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Abstract
Some interesting properties of soft nano gω-continuous functions are discussed and provided with the counter
examples. Soft nano gω-irresolute continuous functions are studied along with their characterization. Specially,
we establish some notable results pertaining to soft nano perfectly continuous functions, soft nano strongly
continuous functions. Soft nano gω-homeomorphism is defined and its subclass soft nano (gω)∗-homeomorphism
is studied.
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1. Introduction
Many researchers have worked on the algebraic structure

of soft set theory and utilized soft sets in multicriteria decision-
making problems, applied the technique of knowledge reduc-
tion to the information table induced by the soft set. Also,
defined and discussed the several properties of soft images
and soft inverse images of soft sets with applications in medi-
cal diagnosis. In nano Topology, weaker forms of nano open
sets and nano continuous functions, their decomposition and
further work was carried by [2–5, 7, 9–11, 13–15, 18, 19, 22].
Sundaram [21], developed generalized homeomorphism con-
cept and in Nano topological spaces, nano homeomorphism
is given by Thivagar et.al [23].

The notion of soft nano topology was introduced by [1].
Patil et. al [16] defined soft nano disjoint dense sets whose
union forms soft nano resolvable space, soft nano extremally
disconnected and soft nano faint homeomorphism. A brief
study on soft nano irresolvable spaces, soft nano open heredi-
tarily irresolvable space and comparisons between such spaces,
along with levels of soft nano irresolvability has been pre-
sented.

Indeed a significant theme in soft nano topology concerns
the variously modified forms of soft nano continuity such as
soft nano strongly continuous, soft nano perfectly continuous,
soft nano irresolute functions. In this paper, analysis of prop-
erties of weaker forms of soft nano continuous functions with
soft nano gω-irresolute functions and its compositions are
done. This forms the basis for further extension of study in
contra soft nano generalized continuous functions. Introduc-
ing the concept of soft nano gω-homeomorphism, its subclass
soft nano (gω)∗-homeomorphism is developed.

2. Preliminaries

Definition 2.1. [1] Let the set of objects be denoted by U.
The soft approximation space is (U,R1,O1) where R1 is a soft
equivalence relation. Let X1 ⊆U:

1. Then (LR1(X1),O1) =∪{R1(x1) : R1(x1)⊆X1} is a soft
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lower approximation of X1 concerning to R1.

2. Then (UR1(X1),O1) = ∪{R1(x1) : R1(x1)∩X1 6= φ} is
a soft upper approximation of X1 concerning to R1.

3. Then (BR1(X1),O1)= (UR1(x1)−LR1(x1)) is a soft bound-
ary region of X1 concerning to R1.

Here are some definitions and results given by various
authors, helpful for further study.

Definition 2.2. [1] Let set of objects be denoted by U, R1 is a
soft equivalence relation and τR1(X1) = {U,φ ,(LR1(X1),O1),
(UR1(X1),O1),(BR1(X1),O1)} satisfies the following axioms.

1. U and φ ∈ τR1(X1).

2. The union of the elements of any finite subcollection
φ ∈ τR1(X1) is in φ ∈ τR1(X1).

3. The intersection of the elements of any finite subcollec-
tion φ ∈ τR1(X1) is in φ ∈ τR1(X1).

Then τR1(X1) is soft nano topology on U with respect
to X1, elements of the soft nano topology are known as the
soft nano open sets and (τR1(X1),U,O1) is called a soft nano
topological space.

Definition 2.3. [1] The soft nano closure of (A∗,O1) is de-
fined as the intersection of all soft nano closed sets containing
(A∗,O1) and is denoted by sn-cl(A∗,O1).

Definition 2.4. [17] A subset (B∗1,O1) of (τR1(X1),U,O1) is
known as sn-gω-closed if sn-cl(B∗1,O1) ⊆ (V ∗1 ,O1) when-
ever (B∗1,O1) ⊆ (V ∗1 ,O1) and (V ∗1 ,O1) is sn-semi-open in
(τR1(X1),U,
O1). The family of all sn-gω-closed sets over U is denoted by
sn-gω-C(X1,O1)

Definition 2.5. [17] The sn-gω-closure of subset (A∗1,O1) of
(τR1(X1),U,O1) is defined as sn-clgω (A∗1,O1) = ∩ {(G∗1,O1):
(G∗1,O1)⊆ (A∗1,O1), (G∗1,O1) is sn-gω-closed}.

Definition 2.6. [17] The sn-gω-interior of subset (A∗1,O1) of
(τR1(X1),U,O1) is defined as sn-intgω (A∗1,O1) = ∪ {(G∗1,O1):
(G∗1,O1)⊆ (A∗1,O1), (G∗1,O1) is sn-gω-closed}.

