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Abstract

This paper is mainly concerned with square-mean asymptotically almost automorphic mild solutions to
a class of non-autonomous stochastic differential equations in a real separable Hilbert space. Some existence
results of square-mean asymptotically almost automorphic mild solutions have been established by proper-
ties and composition theroems of square-mean asymptotically almost automorphic functions and fixed point
theorems.
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1 Introduction

In this paper, we study the existence of square-mean asymptotically almost automorphic solutions for the
following non-autonomous stochastic differential equations in the form{

dx(t) = A(t)x(t)dt + f (t, B1x(t))dt + g(t, B2x(t))dW(t), t ≥ 0,
x(0) = x0,

(1.1)

where A(t) : D(A(t)) ⊂ L2(, ) → L2(, ) is a family of densely defined closed linear operators satisfying the
so called “Acquistapace-Terreni” conditions, Bi, i = 1, 2 are bounded linear operators, and W(t) is a two
sided standard one-dimensional Brownian motion defined on the filtered probability space (Ω,F , ,Ft) where
Ft = σ{W(u) − W(v); u, v ≤ t}. x0 is an F0-adapted, -valued random variable independent of the Wiener
process W, and f , g : [0, +∞)× L2(, ) → L2(, ) are appropriate functions to be specified later.

The asymptotically almost automorphic functions were firstly introduced by G. M. N’Gu’er’ekata in [14].
Since then these functions have become of great interest to several mathematicians and generated lots of
developments and applications, we refer the reader to [3, 11, 12] and the references therein.

Recently, the existence of almost periodic, almost automorphic and pseudo almost automorphic solutions
to some stochastic differential equations have been considered in many publications such as [4, 5, 7, 8, 10, 18]
and references therein. In a very recent paper [8], the authors introduced a new concept of S2-almost automor-
phy for stochastic processes including a composition theorem. In paper [16], the authors introduced the notion
of square-mean asymptotically almost automorphic stochastic process and established some basic results not
only on the completeness of the space that consists of the square-mean asymptotically almost automorphic
processes but also on the composition of such processes. They apply this new concept to investigate the ex-
istence of square-mean asymptotically almost automorphic mild solutions to the following abstract stochastic
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integro-differential equations{
dx(t) =

[
Ax(t) +

∫ t
0 B(t − s)x(s)ds

]
dt + f (t, x(t))dW(t), t ≥ 0,

x(0) = x0,

where A and B(t), t ≥ 0 are densely defined and closed linear operators in a Hilbert space L2(, ), and W(t) is
a two sided standard one-dimensional Brownian motion defined on the filtered probability space (Ω,F , ,Ft)
where Ft = σ{W(u) − W(v); u, v ≤ t}. x0 is an F0-adapted, -valued random variable independent of the
Wiener process W.

Motivated by the works [8, 11, 16, 17], the main purpose of this paper is to investigate the existence of
square-mean asymptotically almost automorphic mild solutions to the problems (1.1). The obtained results
can be seen as a contribution to this emerging field.

The present paper is organized as follows. In section 2, we introduce the notion of square-mean asymp-
totically almost automorphic processes and study some of their basic properties. In section 3, we prove the
existence of existence of square-mean asymptotically almost automorphic mild solutions to the problem (1.1).

2 Preliminary

In this section, we introduce some basic definitions, notations, lemmas and technical results which will
be used in the sequel. For more details on this section, we refer the reader to [7, 13].

Throughout the paper, we assume that (, ‖ · ‖, 〈·, ·〉) and (, ‖ · ‖, 〈·, ·〉) are two real separable Hilbert spaces.
Let (Ω,F , ) be a complete probability space. The notation L2(, ) stands for the space of all -valued random
variable x such that

E‖x‖2 =
∫

Ω
‖x‖2d < ∞.

For x ∈ L2(, ), let

‖x‖2 =
(∫

Ω
‖x‖2d

) 1
2

.

