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Transmission dynamic of Tuberculosis in two
dissimilar groups through pathogens: A SIRS model
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Abstract
Tuberculosis is a communicable disease which spreads in the human population through pathogens. Coughing
by the infective individual generate large number of droplets. In this paper, a SIRS mathematical model is
proposed to study the transmission of Tuberculosis by droplet infection in two dissimilar groups, considering
the economic status of the individuals. The basic reproduction number R0 from the model has been derived for
the study of disease dynamics. It has been shown that the disease free equilibrium point is stable if R0 < 1 and
unstable if R0 > 1. It has been also shown that the unique endemic equilibrium point exists when R0 > 1. It may
be concluded that if R0 < 1 then the disease will not spread and if R0 > 1 then the disease will be endemic in
the population. We have also concluded from the analysis of the model that Tuberculosis can be controlled by
reducing the rate at which an infective individual produces pathogens. The analytical results are supported by
the relevant graphs.
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1. Introduction

A Tubercle bacterium (Mycobacterium Tuberculosis) is the
principle component of chronic infectious disease like Tu-

berculosis. Tuberculosis (TB) is a bacterial disease with
Mycobacterium Tuberculi (MTB) as its primary causative
agent. Other Mycobacteria such as Mycobacterium bevies,
Mycobacterium africanum, Mycobacterium canetti and My-
cobacterium microti are also its causes [1]. It is one of the
largest cause of death from an infectious agent in developing
countries [2, 3]. Infectious diseases have a profound effect
on human populations, including their evolution and cultural
development. Despite significant advances in medical science,
infectious diseases continue to impact human populations in
many parts of the world.

Tuberculosis is spread mainly by droplets of infectious
case. Coughing by infective individual generates the large
number of droplets [4] and mathematical models have been
studied in this regard for the spread of infectious disease
[4, 5] . It can also spread through use of an infected persons
unsterilised eating utensils and in rare cases a pregnant woman
with active TB can infect her foetus (vertical transmission)
[6, 7]. Transmission can only occur from people with active
TB but not latent TB. This transmission from one person
to another depends upon the number of infectious droplets
expelled by a carrier, the effectiveness of ventilation, duration
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of the exposure and virulence of the MTB strain. The chain of
transmission can therefore be broken by isolating patients with
active disease and starting effective anti-tuberculosis therapy
[7–15].

At present, about 95% of the estimated 8 million new
cases of TB occurring each year are in developing countries,
where 80% occur among people between the ages of 15–59
years [7]. In sub-Saharan Africa and also in developing coun-
tries, TB is the leading cause of mortality, it accounts for an
estimated 2 million deaths which accounts for a quarter of
avoidable adult deaths [7]. It is known that factors such as
endogenous reactivation, emergence of multi-drug resistant
TB, and increase in HIV incidence in the recent years call for
improved control strategies for TB.

Tuberculosis is one of India’s major public health prob-
lems. According to WHO estimates, India has the world’s
largest Tuberculosis epidemic . Many research studies have
shown the effects and concerns revolving around TDR-TB, In
India social and economic positions are still in progression.
In Zarir Udwadia’s report originated from the Hinduja Hos-
pital in Mumbai, India explicitly discusses the drug-resistant
effects and results. Approximately 30% of individuals con-
tacted with an active-TB patient become infected and around
10% of infected individuals develop active-TB.[16–19].

In this paper, population is divided into two groups (first
group of individuals belonging to economically lower strata
and second group of individuals belonging to economically
upper strata). Hence the two subpopulations can vary for
this TB model which is based on the SIRS model. The basic
Reproduction number R0 is being calculated for determining
the existence and stability of disease free equilibrium point
and endemic equilibrium point.

It is assumed that the existence of the disease depends
on two controlled measures one is rate at which an infec-
tive individual produces pathogens (η1 and η2) and rate of
transmission from pathogens to susceptible humans (β1 and
β2).

2. Formulation of Model
We consider underlying human population (N) which is

divided into two dissimilar groups, one is economically lower
strata (N1) and second is economically upper strata (N2). Since
in the period of illness, most of the infective of higher strata
group keep them isolated and because of their higher income
status they are able to live without work for the period of
illness, but most of the people belonging to lower income
group have to go for work even in the illness period, so the
production of droplets by higher strata group is less than lower
strata group. Tuberculosis infection is more or less uniformly
distributed in urban, semi urban and rural areas. Thus the vast
majority of cases are to be found in rural and semi urban areas,
where more than 80% of the country’s population lives. In
urban areas, Tuberculosis is found more frequently in slum
dwellers and lower socio-economic groups than in well-to-do
groups. i.e. both groups are dissimilar in nature [20].