Definition 2.7. [17] If there exists sn-gω-open set (S∗1,O1)
such that x1 ∈ (S∗1,O1)⊆ (A∗1,O1), where (S∗1,O1) is a subset
of a soft nano topological space (τR1(X1),U,O1), then it is
said to be sn-gω neighborhood (briefly sn-gω nhd) of a point
x1 of U.

Definition 2.8. [17] A function F : (τR′ (X1),U1,O1)→ (τR′′ (
X1),U2,O2) is sn-gω continuous if the inverse image of every
sn-open in U2 is sn-gω open in U1.

Definition 2.9. [3] A map F : (U1,τR(X1)→ (U2,τR′ (X2) is
said to be nano ωg- closed map (resp. nano ωg-open map ) if
the image of every nano ωg-closed set (resp. nano ωg-open
set) in U2 is nano closed set (resp. nano open set) in U1.

Definition 2.10. [16] A soft nano (Y ∗1 ,O1) of soft nano topo-
logical space (τR′ (X1),U1,O1) is sn-dense, if sn- cl(Y ∗1 ,O1)=U1.

Definition 2.11. [3] A function F : U1→U2 is called homeo-
morphism, if

1. F is bijective

2. F is continuous

3. F is open.

Definition 2.12. [24] A function F : (X1,τ1)→ (X2,τ2) is
regular generalized star b-homeomorphism if F is both rg∗∗b-
continuous and rg∗∗b-open.

3. Soft Nano Continuous Functions

Definition 3.1. The function F : (τR′ (X1),U1,O1)→ (τR′′ (X1)
,U2,O2) is said to be;

1. soft nano strongly continuous (briefly, sn-δ -continuous),
if F−1(M∗1 ,O1) is soft nano clopen in U1 for each soft
nano subset (M∗1 ,O1) in U2.

2. soft nano perfectly continuous, if F−1(M∗1 ,O1) is soft
nano clopen in U1 for each soft nano subset (S∗1,O1) in
U2.

Definition 3.2. In a soft nano topological space (τR′ (X1),U1,
O1), Bsn = {U1,L(R′ (X1),B(R′ (X1)} is soft nano-basis for
τR′ (X1).

Theorem 3.3. A function F : (τR′ (X1),U1,O1)→ (τR′′ (X1),
U2,O2) is sn-gω-continuous if and only if the inverse image
of every member of Bsn is sn-gω-O(X1,O1).

Proof. Let (B∗1,O1) ∈ Bsn and F1 : (τR′ (X1),U1,O1)→ (τR′′ (
X1),U2,O2) be sn-gω-continuous on (τR′ (X1),U1,O1). Then
(B∗1,O1) is sn-O(X1,O1), F−1(V ∗,O1) is sn-gω-O(X1,O1), as
F is sn-gω-continuous. Therefore the inverse image of every
member of Bsn is sn-gω-O(X1,O1).
Conversely, let inverse image of every member of Bsn be
sn-gω-O(X1,O1). Let (H∗1 ,O1) = ∩{(V ∗,O1) : (V ∗,O1) ∈
(B∗1,O1)} where (B∗1,O1)⊂ Bsn. Then F−1(H∗1 ,O1) = F−1(∪
{(V ∗,O1) : (V ∗,O1)∈ (B∗1,O1)} =∪{F−1(V ∗,O1) : (V ∗,O1)∈
(B∗1,O1)} where each F−1(V ∗,O1) is sn-gω-O(X1,O1). Also
their function F−1((H∗1 ,O1)) is sn-gω-O(X1,O1). Hence
F : (τR′ (X1),U1,O1) → (τR′′ (X1),U2,O2) is sn-gω continu-
ous.

Theorem 3.4. Let F : (τR′ (X1),U1,O1)→ (τR′′ (X1),U2,O2)
be sn-onto, sn-gω-continuous function. If (G∗,O1) is sn-
gω-dense in (τR′ (X1),U1,O1), then F(G∗,O1) is sn-dense in
(τR′′ (X1),U2,O2).

Proof. Given (G∗,O1) is sn-gω-dense in (τR′ (X1),U1,O1).
Thus sn-clgω(G∗,O1) = U1. As F is sn-onto, F(sn-clgω(G∗,O1))
= F(U1) = U2. Here F(sn-clgω(G∗,O1))⊆ sn-cl(F(G∗,O1)) as
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F is sn-gω-continuous. Here sn-cl(F(G∗,O1))⊆U2 and U2 ⊆
sn-cl(F(G∗,O1)) implies that sn-cl(F(G∗,O1)) = U2. There-
fore F(G∗,O1) is sn-dense in (τR′ (X1),U1,O1). Hence a sn-
continuous function maps sn-gω-dense sets into sn-dense sets
whenever it is sn-onto.

