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Abstract

A b-coloring of a graph G is a variant of proper coloring in which each color class contains a vertex that
has a neighbor in all the other color classes. We investigate some results on b-coloring in the context of degree
splitting graph of P,, By, ;, Sy and Gj,.
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1 Introduction

In this paper we deal with finite, connected and undirected graph G = (V(G), E(G)) without loops and
multiple edges. The notations and terminology here are used in the sense of Clark and Holton [1]]. A proper
k-coloring of a graph G is a function ¢ : V(G) — {1,2, ..., k} such that c(u) # c(v) for all uv € E(G). The color
class ¢; is the subset of vertices of G that is assigned to color i. The chromatic number x(G) is the minimum
number k for which G admits proper k-coloring.

A proper k-coloring c of a graph G is a b-coloring if for every color class c;, there is a vertex with color i
which has at least one neighbor in every other color classes. Such vertex is called a b-vertex. The b-chromatic
number of a graph G, denoted by ¢(G), is the largest integer k for which G admits a b-coloring.

The concept of b-coloring was introduced by Irving and Manlove [2]. If G has a b-coloring by k colors for
every integer k satisfying x(G) < k < ¢(G) then G is called b-continuous. The b-spectrum S,(G) of a graph G
is the set of integers k such that G has a b-coloring by k colors.

The concept of b-coloring is explored by many researchers. The bounds for the b-chromatic number of a
graph is investigated by Kouider and Mahéo [3] while b-chromatic number for Peterson graph and power of
a cycle is discussed by Chandrakumar and Nicholas [6]. The b-continuity of chordal graphs is discussed by
Faik [7].

Definition 1.1. ([2l], [4])The m-degree of a graph G, denoted by m(G), is the largest integer m such that G has m
vertices of degree at least m — 1.

Proposition 1.2. ([1l]) For any graph G, x(G) > 3 if and only if G has an odd cycle.

Proposition 1.3. ([2]) If G admits a b-coloring with m colors, then G must have at least m vertices with degree at least
m— 1.

Proposition 1.4. (I3) x(G) < ¢(G) < m(G).

It is obvious that if x(G) = k, then every coloring of a graph G by k colors is a b-coloring of G.
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Proposition 1.5. ([5]) If Py, Cy, Ky, Kinw and Wy, © Cy, + Ky are respectively path, cycle, complete graph, complete
bipartite graph and wheel graph, then

L. x(Can) =2, x(Cons1) = 3.

2. x(Wy) =3, if nis odd and x(W,) = 4, if n is even.
3. X(Kmn) =

4. ¢(P)) =2,ifl <n<5and ¢(P,) =3,ifn > 5.
5. ¢(Cy) =2,ifn = 4and ¢(C,) =3, if n # 4.

6. (W) =3, ifn =4and p(W,) =4, if n # 4.

7. x(Kn) = ¢(Kn) = n.

2 Main Results

Definition 2.1. Let G = (V(G),E(G)) be a graph with V(G) = S; U Sy U ....U S; U T where each S; is a set of all
t
vertices of the same degree with at least two elements and T = V(G) \ U S;. The degree splitting graph of G, denoted
i=1

by DS(G), is obtained from G by adding vertices w1, wy, ..., w; and joining w; to each vertex of S; for 1 <i < t.

2, n=3

Lemma 2.2. x(DS(P,)) = { 3, n#£3

Proof. The path P, has two pendant vertices and the remaining n — 1 vertices are of degree two. Thus V(P,) =
{vi;1<i<n} =S5 USywhereS; = {v1,0,} and S» = {v; ;2 <i < n —1}. For obtaining DS(P,) from Py,
add two vertices wy and w, corresponding to S and S, respectively. Thus V(DS(Py,)) = V(Py) U {w;, wp } and
E(DS(Py)) = E(Py) U {wyv; where v; € Sy;i = 1,n} U{wov; where v; € S3;2 < j <n—1}. [V(DS(Py))| =
n+2and |[E(DS(P,))| =2n — 1.

