vertices of degree 4. Then $m(DS(G_n) = 5$. Then by Proposition 1.4, $\varphi(DS(G_n)) \leq 5$. Suppose that $DS(G_n)$ does have a b-chromatic 5-coloring. By assigning the proper coloring as c(v) = 1, $c(v_1) = 2$, $c(v_2) = 3$, $c(v_3) = 4$, $c(v_4) = 5$ gives the b- vertex v for the color class 1. Again assume that $c(u_1) = 4$ and $c(u_n) = 3$ which in turn forces to assign $c(w_1) = 5$ which is not possible as the adjacent vertices w_1 and v_4 will receive the same color. Thus v_1 is not a b- vertex for the color class 2. Similarly we can prove that no v_i 's are b-vertices when five colors are used for b-coloring. Hence $\varphi(DS(G_n)) \neq 5$. But if we assign the colors as c(v) = 1, $c(v_{3k-2}) = 2$, $c(v_{3k-1}) = 3$, $c(v_{3k}) = 4$; $k \in \mathbb{N}$ which gives the b- vertices v, v_1 , v_2 and v_3 for the color classes 1, 2, 3 and 4 respectively. Thus $\varphi(DS(G_n)) = 4$. Hence the result.

We have the following obvious result stating the *b*-spectrum of $DS(G_n)$ as any proper coloring with $\chi(G)$ colors is a *b*-coloring.

Corollary 2.13.
$$S_b(DS(G_n)) = \begin{cases} \{3,4,5\}, & n = 3 \\ \{2,3,4\}, & n \neq 3 \end{cases}$$
 and $DS(G_n)$ is b-continuous.

Proof. When n = 3, by assigning the colors as c(v) = 1, $c(v_1) = 2$, $c(v_2) = 3$, $c(v_3) = 4$, $c(w_1) = c(w_2) = 4$ and $c(u_i) = 1$ for i = 1,2 and 3, the graph $DS(G_3)$ has the b-chromatic 4-coloring. But when $n \neq 3$, by assigning the colors as $c(v) = c(w_1) = c(w_2) = 1$, $c(v_i) = 2$, $c(u_i) = 3$ for i = 1,2,...,n, $DS(G_n)$ has the b-chromatic 3-coloring. Thus by Lemma 2.11 and Theorem 2.12, $DS(G_n)$ is b-continuous and the b-spectrum

$$S_b(DS(G_n)) = \begin{cases} \{3,4,5\}, & n=3\\ \{2,3,4\}, & n \neq 3. \end{cases}$$

3 Concluding Remarks

The study of b-coloring is important due to its applications in many real life problems like scheduling problem, channel assignment problem, routing networks etc. Here we investigate b-chromatic number and related parameters for the degree splitting graph of some graphs. We show that the degree splitting graph of G_n is b-continuous. The degree splitting graph of P_n , P_n , and P_n are obviously p-continuous as any proper coloring with p-coloring is p-coloring.

References

- [1] J. Clark and D. A. Holton, A First Look at Graph Theory, World Scientific, (1969).
- [2] R. W. Irving and D. F. Manlove, The *b*-chromatic number of a graph, *Discrete Applied Mathematics*, 91, (1999), 127-141.
- [3] M. Kouider and M. Mahéo, Some bounds for the *b*-chromatic number of a graph, *Discrete Mathematics*, 256, (2002), 267-277.
- [4] F. Havet, C. L. Sales and L. Sampaio, *b*-coloring of tight graphs, *Discrete Applied Mathematics*, 160, (2012), 2709-2715.
- [5] M. Alkhateeb, On *b*-colorings and *b*-continuity of graphs, Ph.D Thesis, Technische Universität Bergakademie, Freiberg, Germany, (2012).
- [6] S. Chandrakumar and T. Nicholas, *b*-continuity in Peterson graph and power of a cycle, *International Journal of Modern Engineering Research*, 2, (2012), 2493-2496.
- [7] T. Faik, About the *b*-continuity of graphs, *Electronic Notes in Discrete Math.*, 17, (2004), 151-156.

Received: March 14, 2014; Accepted: April 6, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/