4. Soft Nano-gω-Irresolute Functions
The stronger form of sn-gω-continuous functions, sn-gω-

irresolute functions in soft nano topological space is intro-
duced and its characterizations is mentioned.

Definition 4.1. A function F : (τR′ (X1),U1,O1)→ (τR′′ (X1),

U2,O2) is sn-gω-irresolute, if F−1(M∗,O1) is sn-gω-open for
every sn-gω-open set (M∗,O1) in U2.

Remark 4.2. The function F : (τR′ (X1),U1,O1)→ (τR′′ (X1),
U2,O2) is sn-gω-irresolute if and only if the inverse image of
every sn-gω-closed set U2 is sn-gω-closed in U1.

Theorem 4.3. Composition of two sn-gω-irresolute functions
is again a sn-gω-irresolute function.

Proof. Let F1 : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) and F2 :
(τR′′ (X2),U2,O2)→ (τR′′′ (X3),U3,O3) are two sn-gω-irresolute
functions. Let (M∗,O3) be a sn-gω-C(X3,O3). Since F2 is
sn-gω-irresolute function, F−1

2 (M∗,O3) is sn-gω-C(X2,O2).
Then F−1

1 (F−1
2 (M∗,O3)), the inverse image of F−1

2 (M∗,O3)
under sn-gω-irresolute function F1 is sn-gω-C(X1,O1). Hence,
the composition F2 ◦F1 is sn-gω-irresolute function.

Theorem 4.4. Let F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2)
be a sn-gω-irresolute function, then F is sn-gω-continuous
function.

Proof. Let F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) be a sn-
gω-irresolute function and (M∗,O1) is sn-C(X1,O1).Then (M∗,
O1) is sn-gω-closed set [17]. From the definition 4.1, F−1(M∗,
O1) is sn-gω-C(X1,O1). Therefore F is sn-gω-continuous
function.

Remark 4.5. Converse of the above theorem need not be true
in general as seen by following example.

Example 4.6. Let U1 = {ε1,ε2,ε3,ε4}, X1 = {ε1,ε3}, U1/R
′
=

{{ε1,ε4},{ε2},{ε3}}, τR′ (X1)= {U1, /0,(k1,{ε3}),(k2,{ε3}),
(k3,{ε3}),(k1,{ε1,ε4}),(k2,{ε1,ε4}),(k3,{ε1,ε4}),(k1,{ε1,
ε3,ε4}),(k2,{ε1,ε3,ε4}),(k3,{ε1,ε3,ε4})}. And {ε1,ε2,ε4},
{ε2,ε3}, {ε2} ∈ sn−C(X1,O1). Let U2 = {ε

′
1,ε

′
2,ε

′
3,ε

′
4}, X2 =

{ε ′1,ε
′
2,ε

′
3}, U2/R

′′
= {{ε ′1,ε

′
3},{ε

′
2},{ε

′
4}} then τR′′ (X2) =

{U2, /0,(k
′
1,{ε

′
1,ε

′
3,ε

′
4}),(k

′
2,{ε

′
1,ε

′
3,ε

′
4}),(k

′
3,{ε

′
1,ε

′
3,ε

′
4}), (k

′
1,

{ε ′2}),(k
′
2,{ε

′
2}), (k

′
3,{ε

′
2}),(k

′
1,{ε

′
1,ε

′
3k}),(k′2,{ε

′
1,ε

′
3}),(k

′
3,

{ε ′1,ε
′
3})} and {ε ′1,ε

′
3,ε

′
4},{ε

′
2},{ε

′
3} ∈ sn−O(X2,O2). De-

fine a function F : (τR′ (X1),U1,O1) → (τR′′ (X2),U2,O2) as
F(ε1) = ε

′
1,F(ε2) = ε

′
2,F(ε3) = ε

′
3 and F(ε4) = ε

′
4. Since

F−1({ε ′3}) = {ε3} is not sn-gω-O(X1,O1), but {ε ′3} is sn-
gω-O(X2,O2). Hence F sn-gω-continuous but not sn-gω-
irresolute.

Theorem 4.7. If F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is
sn-gω-continuous and F2 : (τR′′ (X2),U2,O2)→ (τR′′′ (X3),U3,
O3) is sn-continuous. Then, F2 ◦F1(τR′ (X1),U1,O1)→ (τR′′′ (
X3),U3,O3) is sn-gω-continuous function.