Then it is routine to check that L2(, ) is a Hilbert space equipped with the norm ‖ · ‖2. We let L(, ) denote
the space of all linear bounded operators from into , equipped with the usual operator norm ‖ · ‖L(,); in
particular, this is simply denoted by L() when = . The notation C0(R+; L2(, )) stands for the collection of all
bounded continuous stochastic processes ϕ from R+ into L2(, ) such that limt→+∞ E‖ϕ(t)‖2 = 0. Similarly,
C0(R+ × L2(, ); L2(, )) stands for the space of the continuous stochastic processes f : R+ × L2(, ) → L2(, ) such
that

lim
t→+∞

E‖ f (t, x)‖2 = 0

uniformly for x ∈ K, where K ⊂ L2(, ) is any bounded subset. In addition, W(t) is a two-sided standard one-
dimensional Brownian motion defined on the filtered probability space (Ω,F , ,Ft), where Ft = σ{W(u) −
W(v); u, v ≤ t}.

Definition 2.1. [13] A stochastic process x : R → L2(, ) is said to be stochastically continuous if

lim
t→s

E‖x(t)− x(s)‖2 = 0.

Definition 2.2. [9] A stochastically continuous stochastic process x : R → L2(, ), (t, x) → f (t, x) is said to be square-
mean almost automorphic if for every sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N and a
stochastic process y : R → L2(, ) such that

lim
n→∞

E‖x(t + sn)− y(t)‖2 = 0 and lim
n→∞

E‖y(t − sn)− x(t)‖2 = 0

hold for each t ∈ R. The collection of all square-mean almost automorphic stochastic processes x : R → L2(, ) is denoted
by AA(R; L2(, )).
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Definition 2.3. [9] A function f : R × L2(, ) → L2(, ), (t, x) → f (t, x), which is jointly continuous, is said to be
square-mean almost automorphic if f (t, x) is square-mean almost automorphic in t ∈ R uniformly for all x ∈ K is any
bounded subset of L2(, ). That is to say, for every sequence of real numbers {s′n}n∈N, there exists a subsequence {sn}n∈N

and a function f̃ : R× L2(, ) → L2(, ) such that

lim
n→∞

E‖ f (t + sn, x)− f̃ (t, x)‖2 = 0 and lim
n→∞

E‖ f̃ (t − sn, x)− f (t, x)‖2 = 0

for each t ∈ R and each x ∈ K. Denote by AA(R× L2(, ); L2(, )) the set of all such functions.

Lemma 2.1. [13] (AA(R; L2(, )), ‖ · ‖∞) is a Banach space when it is equipped with the norm

‖x‖∞ := sup
t∈R

‖x(t)‖2 = sup
t∈R

(E‖x(t)‖2)
1
2 ,

for x ∈ AA(R; L2(, )).

Lemma 2.2. [9] Let f : R × L2(, ) → L2(, ), (t, x) → f (t, x) be square-mean almost automorphic, and assume that
f (t, ·) is uniformly continuous on each bounded subset K ⊂ L2(, ) uniformly for t ∈ R , that is for all ε > 0, there exists
δ > 0 such that x, y ∈ K and E‖x − y‖2 < δ imply that E‖ f (t, x)− f (t, y)‖2 < ε for all t ∈ R. Then for any square-
mean almost automorphic process x : R → L2(, ), the stochastic process F : R → L2(, ) given by F(·) := f (·, x(·)) is
square-mean almost automorphic.

Definition 2.4. [16] A stochastically continuous process f : R+ → L2(, ) is said to be square-mean asymptotically
almost automorphic if it can be decomposed as f = g + h, where g ∈ AA(R; L2(, )) and h ∈ C0(R+; L2(, )). Denote by
AAA(R+; L2(, )) the collection of all the square-mean asymptotically almost automorphic processes f : R+ → L2(, ).

Definition 2.5. [16] A function f : R+ × L2(, ) → L2(, ), (t, x) → f (t, x), which is jointly continuous, is said to be
square-mean asymptotically almost automorphic if it can be decomposed as f = g + h, where g ∈ AA(R× L2(, ); L2(, ))
and h ∈ C0(R+ × L2(, ); L2(, )). Denote by AAA(R+ × L2(, ); L2(, )) the set of all such functions.