Figure 1. Schematic diagram of the model

Suppose

N = N1 +N2

Further lower strata population N1 is divided into three classes:
Susceptible (S1), Infected (I1) and Recovered (R1) belonging
to lower strata group. Similarly upper strata population N2 is
divided into three classes: Susceptible (S2), Infected (I2) and
Recovered (R2) belonging to upper strata group.

P is pathogens class which is produced by droplets of
infected individuals [4].

In the formulation of this model; λ1,λ2 are rate of re-
cruitment of human individuals S1 and S2 respectively. The
susceptible population S1 and S2 decrease due to the infection
following contact with pathogens at a constant rate β1 and β2,
respectively and by natural death rate µ .

When S1 and S2 come in contact with pathogens P, in-
fected population I1 and I2 are increased by terms β1S1P and
β2S2P, respectively and there is decrease in I1 and I2 due to
disease induced death with the rate of σ1 and σ2, respectively
and infected becomes recovered with the rate of α1I1 and
α2I2, respectively, which generate the class R1 and R2 class
respectively, recovered people become susceptible at the rate
of ϑ1 and ϑ2 respectively.

We have discussed earlier that infection spread through
pathogens produced by droplets from infected persons instead
of directed contact of individuals, therefore it is assumed in
the model that, the pathogens population P has been generated
through infected individual I1 and I2 at a constant produce
rates η1 and η2, respectively where (η1 > η2) [21] and these
pathogens are diminished due to natural death at the rate of δ .

A mathematical model for transmission of Tuberculosis
by pathogens in two dissimilar groups has been framed with
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the help of following system of non linear ordinary differential
equations;

dS1

dt
= λ1−β1S1P−µS1 +ϑ1R1 (2.1)

dI1

dt
= β1S1P− (α1 +µ +σ1)I1 (2.2)

dR1

dt
= α1I1−µR1−ϑ1R1 (2.3)

dS2

dt
= λ2−β2S2P−µS2 +ϑ2R2 (2.4)

dI2

dt
= β2S2P− (α2 +µ +σ2)I2 (2.5)

dR2

dt
= α2I2−µR2−ϑ2R2 (2.6)

dP
dt

= η1I1 +η2I2−δP (2.7)

With initial conditions
Si(0) = Si0 > 0, Ii(0) = Ii0 > 0, Ri(0) = Ri0 > 0, for i = 1,2

P(0) = P0 > 0. (2.8)

where
λi = Recruitment rate of human individuals.
βi = Transmission rate of infection from pathogens to

susceptibles humans.
µ = Natural death rate for human individuals.
ϑi = Rate at which recovered individuals become sus-

ceptibles.
αi = Recovery rate.
σi = Disease induced death rate.
ηi = Rate at which an infective individual produces

pathogens.
δ = Natural death rate for pathogens.

Now N1 = S1 + I1 +R1 and N2 = S2 + I2 +R2 are total popu-
lation sizes of lower and upper strata groups respectively.
Differentiating N1 w. r. to t, we have;

dN1

dt
= λ1−µN1−σ1I1 (2.9)

dN1

dt
≤ λ1−µN1

dN1

dt
+µN1 ≤ λ1

On solving, we get;

lim
t→∞

N1 ≤
λ1

µ

And again differentiating N2 w. r. to t, we have;

dN2

dt
= λ2−µN2−σ2I2 (2.10)

dN2

dt
≤ λ2−µN2

dN2

dt
+µN2 ≤ λ2

On solving, we get;

lim
t→∞

N2 ≤
λ2

µ
.

Further differentiating P w. r. to t, we have;

dP
dt

= η1I1 +η2I2−δP (2.11)

dP
dt
≤ η1λ1 +η2λ2

µ
−δP

dP
dt

+δP≤ η1λ1 +η2λ2

µ

On solving, we get;

lim
t→∞

P≤ η1λ1 +η2λ2

µ

Thus all the solutions of the model will lie in the region.