Proof. Let (P∗,O3) ∈ sn-O(X3,O3). Then F−1
2 (P∗,O3) is

sn-O(X2,O2) as F2 is sn-continuous. Thus F−1
2 (P∗,O3) is

sn-gω- O(X2,O2) by [17]. Here, F−1
1 (F−1

2 (P∗,O3)) = (F2 ◦
F1)−1(P∗,O3) is sn-gω-O(X1,O1) and F2◦F1 is sn-gω-continu
ous.

Theorem 4.8. If F1 : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is
sn-gω-irresolute and F2 : (τR′′ (X2),U2,O2)→ (τR′′′ (X3),U3,
O3) is sn-g-continuous. Then, F2 ◦ F1(τR′ (X1),U1,O1) →
(τR′′′ (X3),U3,O3) is sn-gω-continuous function.

Proof. Let (H∗,O3) ∈ sn-O(X3,O3). Then F−1
2 (H∗,O3) is sn-

g-O(X2,O2) as F2 is sn-g-continuous. Thus F−1
2 (H∗,O3) is

sn-gω- O(X2,O2). Then F−1
1 (F−1

2 (H∗,O3)) = (F2 ◦F1)−1(H∗,
O3) is sn-gω-O(X1,O1) and F2 ◦F1 is sn-gω-continuous.

Theorem 4.9. If F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is
sn-gω irresolute and F2 : (τR′′ (X2),U2,O2)→ (τR′′′ (X3),U3,O3)
is sn-gω-continuous. Then, F2◦F1(τR′ (X1),U1,O1)→ (τR′′′ (X3
),U3,O3) is sn-gω-continuous function.

Proof. Let (M∗,O3) be a member of sn-O(X3,O3). Then
F−1

2 (M∗,O3) is sn-gω-O(X2,O2) as F1 is sn-gω-irresolute,
then F−1

1 (F−1
2 (M∗,O3)) = (F2◦F1)−1(H∗,O3) is sn-gω-O(X1,

O1) and therefore F2 ◦F1 is sn-gω-continuous.

5. Soft Nano-gω-homeomorphisms
In this section soft nano-gω-homeomorphism is intro-

duced and its several properties are discussed.

Definition 5.1. The function F : (τR′ (X1),U1,O1)→ (τR′′ (X2)
,U2,O2) is a called sn-gω homeomorphism, if

1. F is bijective.

2. F is sn-gω-continuous.

3. F is sn-gω-open.

Theorem 5.2. A bijective function F : (τR′ (X1),U1,O1) →
(τR′′ (X2),U2,O2) is sn-gω-homeomorphism if and only if F is
sn-gω-closed and sn-gω-continuous.

Proof. Let F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) be a sn-
gω-homeomorphism and by definition 5.1, F is sn-gω-continu-
ous. Let (P∗,O1) ∈ sn-C(X1,O1), then U1− (P∗,O1) is sn-
C(X1,O1) and F(U1−(P∗,O1)) is sn-gω-O(X2,O2) as F is sn-
gω-open. That is U2−F(P∗,O1) is sn-gω-O(X2,O2). Thus
F(P∗,O1) is sn-gω-C(X2,O2) for every sn-closed set (P∗,O1)
in (τR′ (X1),U1,O1). Therefore the function F is sn-gω-closed.
Conversely, let F be sn-gω-continuous function and sn-gω-
closed. Let (S∗,O1) ∈ sn-O(X1,O1). As F is sn-gω-closed,
F(U1− (S∗,O1)) is sn-gω-C(X2,O2). Here F(U1− (S∗,O1))
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= U2−F(S∗,O1) is sn-gω-C(X2,O2). Thus F(S∗,O1) is sn-
gω-O(X2,O2) for every sn-open set (P∗,O1) and F : (τR′ (X1),
U1,O1)→ (τR′′ (X2),U2,O2) is sn-gω-homeomorphism.

Theorem 5.3. If a function F : (τR′ (X1),U1,O1)→ (τR′′ (X2),
U2,O2) is soft nano homeomorphism, then it is soft nano-gω-
homemorphism but the converse is not true.

Proof. A soft nano homeomorphism function F is soft nano
continuous, bijective and soft nano open. Then F is sn-gω-
continuous by [17] and thus inverse image of every sn-gω-
O(X2,O2) is sn-O(X1,O1).

Remark 5.4. Converse of the above theorem 5.3 is not true
in general.