Lemma 2.3. [16] If f , f1 and f2 are all square-mean asymptotically almost automorphic stochastic processes, then the
following hold true:
(I) f1 + f2 is square-mean asymptotically almost automorphic ;
(II) λ f is square-mean asymptotically almost automorphic for any scalar λ;
(III) There exists a constant M > 0 such that supt∈R+ E‖ f (t)‖2 ≤ M.

Lemma 2.4. [16] Suppose that f ∈ AAA(R+; L2(, )) admits a decomposition f = g + h, where g ∈ AA(R; L2(, ))
and h ∈ C0(R+; L2(, )). Then {g(t) : t ∈ R} ⊂ { f (t) : t ∈ R+}.

Corollary 2.1. [16] The decomposition of a square-mean asymptotically almost automorphic process is unique.

Lemma 2.5. [16] AAA(R+; L2(, )) is a Banach space when it is equipped with the norm:

‖ f ‖AAA(R+;L2(,)) := sup
t∈R

‖g(t)‖2 + sup
t∈R+

‖h(t)‖2,

where f = g + h ∈ AAA(R+; L2(, )) with g ∈ AA(R; L2(, )), h ∈ C0(R+; L2(, )).

Lemma 2.6. [16] AAA(R+; L2(, )) is a Banach space with the norm:

‖ f ‖∞ := sup
t∈R+

‖ f (t)‖2 = sup
t∈R+

(E‖ f (t)‖2)
1
2 .

Remark 2.1. [16] In view of the previous Lemmas it is clear that the two norms are equivalent in AAA(R+; L2(, )).

Lemma 2.7. [16] Let f ∈ AA(R × L2(, ); L2(, )) and let f (t, x) be uniformly continuous in any bounded subset
K ⊂ L2(, ) uniformly for t ∈ R+. Then f (t, x) is uniformly continuous in any bounded subset K ⊂ L2(, ) uniformly
for t ∈ R.

Lemma 2.8. [16] Let f ∈ AAA(R+ × L2(, ); L2(, )) and suppose that f (t, x) be uniformly continuous in any bounded
subset K ⊂ L2(, ) uniformly for t ∈ R+. If u(t) ∈ AAA(R+; L2(, )), then f (·, u(·)) ∈ AAA(R+; L2(, )).
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Lemma 2.9. Let L ∈ L(H) and assume that f ∈ AAA(R+; L2(, )). Then L f ∈ AAA(R+; L2(, )).

Proof. Since f ∈ AAA
(
R+; L2(, )

)
, we have by definition that f = g + h, where g ∈ AA

(
R; L2(, )

)
and

h ∈ C0
(
R+; L2(, )

)
. Then, by [6, Lemma 2.4], we see that Lg ∈ AA(R; L2(, )). On the other hand, since

L ∈ L(H), then we have
E‖Lh(t)‖2 ≤ ‖L‖2

L(H)E‖h(t)‖2

which shows that limt→+∞ E‖Lh(t)‖2 = 0, since h ∈ C0
(
R+; L2(, )

)
. Thus, L f ∈ AAA(R+; L2(, )). This ends

the proof.

The following Lemma hold by [1, Theorem 2.3] and [2].

Lemma 2.10. If the Acquistapace-Terreni conditions (ATCs) are satisfied, that is, there exists a constant K0 > 0 and a
set of real numbers α1, α2, · · · , αk, β1, · · · , βk with 0 ≤ βi < αi ≤ 2, i = 1, 2, · · · , k, such that

‖A(t)(λ − A(t))−1(A(t)−1 − A(s)−1)‖ ≤ K0

k

∑
i=1

(t − s)αi |λ|βi−1,

for t, s ∈ R, λ ∈ Sθ0\{0}, where

ρ(A(t)) ⊃ Sθ0 = {λ ∈ C : |argλ| ≤ θ0} ∪ {0}, θ0 ∈ (
π

2
, π)

and there exists a constant K1 ≥ 0 such that

‖(λ − A(t))−1‖ ≤ K1

1 + |λ|
, λ ∈ Sθ0 .