When n = 3, the graph DS(P3) is isomorphic to C4. Then by Proposition 1.5, x(DS(P;)) = 2. But when
n # 3, DS(P,) contains a cycle C3. Then by Proposition 1.2, x(DS(P,)) > 3. If we assign the proper coloring

as c(wy) = c(wy) =1, c(vpry1) =2, ¢(vox) = 3; k € N then x(DS(Py,)) = 3. O
2, n=3

Theorem 2.3. ¢(DS(P,)) =< 3, n=2,4
4, n>5.

Proof. The graphs DS(P,) and DS(P5) are isomorphic to C3 and Cy4 respectively. Then by Proposition 1.5,
p(DS(P2)) = 3and p(DS(Py)) = 2.

In the graph DS(P;) there are four vertices of degree 2. Then the m-degree, m(DS(P;)) =3. Then by
Proposition 1.4, ¢(DS(Py)) < 3. Moreover DS(P;) induces a path of length greater than four, ¢(DS(Py)) > 3.
Hence ¢(DS(Py)) = 3.

For n > 5, the graph DS(P,) has at least four vertices of degree at least 3. Then the m-degree, m(DS(Py)) =
4. Then by Proposition 1.4, ¢(DS(P,)) < 4. Moreover DS(P,) induces a path of length greater than four,
¢(DS(Py)) > 3. We suppose that DS(P;,) has a b-coloring using four colors. By assigning the proper coloring
asc(wy) = c(wp) =1, c(v3k_2) =2, c(v3r_1) = 3, c(v3r) = 4; k € N then the vertices wy, vy, v and v3 are the
b-vertices for the color classes 1,2, 3 and 4 respectively. Thus ¢(DS(P,)) = 4. Hence the result. O

Definition 2.4. The bistar B, , is a graph obtained by joining the center(apex) vertices of two copies of Ky ,, by an edge.
Lemma 2.5. Forall n, x(DS(By)) = 3.

Proof. In By, V(Bnn) = {u,v,u;,v;; 1 < i < n}and E(By,) = {uu;,vv; 1 < i < n}U{uv}. The graph
bistar By, , contains two types of vertices - pendant vertices and vertices of degree n + 1. Thus V(B,,) = S1
U Sy where S = {u;,v; 1 < i < n}and S; = {u,v}. For obtaining DS(B,,,) from B, ,, we add two
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vertices wy and w; corresponding to S; and S; respectively. Thus V(DS(By,,)) = V(By,) U{w1, w2} and
E(DS(Bun)) = E(Bun) U {ujwy, viwy, uwy, vw, }. Hence |V (DS(Bpn))| = 2n+4 and |E(DS(Bp,n))| = 4n+ 3.

As the graph DS(B,, ;) contains a C3, x(DS(By,,)) > 3. If we assign the proper coloring as c¢(w;) = 1,
c(u) =2,¢c(v) =3, c(wy) =2,¢c(u;) =c(v;) =1, fori =1,2,.,n, then x(DS(By,,)) = 3 for all n. O

Theorem 2.6. Forall n, 9(DS(Bpn)) =

Proof. By Lemma 2.5, ¢(DS(By,)) > x(DS(By,)) = 3. The graph DS(B,,,) has at least three vertices
of degree at least two. Then m(DS(By)) = 3 and hence by Proposition 1.4, ¢(DS(By,,)) < 3. Thus
¢(DS(By,n)) = 3 for all n. O

Definition 2.7. A shell S, is the graph obtained by taking n — 3 concurrent chords in cycle Cy,. That is, S, =P,_1 + Kj.

4, n=3

Lemma 2.8. x(DS(S,)) = { 3, n#3

Proof. In the shell graph S, V(S,) = {u,v1,vy,...,v,-1} where u is the apex vertex and E(S,) = {uv; ;
1<i<n—-1}U{vvi1;1 <i<n—2} Clearly |V(S,)| =nand |E(S,)| =2n — 3.
There are three types of vertices

(i) vertices of degree 2,
(i) vertices of degree 3,
(iii) a vertex of degree n — 1.
Thus V(S,) = {u,v1,02,...,0,-1} =51 USy UT where S1 = {vy,v,1}, S = {v; ;2 < i < n—2} and

2
T ={u} =V(S:)\ US;. For obtaining DS(S,) from S,, we add two vertices w; and w, corresponding to
i=1

i=
S1 and S respectively. Thus V(DS(S,)) = V(Su) U{wy, w2} and E(DS(S,)) = E(Sn) U {v1wq,vy—qwq} U
{vjwy;2 <i<n-—2}.