Example 5.5. Let U1 = {ε1,ε2,ε3,ε4}, X1 = {ε1,ε2,ε4} ⊆
U1,O1 = {k1,k2,k3}. U2 = {ε

′
1,ε

′
2,ε

′
3,ε

′
4}, O2 = {k

′
1,k

′
2,k

′
3},

X2 = {ε
′
1,ε

′
2,ε

′
3}⊆U2. τR′ (X1)= {U1, /0,(k1,{ε1}),(k2,{ε1}),

(k3,{ε1}) {(k1,{ε2,ε4}),(k2,{ε2,ε4}),(k3,{ε2,ε4}),(k1,{ε1

,ε2,ε4}),(k2,{ε1,ε2,ε4}),(k3,{ε1,ε2,ε4})}. U2/R
′′

= {{ε ′1,
ε
′
3},{ε

′
2},{ε

′
4}} then τR′′ (X2) = {U2, /0,(k

′
1, {ε ′1,ε

′
2,ε

′
3}), (k

′
2

,{ε ′1,ε
′
2,ε

′
3}),(k

′
3,{ε

′
1,ε

′
2,ε

′
3}),(k

′
1,{ε

′
2}),(k

′
2,{ε

′
2}),(k

′
3,{ε

′
2

}),(k′1,{ε
′
1,ε

′
3}),(k

′
2,{ε

′
1,ε

′
3}),(k

′
3,{ε

′
1,ε

′
3}) Define a function

F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) as F(ε1)= ε
′
1, F(ε2)

= ε
′
2,F(ε3)= ε

′
4, F(ε4)= ε

′
3. Here sn-gω closed sets in U1 are

U1 = {ε3},{ε1,ε3},{ε2,ε3},{ε3,ε4},{ε1,ε2,ε3},{ε1,ε3,ε4},
{ε2,ε3,ε4} and sn-gω closed sets in U2 are, U2 = {ε

′
4},{ε

′
1,ε

′
4

},{ε ′2,ε
′
4},{ε

′
3,ε

′
4},{ε

′
1,ε

′
2,ε

′
4},{ε

′
1,ε

′
3,ε

′
4},{ε

′
2,ε

′
3,ε

′
4}. Here

F is bijective and inverse image of every soft nano closed set in
U2 is sn-gω closed in U1. Thus F is sn-gω-continuous. The im-
age of every soft nano open set in U1 is sn-gω open in U2. Thus
F is sn-gω open.Therefore F is sn-gω-homeomorphism.But
F is not sn-homeomorphism, as F−1(ε

′
3,ε

′
4) = {ε2,ε3}is not

sn-closed in U1.

Theorem 5.6. A one to one mapping F : (τR′ (X1),U1,O1)
→ (τR′′ (X2),U2,O2) is sn-gω-homeomorphism if and only if
F(sn−clgω(M∗,O1)) = sn-cl(F(M∗,O1)) for every sn-subset
(M∗,O1) of (τR′ (X1),U1,O1).

Proof. Let F : (τR′ (X1),U1,O1) → (τR′′ (X2),U2,O2) be an
sn-gω-homeomorphism. Then F is sn-gω-closed and sn-gω-
continuous. As F is sn-gω-continuous, for (M∗,O1)⊆U1, we
have F(sn− clgω(M∗,O1)) ⊆ sn-cl(F(M∗,O1)). Since sn−
clgω(M∗,O1) is sn-cl(X1,O1) and F is sn-gω-closed function,
F(sn-clgω(M∗,O1)) is sn-gω-cl(X2,O2). Also, sn-Clgω(F(sn-
Clgω(M∗,O1))) = F(sn-Clgω(F(M∗,O1))). Since (M∗,O1)⊆
sn-clgω(M∗,O1), F(M∗,O1)⊆ F(sn-clgω(M∗,O1)) and thus
it follows that sn-cl(F(M∗,O1))⊆ sn-cl(F(sn−Clgω(M∗,O1)))
= F(sn−clgω(M∗,O1)). Therefore sn-cl(F(M∗,O1))⊆F(sn-
clgω(M∗,O1)). Hence F(sn−clgω(M∗,O1))= sn-cl(F(M∗,O1))
if F is sn-gω-homeomorphism.

Theorem 5.7. For the sn-gω-continuous function F : (τR′ (X1),U1
,O1)→ (τR′′ (X2),U2,O2), the following are equivalent.