Then there exists a unique evolution family {U(t, s), t ≥ s > −∞} on L2(, ).

Throughout the rest of the paper we assume that (ATCs) are satisfied.

Definition 2.6. An Ft-adapted stochastic process x : [0, ∞) → L2(, ) is called a mild solution of problem (1.1) if
x(0) = x0 is F0-measurable and x(t) satisfies the corresponding stochastic integral equation

x(t) = U(t, 0)x0 +
∫ t

0
U(t, s) f (s, B1x(s))ds +

∫ t

0
U(t, s)g(s, B2x(s))dW(s).

for all t ≥ 0 and 0 ≤ s ≤ t.

3 Extension Principle

In this section, we establish the existence of square-mean asymptotically automorphic mild solutions to
(1.1). For that, we give the following assumptions:
(H1) The evolution family U(t, s) generated by A(t) is exponentially stable, that is, there exist M ≥ 1 and
δ > 0 such that ‖U(t, s)‖ ≤ Me−δ(t−s) for all t ≥ s.
(H2) U(t, s), t ≥ s, satisfies the condition that, for every sequence of real numbers {s′n}n∈N, there exists a
subsequence {sn}n∈N such that for any ε > 0, there exists an N ∈ N such that

‖U(t + sn, s + sn)−U(t, s)‖ ≤ εe−δ(t−s),

for all n > N and all t ≥ s, moreover

‖U(t − sn, s − sn)−U(t, s)‖ ≤ εe−δ(t−s),

for all n > N and all t ≥ s.
(H3) The operators Bi : L2(, ) → L2(, ) for i = 1, 2, are bounded linear operators and we let ω := maxi=1,2

{
‖Bi‖L(L2(,))

}
.

(H4) The functions f , g ∈ AAA(R+ × L2(, ); L2(, )) and there are positive numbers L f , Lg such that

E‖ f (t, ϕ)− f (t, ψ)‖2 ≤ L f E‖ϕ − ψ‖2,

and
E‖g(t, ϕ)− g(t, ψ)‖2 ≤ LgE‖ϕ − ψ‖2,

for all t ∈ R+ and ϕ, ψ ∈ L2(, ).
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Theorem 3.1. Assume that the conditions (H1)-(H4) are satisfied, then the problem (1.1) has a unique square-mean
asymptotically almost automorphic mild solution x(·) ∈ AAA(R+; L2(, )) provided that

L0 = M2ω2
[

2
δ2 L f +

1
δ

Lg

]
< 1.

Proof. Let Γ : AAA(R+; L2(, )) → AAA(R+; L2(, )) be the operator defined by

Γx(t) := U(t, 0)x0 +
∫ t

0
U(t, s) f (s, B1x(s))ds +

∫ t

0
U(t, s)g(s, B2x(s))dW(s), t ≥ 0.

Let us prove that Γx is well defined, for this, let x ∈ AAA(R+; L2(, )). We need to prove that Γx(t) ∈
AAA(R+; L2(, )). Let us consider the nonlinear operators Γ0, Γ1 and Γ2 acting on the Banach space AAA(R+; L2(, ))
defined by Γ0x(t) = U(t, 0)x0,

Γ1x(t) =
∫ t

0
U(t, s) f (s, B1x(s))ds and Γ2x(t) =

∫ t

0
U(t, s)g(s, B2x(s))dW(s)

respectively.
First, we will show that Γ1x(t) ∈ AAA(R+; L2(, )). Indeed, let x ∈ AAA

(
R+; L2(, )

)
, then s → Bix(s) is in

AAA
(
R+; L2(, )

)
as Bi ∈ L

(
L2(, )

)
, i = 1, 2. And hence, by Lemma 2.8, the functions s → f (s, B1x(s)) belongs

to AAA(R+; L2(, )). Then we let F(t) = f (t, B1x(t)) ∈ AAA(R; L2(, )). Now we can write F(t) = f1(t) + f2(t),
where f1(t) ∈ AA(R; L2(, )) and f2(t) ∈ C0(R+; L2(, )). Observe