τ =
{(

S̄1, Ī1, R̄1, S̄2, Ī2, R̄2, P̄
)

: S̄1, Ī1, R̄1, S̄2, Ī2, R̄2, P̄≥ 0 :(
S̄1 + Ī1 + R̄1

)
≤ λ1

µ
,
(
S̄2 + Ī2 + R̄2

)
≤ λ2

µ
and P̄ = η1λ1+η2λ2

µδ

}
and clearly τ is a compact positively invariant region in R+

7 .

3. Existence and Stability Analysis of
Equilibrium Points

3.1 Existence of the disease free equilibrium point
and basic reproduction number

The model has a disease free equilibrium point
E0 =

(
S̄1, Ī1, R̄1, S̄2, Ī2, R̄2, P̄

)
in the region τ .

For this we put
dS1
dt = dI1

dt = dR1
dt = dS2

dt = dI2
dt = dR2

dt = dP
dt = 0

and I1 = R1 = I2 = R2 = P = 0.
Hence the disease free equilibrium point is
E0 =

(
S̄1, Ī1, R̄1, S̄2, Ī2, R̄2, P̄

)
=
(

λ1
µ
,0,0, λ2

µ
,0,0,0

)
.

Now, we define basic reproduction number R0 as the num-
ber of secondary infections that one infectious individual
would create over the duration of the infectious period.

We use the next generation matrix approach described in
[22,23] to determine the basic reproduction number. Further,
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We consider the equations (2.2), (2.5) and (2.7).
f1 (I1, I2,P) = βS1P,
f2 (I1, I2,P) = (1−β )S2P and
f3 (I1, I2,P) = 0
V1 (I1, I2,P) = (α1 +µ +σ1)I1,
V2 (I1, I2,P) = (α2 +µ +σ2)I2 and
V3 (I1, I2,P) = δP−η1I1−η2I2
Now,

f =


∂ f1
∂ I1

∂ f1
∂ I2

∂ f1
∂P

∂ f2
∂ I1

∂ f2
∂ I2

∂ f2
∂P

∂ f3
∂ I1

∂ f3
∂ I2

∂ f3
∂P

=

 0 0 β1S̄1
0 0 β2S̄2
0 0 0


and

V =


∂V1
∂ I1

∂V1
∂ I2

∂V1
∂P

∂V2
∂ I1

∂V2
∂ I2

∂V2
∂P

∂V3
∂ I1

∂V3
∂ I2

∂V3
∂P


=

 (α1 +µ +σ1) 0 0
0 (α2 +µ +σ2) 0
−η1 −η2 δ


V−1 =


1

(α1+µ+σ1)
0 0

0 1
(α2+µ+σ2)

0
η1

δ (α1+µ+σ1)
η2

δ (α2+µ+σ2)
1
δ



fV−1 =


β1S̄1η1

δ (α1+µ+σ1)
β1S̄1η2

δ (α2+µ+σ2)
β1S̄1

δ

β2S̄2η1
δ (α1+µ+σ1)

β2S̄2η2
δ (α2+µ+σ2)

β2S̄2
δ

0 0 0


The characteristic equation of fV−1 is as follows:

λ
2
(

λ − β1S̄1η1(α2 +µ +σ2)+β2S̄2η2(α1 +µ +σ1)

δ (α1 +µ +σ1)(α2 +µ +σ2)

)
= 0

The dominant eigen value of fV−1is as follows;

β1S̄1η1(α2 +µ +σ2)+β2S̄2η2(α1 +µ +σ1)

δ (α1 +µ +σ1)(α2 +µ +σ2)

Substituting the value of S̄1 and S̄2 in above
Therefore the basic reproduction number of above model is
given by;

R0 =
β1λ1η1(α2 +µ +σ2)+β2λ2η2(α1 +µ +σ1)

δ µ(α1 +µ +σ1)(α2 +µ +σ2)
(3.1)

3.2 Stability analysis of the disease free equilibrium
point

The variational matrix of the system (2.1-2.7) around disease
free equilibrium point E0 is given by;

J0 =



−µ 0 ϑ1 0
0 −(α1 +µ +σ1) 0 0
0 α1 −(µ +ϑ1) 0
0 0 0 −µ

0 0 0 0
0 0 0 0
0 η1 0 0

0 0 −β1λ1
µ

0 0 β1λ1
µ

0 0 0
0 ϑ2 −β2λ2

µ

−(α2 +µ +σ2) 0 β2λ2
µ

α2 −(µ +ϑ2) 0
η2 0 −δ


The characteristic equation of J0 is as follows:
(µ +λ )2 (µ +ϑ1 +λ )(µ +ϑ2 +λ )(