1. F is sn-gω-open

2. F is sn-gω-homeomorphism

3. F is sn-gω-closed.

Proof. (i) ⇒ (ii), By hypothesis, F : (τR′ (X1),U1,O1) →
(τR′′ (X2),U2,O2) is bijective, sn-gω-continuous, and sn-gω-
open. Thus F is sn-gω-homeomorphism.
(ii)⇒ (iii), Let (M∗,O1) be sn-O(X1,O1), then (M∗,O1)

c is
sn-O(X1,O1). By the hypothesis, F is sn-gω-homeomorphism
and thus sn-gω-open. By assumption, F((M∗,O1)

c) is sn-
gω-O(X2,O2). Thus F((M∗,O1)

c) = (F(M∗,O1))
c is sn-gω-

O(X2,O2). Therefore F(M∗,O1) is sn-gω-C(X2,O2) for ev-
ery sn-closed set (M∗,O1) in (τR′ (X1),U1,O1). Hence F is
sn-gω-closed function.
(iii) ⇒ (i), Let (V ∗,O1) be sn-O(X1,O1), then (V ∗,O1)

c is
sn-C(X1,O1). By the hypothesis, F((V ∗,O1)

c) is sn-gω-
C(X2,O2) is sn-gω-closed in (τR′′ (X2),U2,O2). Here F((V ∗,
O1)

c) = (F(V ∗,O1))
c is sn-gω-C(X2,O2). That is F(V ∗,O1)

is sn-gω-O(X2,O2) for every sn-open set (V ∗,O1) in (τR′ (X1),
U1,O1). Therefore F is sn-gω-open function.

6. Soft Nano-gω∗-homeomorphisms

Here a new class of mapping known as sn-(gω)∗-
homeomorphisms are introduced. These are the subclasses
of sn-gω-homeomorphisms and which include the class of
sn-homeomorphisms.

Definition 6.1. A bijective map F : (τR′ (X1),U1,O1)→ (τR′′ (
X2),U2,O2) is said to be sn-(gω)∗-homeomorphism if both F
and F−1 are sn-gω-irresolute. The spaces (τR′ (X1),U1,O1)
and (τR′′ (X2),U2,O2) are sn-(gω)∗-homeomorphism if there
exists a sn-(gω)∗-homeomorphism from (τR′ (X1),U1,O1) onto
(τR′′ (X2),U2,O2).

The family of all sn-gω-homeomorphism of (τR′ (X1),U1,
O1) onto itself is denoted by sn-gω-H(τR′ (X1),U1,O1) and
family of all sn-(gω)∗-homeomorphism of (τR′′ (X2),U2,O2)
onto itself is denoted by sn-(gω)∗-H(τR′′ (X2),U2,O2).
To denote the algebraic structure of the set of all sn-(gω)∗-
homeomorphisms, we have the following.
sn-(gω)∗-H(τR′ (X1),U1,O1) = {F/ F : (τR′ (X1),U1,O1)→
(τR′′ (X2),U2,O2) is sn− (gω)∗−homeomorphism}.

Theorem 6.2. For the space(τR′ (X1),U1,O1), sn-(gω)∗-H(τR′′

(X2),U2,O2)⊆ sn-gω-H(τR′ (X1),U1,O1).

Proof. The proof follows by the fact that every sn-gω-irresolute
function is sn-gω-continuous and every sn-(gω)∗-open map
is sn-gω-open.

Theorem 6.3. The set sn-(gω)∗-H(τR′ (X1),U1,O1) is a group
under composition of functions.

Proof. Let ∗ : sn− (gω)∗-H(τR′ (X1),U1,O1) → sn-(gω)∗-
H(τR′ (X1),U1,O1) be a binary operation defined as F1 ∗F2 =
F2 ◦F1. For all F1,F1 ∈ sn− (gω)∗-H(τR′ (X1),U1,O1) and ◦
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is the usual operation under composition of functions. As
F2 ◦F1 ∈ sn− (gω)∗−H(τR′ (X1),U1,O1). The associative
law is satisfied by the composition of functions. The iden-
tity function IF : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is the
identity element and belongs to sn− (gω)∗-H(τR′ (X1),U1,

O1). As F ∈ sn− (gω)∗ −H(τR′ (X1),U1,O1) then F−1 ∈
sn− (gω)∗−H(τR′ (X1),U1,O1) such that F ◦F−1 = F−1 ◦
F = IF and thus the inverse exists for each element of sn−
(gω)∗−H(τR′ (X1),U1,O1). Therefore (sn− (gω)∗−H(τR′ (
X1),U1,O1),◦) is group under the composition of functions.

Theorem 6.4. Let F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2)
be a (sn− (gω)∗-homeomorphism, then F induces an isomor-
phism from the group sn− (gω)∗−H(τR′ (X1),U1,O1) onto
the group sn− (gω)∗−H(τR′ (X1),U1,O1).