Γ1x(t) =
∫ t

0
U(t, s) f1(s)ds +

∫ t

0
U(t, s) f2(s)ds

=
∫ t

−∞
U(t, s) f1(s)ds −

∫ 0

−∞
U(t, s) f1(s)ds +

∫ t

0
U(t, s) f2(s)ds

= γ1(t) + γ2(t),

where γ1(t) =
∫ t
−∞ U(t, s) f1(s)ds and γ2(t) =

∫ t
0 U(t, s) f2(s)ds −

∫ 0
−∞ U(t, s) f1(s)ds.

First we prove that γ1(t) ∈ AA(R; L2(, )). Let {s′n}n∈N be an arbitrary sequence of real numbers. Since
f1 ∈ AA(R; L2(, )), there exists a subsequence {sn}n∈N of {s′n}n∈N such that for a certain stochastic process f̃1

lim
n→∞

E‖ f1(t + sn)− f̃1(t)‖2 = 0 and lim
n→∞

E‖ f̃1(t − sn)− f1(t)‖2 = 0 (3.1)

hold for each t ∈ R. By condition (H2), for any ε > 0, there exists an N ∈ N such that for all n > N, it follows
that ‖U(t + sn, s + sn)‖ ≤ εe−δ(t−s) for all t ≥ s ∈ R. Moreover, if we let γ̃1(t) =

∫ t
−∞ U(t, s) f̃1(s)ds, then by

using Cauchy-Schwarz inequality, we have

E‖γ1(t + sn)− γ̃1(t)‖2

= E
∥∥∥∥∫ t+sn

−∞
U(t + sn, s) f1(s)ds −

∫ t

−∞
U(t, s) f̃1(s)ds

∥∥∥∥2

= E
∥∥∥∥∫ t

−∞
U(t + sn, s + sn) f1(s + sn)ds −

∫ t

−∞
U(t, s) f̃1(s)ds

∥∥∥∥2

≤ 2E
∥∥∥∥∫ t

−∞
[U(t + sn, s + sn)−U(t, s)] f1(s + sn)ds

∥∥∥∥2

+2E
∥∥∥∥∫ t

−∞
U(t, s)[ f1(s + sn)− f̃1(s)]ds

∥∥∥∥2

≤ 2ε2E
(∫ t

−∞
e−δ(t−s)‖ f1(s + sn)‖ds

)2

+2M2E
(∫ t

−∞
e−δ(t−s)‖ f1(s + sn)− f̃1(s)‖ds

)2
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≤ 2ε2
(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)E‖ f1(s + sn)‖2ds

)
+2M2

(∫ t

−∞
e−δ(t−s)ds

)(∫ t

−∞
e−δ(t−s)E‖ f1(s + sn)− f̃1(s)‖2ds

)
≤ 2ε2

(∫ t

−∞
e−δ(t−s)ds

)2

sup
t∈R

E‖ f1(t + sn)‖2

+2M2
(∫ t

−∞
e−δ(t−s)ds

)
sup
t∈R

E‖ f1(t + sn)− f̃1(t)‖2

≤ 2
δ2 ε2 sup

t∈R

E‖ f1(t)‖2 +
2
δ2 M2 sup

t∈R

E‖ f1(t + sn)− f̃1(t)‖2

for all t ≥ s ∈ R and all n > N. Since f1(·) is bounded and satisfies (3.1), then we immediately obtain that

lim
n→∞

E‖γ1(t + sn)− γ̃1(t)‖2 = 0 for each t ∈ R.

A similar reasoning establishes that

lim
n→∞

E‖γ̃1(t − sn)− γ1(t)‖2 = 0 for each t ∈ R.