λ
3 +a1λ

2 +a2λ +a3
)
= 0 (3.2)

Clearly four roots of equation (3.2) are negative and remaining
three characteristics roots are obtained by solving the follow-
ing equation:(
λ 3 +a1λ 2 +a2λ +a3

)
= 0

where
a1 = b1 +b2 +δ , a2 = b1b2 +δ (b1 +b2)− (c1 + c2),
a3 = δb1b2 − (c1b2 + c2b1) b1 = (α1 +µ +σ1),

b2 = (α2 +µ +σ2), c1 =
β1λ1

µ
, c2 =

β2λ2
µ

From equation (3.2) we can easily write
a1 = b1 +b2 +δ ,
a2 = b1b2 +

c2b1
b2

+ c1b2
b1

+δ (b1 +b2)(1−R0) ,

a3 = δb1b2 (1−R0)
Now
a1a2−a3 = (b1 +b2 +δ )

(
b1b2 +

c2b1
b2

+ c1b2
b1

)
+δ (1−R0)

(
b2

1 +b2
2 +δ (b1 +b2)+b1b2

)
.

We can easily see that
a1,a2,a3 > 0 if R0 < 1,
a1a2−a3 > 0 if R0 < 1

We can easily conclude from Hurwitz’s theorem that the
characteristic equation (3.2) will have negative real roots or
negative real parts if the roots are complex under the condition
R0 < 1.

Thus we find that the disease free equilibrium point E0 is
locally stable if R0 < 1. However, the disease free equilibrium
point E0 is unstable if R0 > 1.
Theorem 1 The disease free equilibrium point E0 is locally
stable if R0 < 1 and unstable if R0 > 1.

3.3 Existence of the endemic equilibrium point
The endemic equilibrium point is the steady state solution
when the disease persists in the population. The endemic equi-
librium point, E1 =

(
Ŝ1, Î1, R̂1, Ŝ2, Î2, R̂2, P̂

)
in theregion τ is

obtained by putting dS1
dt = dI1

dt = dR1
dt = dS2

dt = dI2
dt = dR2

dt =
dP
dt = 0,
On soving we have;

R̂1 =

(
α1

µ +ϑ1

)
Î1,

R̂2 =

(
α2

µ +ϑ2

)
Î2,
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P̂ =

(
η1 Î1 +η2 Î2

δ

)
,

Ŝ1 =

(
δ (α1 +µ +σ1)

β1
(
η1 Î1 +η2 Î2

)) Î1,

Ŝ2 =

(
δ (α2 +µ +σ2)

β2
(
η1 Î1 +η2 Î2

)) Î2,

Î2 =
1

η2

(
B

λ1− (A−C)Î1
−η1

)
Î1

Substituting these values in (2.2) and we get

f (Î1) = D0
(
Î1
)2

+D1
(
Î1
)
+D2 = 0

where
D0 =

η1
η2
(A−C) [B1(A−C)−B(A1−C1)] ,

D1 =−
(

BB1(A−C)
η2

(R0−1)+ B2(A1−C1)
η2

+ η1λ1
η2

[B1(A−C)

−B(A1−C1)])

D2 =
BB1λ1

η2
(R0−1),

A = (α1 +µ +σ1),B = µδ (α1+µ+σ1)
β1

,C = α1ϑ1
µ+ϑ1

,

A1 = (α2 +µ +σ2),B1 =
µδ (α2+µ+σ2)

β2
,C1 =

α2ϑ2
µ+ϑ2

,

R0 =
β1λ1η1(α2+µ+σ2)+β2λ2η2(α1+µ+σ1)

δ (α1+µ+σ1)(α2+µ+σ2)

D0 =+ve if A >C and B1(A−C)> B(A1−C1),
D1 =−ve if A>C ,A1 >C1, R0 > 1and B1(A−C)>B(A1−
C1)
D2 =+ve ifR0 > 1,
if A >C ,A1 >C1, R0 > 1 and B1(A−C)> B(A1−C1) then
D0 > 0,D1 < 0 and D2 > 0. Therefore by descart’s rule of
sign, equation has two positive real roots.
Theorem 2 The system (2.1-2.7) has a unique endemic equi-
librium whenever R0 > 1 and no positive endemic equilibrium
when R0 < 1.