Proof. For the function F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,
O2), a mapping is defined as ψ∗F : sn−(gω)∗−H(τR′ (X1),U1,
O1)→ sn−(gω)∗−H(τR′′ (X2),U2,O2) by ψ∗F(H) = F ◦H ◦
F−1 = ψ∗F(H) for every H ∈ sn−(gω)∗−H(τR′ (X1),U1,O1).
By the hypothesis, ψ∗F is a bijection. Therefore for all H1,H2 ∈
sn− (gω)∗−H(τR′ (X1),U1,O1), F ◦ (H1 ◦H2)◦F−1 = (F ◦
H1 ◦F−1)◦ (F ◦H2 ◦F−1) = ψ∗F(H1)◦ψ∗F(H2). Hence ψ∗F is
sn-homemorphism and thus it is sn-isomorphism induced by
F.

It is clear from the following example, that the converse of
the Theorem 6.4 need not be true in general. This shows that
there exists a function F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2)
which is not sn-(gω)∗-homeomorphism but induced an iso-
morphism ψ∗F : sn-(gω)∗-H(τR′ (X1),U1,O1)→ sn-(gω)∗-H(τR′′

(X2),U2).

Example 6.5. Let U1 = {ε1,ε2,ε3}, X1 = {ε1} ⊆U1,O1 =

{k1,k2,k3}. U2 = {ε
′
1,ε

′
2,ε

′
3}, O2 = {k

′
1,k

′
2,k

′
3},X2 = {ε

′
1,ε

′
3}

⊆ U2, τR′ (X1)= {U1, /0,(k1,{ε1}),(k2,{ε1}),(k3,{ε1}) and
U2/R

′′
= {{ε ′1,ε

′
3} then τR′′ (X2) = {U2, /0,(k

′
1, {ε ′1,ε

′
3}), (k

′
2,{ε

′
1,

ε
′
3}),(k

′
3,{ε

′
1,ε

′
3})}) Define the function F : (τR′ (X1),U1,O1)

→ (τR′′ (X2),U2,O2) as F(ε1) = ε
′
2, F(ε2) = ε

′
3,F(ε3) = ε

′
1.

Here sn-gω closed sets in U1 = {ε2},{ε3 and sn-gω closed
sets in U2 = {{ε ′2},{ε

′
1,ε

′
2},{ε

′
2,ε

′
3},{ε

′
3,ε

′
4}}. Here F and

F−1 are not sn-gω irresolute and so F is not sn-(gω)∗-homeo-
morphism. Define the functions H1 : (τR′ (X1),U1,O1) →
(τR′ (X1),U1,O1) as H1(ε1) = ε

′
1,H1(ε2) = ε

′
3,H1(ε3) = ε

′
2

and H2 : (τR′′ (X2),U2,O2) → (τR′′ (X2),U2,O2) defined as
H2(ε1) = ε

′
3,H2(ε2) = ε

′
2,H2(ε3) = ε

′
1. Here H1 and H2 are

sn-(gω)∗-homeomorphism and it follows that sn-(gω)∗-H(τR′

(X1),U1,O1)= {H1, IU1} and sn-(gω)∗-H(τR′′ (X2),U2,O2) =
{H2, IU2} where IU1 : (τR′ (X1),U1,O1) → (τR′ (X1),U1,O1)
and IU2 : (τR′′ (X2),U2,O2) → (τR′′ (X2),U2,O2) are identity
functions. Now ψ∗F(H1)= F ◦H1 ◦F−1 = H2 with ψ∗F(IU1) =
IU2 and hence the induced homeomorphism ψ∗F : sn-(gω)∗-
H(τR′ (X1),U1,O1)→ sn-(gω)∗-H(τR′′ (X2),U2,O2) is an iso-
morphism.

Theorem 6.6. If the function: F1 : (τR′ (X1),U1,O1)→ (τR′′ (
X2),U2,O2) and F2 : (τR′′ (X2),U2,O2) → (τR′′′ (X3),U3,O3)
are sn− (gω)∗-homeomorphisms, then the composition F2 ◦
F1 : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is also sn− (gω)∗-
homeomorphism.

Proof. Let (P∗,O1) ∈ sn-gω-O(X3,O3). Here (F2 ◦F1)
−1(

P∗,O1) = F−1
1 (F−1

2 (P∗,O1)) =F−1
1 (M∗,O1) where (M∗,O1)

= F−1
2 (P∗,O1) as F2 is sn-(gω)∗-homeomorphism and thus

(M∗,O1) is sn-gω-O(X2,O2), by the hypothesis. Also, F−1
1 (M∗

,O1) is sn-gω-O(X1,O1). Therefore (F2 ◦ F1)
−1(P∗,O1)=

F−1
1 (M∗,O1) is sn-gω-O(X1,O1) for every sn-gω-open set

(P∗,O1) in (τR′′′ (X3),U3,O3). Thus the composition F2 ◦F1 :
(τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is sn-(gω)∗-irresolute.