When n = 3, the graph DS(S3) is isomorphic to K4. Then by Proposition 1.5, x(DS(S3)) = 4. But when
n # 3, DS(S,) contains a Cs, then by Proposition 1.2, x(DS(S,)) > 3. If we assign the colors as c(w;) =

c(wy) =c(u) =1, c(vgps1) =2, c(vy) =3,k €N, then x(DS(S,)) = 3. O
Theorem 2.9. ¢(DS(S,)) :{ i' :;:

Proof. When n = 3, the graph DS(S3) is isomorphic to Ky, by Proposition 1.5, ¢(DS(S3)) = 4

When n = 4, the graph DS(S4) has four vertices of degree at least three. Then m(DS(S4)) = 4. Then by
Proposition 1.4, ¢(DS(S4)) < 4. Suppose that DS(S4) does have a b-chromatic 4-coloring. By assigning the
proper coloring as c(u) = 1, c(v1) = 2, ¢(v2) = 3, ¢(v3) = 4 which in turn forces to assign c(w; ) is either by the
color 1 or 3 and c(wy) is either by the color 2 or 4. This proper coloring gives the b-vertices for the color classes
1 and 3 but not for 2 and 4. Similarly all other proper coloring using 4 colors will generate b-vertices at most
for two color classes only. Hence ¢(DS(S4)) # 4. Thus ¢(DS(Ss)) < 3. Also by Lemma 2.8, ¢(DS(S4)) > 3
Hence ¢(DS(S4)) = 3.

When n = 5 and 6, the graph DS(S;,) has the m-degree four. Thus ¢(DS(S,)) < 4. Suppose that DS(S,,)
does have a b-chromatic 4-coloring. By assigning the proper coloring as c(u) =1, c(v1) = c(v4) = 2,¢(v2) =3,
c(v3) = c¢(wq) = 4 which gives the b-vertices u, vy, vy, v3 for the color classes 1, 2, 3, and 4 respectively. Thus
go(DS(Sn)) =4

When n > 7, the graph DS(S,,) has the m-degree five. Thus ¢(DS(S,)) < 5. Suppose that DS(S;) does
have a b-chromatic 5-coloring. By assigning the proper coloring as c(v;) = 1, ¢(v1) = 2, c(u) = 4, c(v3) =5,
c(wy) = 3, ¢(vq) = 2 which in turn forces to assign c(vs) = 1. This proper coloring gives the b-vertices for
the color classes 1, 2 and 5 but not for 3 and 4. Similarly all other proper coloring with 5 colors will generate
b-vertices at most for three color classes only. Hence ¢(DS(S,)) # 5. Thus ¢(DS(S,)) < 4. If we assign the
colors as c(wq) = c(wp) =1, c(v3k_p) =2, c(var_1) = 3, c(v3r) = 4; k € N gives the b-vertices u, vy, v3, v4 for
the color classes 1, 3, 4 and 2 respectively. Thus ¢(DS(S,)) = 4. O
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Definition 2.10. The gear Graph, Gy, is obtained from the wheel by subdividing each of its rim edge.

That is, let Wy, = Cy, + K1 be the wheel graph with apex vertex v and the rim vertices v1,vy, ..., V. To obtain the gear
graph Gy, subdivide each rim edge of wheel Wy, by the vertices u, uy, ..., u, where each u; subdivides the edge v;v; 1 for
i=1,2,.,n—1and u, subdivides the edge v1v,. Then |V (G| = 2n + 1 and |E(G,| = 3n.

3, n=3

Lemma 2.11. x(DS(G,)) = { 2, n#3.

Proof. The gear graph G, has three types of vertices
(i) vertices of degree 2,
(if) vertices of degree 3
(iii) a vertex of degree .