3.4 Stability analysis of the endemic equilibrium point
Applying the transforms,
S1 = Ŝ1 + y1, I1 = Î1 + y2, R1 = R̂1 + y3, S2 = Ŝ2 + y4, I2 =
Î2 + y5, R2 = R̂2 + y6 and P = P̂ + y7 on model system (2.1-
2.7)
We have;

dy1

dt
=−β1(y7Ŝ1 + y1y7 + y1P̂)−µy1 +ϑ1y3 (3.3)

dy2

dt
= β1(y7Ŝ1 + y1y7 + y1P̂)− (α1 +µ +σ1)y2 (3.4)

dy3

dt
= α1y2− (µ +ϑ1)y3 (3.5)

dy4

dt
=−β2(y7Ŝ2 + y4y7 + y4P̂)−µy4 +ϑ2y6 (3.6)

dy5

dt
= β2(y7Ŝ2 + y4y7 + y4P̂)− (α2 +µ +σ2)y5 (3.7)

dy6

dt
= α2y5− (µ +ϑ2)y6 (3.8)

dy7

dt
= η1y2 +η2y5−δy7 (3.9)

Linearizing the above system, we get the following linear
system of differential equations;

dy1

dt
=−β1(y7Ŝ1 + y1P̂)−µy1 +ϑ1y3 (3.10)

dy2

dt
= β1(y7Ŝ1 + y1P̂)− (α1 +µ +σ1)y2 (3.11)

dy3

dt
= α1y2− (µ +ϑ1)y3 (3.12)

dy4

dt
=−β2(y7Ŝ2 + y4P̂)−µy4 +ϑ2y6 (3.13)

dy5

dt
= β2(y7Ŝ2 + y4P̂)− (α2 +µ +σ2)y5 (3.14)

dy6

dt
= α2y5− (µ +ϑ2)y6 (3.15)

dy7

dt
= η1y2 +η2y5−δy7 (3.16)

Consider a positive definite function U as follows;

U =
1
2
(
H1y2

1 +H2y2
2 +H3y2

3 +H4y2
4 +H5y2

5 +H6y2
6 +H7y2

7
)

Differentiating U w. r. to t and using linear system (3.10-3.16)
in dU

dt we get;

dU
dt

= H1y1(−β1(y7Ŝ1 + y1P̂)−µy1 +ϑ1y3)

+H2y2(β1(y7Ŝ1 + y1P̂)− (α1 +µ +σ1)y2)

+H3y3(α1y2− (µ +ϑ1)y3)

+H4y4(−β2(y7Ŝ2 + y4P̂)−µy4 +ϑ2y6)

+H5y5(β2(y7Ŝ2 + y4P̂)− (α2 +µ +σ2)y5)
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+H6y6(α2y5− (µ +ϑ2)y6)+H7y7(η1y2 +η2y5−δy7)

(3.17)

On arranging the terms of (3.17) we get;

dU
dt

=−b11y2
1+b13y1y3+b17y1y7+b12y1y2+b27y2y7−b22y2

2

+b23y2y3−b33y2
3−b44y2

4 +b46y4y6 +b47y4y7 +b45y4y5

+b57y5y7−b55y2
5 +b56y5y6−b66y2

6−b77y2
7

where
b11 = (β1P̂ +µ)H1, b13 = ϑ1H1, b17 =−β1Ŝ1H1,
b12 = β1P̂H2, b27 = β1Ŝ1H2+η1H7, b22 = (α1+µ+σ1)H2,
b23 = α1H3, b33 = (µ +ϑ1)H3, b44 = (β2P̂ +µ)H4,
b46 = ϑ2H4,b47 =−β2Ŝ2H4, b45 = β2P̂H5,
b57 = β2Ŝ2H5 +η2H7, b55 = (α2 +µ +σ2)H5,
b56 = α2H6,b66 = (µ +ϑ2)H6, b77 = δH7.
Further rearranging the terms of dU

dt we get;

dU
dt

=−
(

b11

3
y2

1−b13y1y3 +
b33

2
y2

3

)