Theorem 6.7. A function F1 : (τR′ (X1),U1,O1)→ (τR′′ (X2)

,U2,O2) is sn-(gω)∗-homeomorphism, then sn-gω-cl(F−1
1 (M∗

,O1)) = F−1
1 (sn−gω−cl(M∗,O1)) for all (M∗,O1)⊆ (τR′′ (

X2),U2,O2).

Proof. The function F is sn-(gω)∗-homeomorphism, it im-
plies that F is sn-gω-irresolute. As sn-gω-cl(M∗,O1) is sn-
gω-C(X2,O2),F−1

1 (sn−gω−cl(M∗,O1)) is an sn-gω-C(X1,

O1). Now F−1
1 (M∗,O1) ∈ (sn−gω− cl(M∗,O1)) and so sn-

gω-cl (F−1
1 (M∗,O1))∈ F−1

1 (sn−gω−cl(M∗,O1)). Aslo, as
F is sn-(gω)∗-homeomorphism, F−1

1 is sn-gω-irresolute and
as sn-gω-cl(F−1

1 (M∗,O1)) is sn-gω-cl(X1,O1),(F−1
1 )−1(sn−

gω− cl(F−1
1 (M∗,O1))) = F(sn−gω− cl(F−1

1 (M∗,O1))) is
sn-gω-cl(X2,O2). Now (M∗,O1)⊆ (F−1

1 )−1(F−1
1 (M∗,O1)⊆

(F−1
1 )−1(sn−gω−cl(F−1

1 (M∗,O1))) = F(sn−gω−cl(F−1
1 (

M∗,O1))) and so, sn-gω-cl(M∗,O1)⊆F(sn−gω−cl(F−1
1 (M∗,

O1)). It is clear that F−1
1 (sn−gω−cl(M∗,O1))⊆F−1

1 (F(sn−
gω − cl(F−1

1 (M∗,O1)))) ⊆ sn− gω − cl(F−1
1 (M∗,O1)) and

therefore the equality holds.

Corollary 6.8. Let F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2)
be an sn-(gω)∗-homeomorphism, then sn-gω-cl(F(M∗,O1))
= F(sn−gω−cl(M∗,O1)) for all (M∗,O1)⊆ (τR′ (X1),U1,O1).

Proof. As F : (τR′ (X1),U1,O1) → (τR′′ (X2),U2,O2) is sn-
(gω)∗-homeomorphism, it follows that F−1 : (τR′′ (X2),U2,O2)
→ (τR′ (X1),U1,O1) is also sn-(gω)∗-homeomorphism. There-
fore, sn-gω-cl(F−1

1 )−1(M∗,O1) = (F−1
1 )−1(sn−gω−cl(M∗,

O1)) for all (M∗,O1) ⊆ (τR′ (X1),U1,O1). That is sn-gω-
cl(F(M∗,O1)) = F(sn−gω− cl(M∗,O1)).

Corollary 6.9. If F : (τR′ (X1),U1,O1)→ (τR′′ (X2),U2,O2) is
sn-(gω)∗-homeomorphism, then F(sn−gω− int(M∗,O1)) =
sn−gω−int(F(M∗,O1)) for all (M∗,O1)⊆ (τR′ (X1),U1,O1).

Proof. For the set (M∗,O1) ⊆ (τR′ (X1),U1,O1), it follows
that sn−gω−int(M∗,O1) = sn−gω−cl((M∗,O1)

c)c. There-
fore F(sn−gω−int(M∗,O1))=F(sn−gω−cl((M∗,O1)

c)c)
= (F(sn-gω-cl((M∗,O1)

c))c = (sn-gω-cl(F(M∗,O1))
c)c

= sn-gω-int(F(M∗,O1)).
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Corollary 6.10. If the function F : (τR′ (X1),U1,O1)→ (τR′′ (X2

),U2,O2) is sn-(gω)∗-homeomorphism, then F−1(sn−gω−
int(M∗,O1)= sn−gω−int(F−1(M∗,O1)) for all (M∗,O1)⊆
(τR′′ (X2),U2,O2).

Proof. Proof follows from the corollary 6.9.

7. Conclusion
Extensive research work has been carried out by researchers

in the field of soft nano topology. The present paper depicts
the importance of soft nano gω-continuous functions, soft
nano gω-irresolute, soft nano homeomorphism, soft nano gω-
homeomorphism and soft nano (gω)∗ homeomorphism. This
work is helpful in the development of different forms of soft
nano generalized homeomorphism and their interrelationship.
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