Thus V(Gy) = {v;,u;,v} = S1US; U T where S1 = {v;}, So = {u;}, T = {v}=V(Gn) \ U S;. For obtaining

DS(Gy) from G,, we add two vertices wy and w, corresponding to S; and S respectively. Thus V(DS(Gy)) =
V(Gy) U{wy, wy} and E(DS(Gy)) = E(Gy) U {vjwq, ujws }.

When n = 3, DS(G3) contains a K3 (formed by the vertices v, wy and v), x(DS(G3)) > 3. If we assign the
colorsas ¢(v) =1, c(wq) = 2, c(wy) = 3, c(u;) =2, ¢c(v;) =3fori =1,2,...,n gives the proper coloring using
3 colors. Thus x(DS(G3)) = 3. But when n # 3, DS(G,) contains no odd cycles and it is a bipartite graph.

Hence by Proposition 1.5, x(DS(Gy)) = 2. 0O
5, n=3
Theorem 2.12. ¢(DS(G,)) = { L nt3

Proof. When n = 3, the graph DS(G3) contains five vertices of degree 4. Consequently m(DS(G3) = 5. Then
by Proposition 1.4, ¢(DS(G3)) < 5. Suppose that DS(G3) does have a b-chromatic 5-coloring. By assigning
the proper coloring as c(u1) = 1, c(up) = 3, c(uz) =2, c(v1) =3, c(v2) =2, ¢c(v3) =1,¢c(v) =4, c(wp) =4,
c(wy) = 5 then the vertices v3, v, v1, v, and w; are the b-vertices for the color classes 1, 2, 3, 4 and 5 respectively.
Thus ¢(DS(G3)) = 5.

When n # 3, the graph DS(G,,) contains at least five vertices of degree 4. Then m(DS(G,) = 5. Then by
Proposition 1.4, ¢(DS(G,)) < 5. Suppose that DS(G,,) does have a b-chromatic 5-coloring. By assigning the
proper coloring as c(v) = 1, c(v1) = 2, c(v2) = 3, c(v3) = 4, c(v4) = 5 gives the b- vertex v for the color
class 1. Again assume that c¢(u;) = 4 and c(u,) = 3 which in turn forces to assign c(w;) = 5 which is not
possible as the adjacent vertices w; and vy will receive the same color. Thus v1 is not a b- vertex for the color
class 2. Similarly we can prove that no v;’s are b-vertices when five colors are used for b-coloring. Hence
¢(DS(Gy)) # 5. But if we assign the colors as ¢(v) = 1, c(vsx_2) = 2, c(v3r_1) = 3, c(v3r) = 4; k € N which
gives the b- vertices v, v1, v and v3 for the color classes 1, 2, 3 and 4 respectively. Thus ¢(DS(G,)) = 4. Hence
the result.

We have the following obvious result stating the b-spectrum of DS(G,) as any proper coloring with x(G)
colors is a b-coloring. O

{3,4,5}, n=3
{2,3,4}, n#3

Proof. When n = 3, by assigning the colors as ¢(v) = 1, c(v1) = 2, c(v2) = 3, c(v3) =4, c(w1) = c(wp) =4
and c(u;) = 1fori = 1,2 and 3, the graph DS(G3) has the b-chromatic 4-coloring. But when n # 3, by
assigning the colors as c(v) = c(wq1) = c(wp) = 1, c(v;) = 2, ¢(u;) = 3fori = 1,2,..,n, DS(G,) has the
b-chromatic 3-coloring. Thus by Lemma 2.11 and Theorem 2.12, DS(G,,) is b-continuous and the b-spectrum

sios(G) = { By 128 =

Corollary 2.13. S;(DS(Gy)) = { and DS(Gy,) is b-continuous.
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3 Concluding Remarks

The study of b-coloring is important due to its applications in many real life problems like scheduling
problem, channel assignment problem, routing networks etc. Here we investigate b-chromatic number and
related parameters for the degree splitting graph of some graphs. We show that the degree splitting graph of
Gy, is b-continuous. The degree splitting graph of P, By, and S, are obviously b-continuous as any proper
coloring with x(G) colors is a b-coloring.
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