+

(
b11

3
y2

1−b17y1y7 +
b77

4
y2

7

)
+

(
b22

3
y2

2−b27y2y7 +
b77

4
y2

7

)
+

(
b22

3
y2

2−b23y2y3 +
b33

2
y2

3

)
+

(
b44

3
y2

4−b46y4y6 +
b66

2
y2

6

)
+

(
b44

3
y2

4−b47y4y7 +
b77

4
y2

7

)
+

(
b44

3
y2

4−b45y4y5 +
b55

3
y2

5

)
+

(
b55

3
y2

5−b57y5y7 +
b77

4
y2

7

)
+

(
b11

3
y2

1−b12y1y2 +
b22

3
y2

2

)

+

(
b55

3
y2

5−b56y5y6 +
b66

2
y2

6

)
(3.18)

Using the Sylvester criteria on the right hand side of (3.18),
it can be shown that dU

dt is negative define if the following
conditions are being satisfied;

(β1P̂ +µ)(µ +ϑ1)H1H3

3
>

(ϑ1H1)
2

2
,

(β1P̂ +µ)δH1H7

3
>
(
β1Ŝ1H1

)2
,

(β1P̂ +µ)(α1 +µ +σ1)H1H2

9
>

(
β1P̂H2

)2

4
,

(α1 +µ +σ1)δH2H7

3
>
(
β1Ŝ1H2 +η1H7

)2
, (3.19)

(α1 +µ +σ1)(µ +ϑ1)H2H3

3
> (α1H3)

2 ,

Table 1. parameter values used in simulations
λ1=25/day, λ2=20/day, β1=0.0003/day,
β2=0.00028/day, α1=0.07/day, α2=0.09/day,
σ1=0.045/day, σ2=0.040/day, ϑ1 =0.09/day,
ϑ2=0.085/day, δ=0.09/day, µ=0.015/day.

(β2P̂ +µ)(µ +ϑ2)H4H6

3
>

(ϑ2H4)
2

2
,

(β2P̂ +µ)δH4H7

3
>
(
β2Ŝ2H4

)2
,

(β2P̂ +µ)(α2 +µ +σ2)H4H5

9
>

(
β2P̂H5

)2

4
,

(α2 +µ +σ2)δH5H7

3
>
(
β2Ŝ2H5 +η2H7

)2
,

(α2 +µ +σ2)(µ +ϑ2)H5H6

3
>

(α2H6)
2

2
Hence from the lyapunov’s theorem it may be concluded the
equilibrium point E1 is globally stable under the conditions
given in system (3.19).
Theorem 3 The endemic equilibrium point E1 is globally
stable if condition (3.19) holds otherwise unstable.

4. Graphs and Conclusion
In this paper, SIRS model is analysed for the transmission

dynamics of Tuberculosis by pathogens infection in two dis-
similar groups. It has been shown that there exists a feasible
region where the model is well defined and where all (disease
free and endemic) equilibrium points can be obtained. Basic
reproduction number R0 has also been derived. It has been
shown that disease free equilibrium point is stable if R0 < 1
and unstable if R0 > 1. It has also been shown that an unique
endemic equilibrium point (Positive) exists only when R0 > 1.

Finally, with the help of numerical values of parameter
given in Table 1 graphs has been plotted. Figure 2 is plotted
between infective versus t for η1 and η2 for which R0 is less
than one which indicates disease free state as all trajectories
for infectious moves towards origin. Figure 3, 4 and 5 are
plotted between infective versus t for those values of η1 and
η2 for which R0 is more than one which indicates endemic
state as all trajectories for infectious does not move towards
origin. In Figure 6 graph between I1 versus t has been shown
from reflecting the effect of η1, η2 on R0 and I1 similarly, in
Figure 7 graph between I2 versus t has been show for reflecting
the effect of η1, η2 on R0 and I2.

It can be observed from the figures that rates η1 and η2
decreased by treatment of infected individuals. Eventually
Tuberculosis will be controlled.
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Figure 2. Graph between I1 and I2 versus t for η1 = 0.012
and η2 = 0.01 which corresponds to R0 = 0.7989

Figure 3. Graph between I1 and I2 versus t for η1 = 0.02 and
η2 = 0.018 which corresponds to R0 = 1.3696

Figure 4. Graph between I1 and I2 versus t for η1 = 0.025
and η2 = 0.022 which corresponds to R0 = 1.6978

Figure 5. Graph between I1 and I2 versus t for η1 = 0.03 and
η2 = 0.027 which corresponds to R0 = 2.0545
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Figure 6. Variation in the infectives of lower strata group for
different values of η1 , η2

Figure 7. Variation in the infectives of upper strata group for
different values of η1 , η2
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