Thus we conclude that γ1(·) ∈ AA(R; L2(, )).
Next, let us show that γ2 ∈ C0(R+; L2(, )). Since f2 ∈ C0(R+; L2(, )), for any sufficiently small ε0 > 0, there

exists a constant T > 0 such that E‖ f2(s)‖2 ≤ ε0 for all s ≥ T. Then, for all t ≥ 2T, we obtain

E‖γ2(t)‖2 = E

∥∥∥∥∥
∫ t

2

0
U(t, s) f2(s)ds +

∫ t

t
2

U(t, s) f2(s)ds −
∫ 0

−∞
U(t, s) f1(s)ds

∥∥∥∥∥
2

≤ 3E

∥∥∥∥∥
∫ t

2

0
U(t, s) f2(s)ds

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
∫ t

t
2

U(t, s) f2(s)ds

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
∫ 0

−∞
U(t, s) f1(s)ds

∥∥∥∥∥
2

≤ 3EM2

(∫ t
2

0
e−δ(t−s)‖ f2(s)‖ds

)2

+ 3EM2

(∫ t

t
2

e−δ(t−s)‖ f2(s)‖ds

)2

+3EM2

(∫ 0

−∞
e−δ(t−s)‖ f1(s)‖ds

)2

≤ 3M2

(∫ t
2

0
e−δ(t−s)ds

)(∫ t
2

0
e−δ(t−s)E‖ f2(s)‖2ds

)

+3M2

(∫ t

t
2

e−δ(t−s)ds

)(∫ t

t
2

e−δ(t−s)E‖ f2(s)‖2ds

)

+3M2

(∫ 0

−∞
e−δ(t−s)ds

)(∫ 0

−∞
e−δ(t−s)E‖ f1(s)‖2ds

)

≤ 3M2

(∫ t
2

0
e−δ(t−s)ds

)2

sup
t∈R+

E‖ f2(t)‖2 + 3M2ε0

(∫ t

t
2

e−δ(t−s)ds

)2

+3M2

(∫ 0

−∞
e−δ(t−s)ds

)2

sup
t∈R

E‖ f1(t)‖2

≤ 3M2

δ2

[
e−

δt
2 − e−δt

]
sup
t∈R+

E‖ f2(t)‖2 +
3M2ε0

δ2

[
1− e−

δt
2

]
+

3M2e−δt

δ2 sup
t∈R+

E‖ f1(t)‖2

≤ 3M2

δ2 e−
δt
2 M f +

3M2ε0

δ2 +
3M2

δ2 Mge−δt.

where M f = supt∈R+ E‖ f2(t)‖2 and Mg = supt∈R E‖ f1(t)‖2. Therefore, the last estimation converges to zero
as t → +∞, since ε0 is arbitrary. Thus, it leads to limt→+∞ E‖γ2(t)‖2 = 0. Recalling that Γ1x(t) = γ1(t) + γ2(t)
for all t ≥ 0, we get Γ1x(t) ∈ AAA(R+; L2(, )).
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Now we prove that Γ2x(t) ∈ AAA(R+; L2(, )). Similarly, by using Lemma 2.8 one can easily see that
s → g(s, B2x(s)) is in AAA(R+; L2(, )) whenever B2x ∈ AAA(R+; L2(, )). Then we let G(t) = g(t, B2x(t)) =
g1(t) + g2(t) ∈ AAA(R+; L2(, )) where g1 ∈ AA(R; L2(, )) and g2 ∈ C0(R+; L2(, )), then

Γ2x(t) =
∫ t

0
U(t, s)g1(s)dW(s) +

∫ t

0
U(t, s)g2(s)dW(s)

=
∫ t

−∞
U(t, s)g1(s)dW(s)−

∫ 0

−∞
U(t, s)g1(s)dW(s) +

∫ t

0
U(t, s)g2(s)dW(s)

= M1(t) + N1(t),

where M1(t) =
∫ t
−∞ U(t, s)g1(s)dW(s) and N1(t) =

∫ t
0 U(t, s)g2(s)dW(s)−

∫ 0
−∞ U(t, s)g1(s)dW(s).

The next step we prove that M1(t) ∈ AA(R; L2(, )). Let {s′n}n∈N be an arbitrary sequence of real numbers.
Since g1 ∈ AA(R; L2(, )), there exists a subsequence {sn}n∈N of {s′n}n∈N such that for a certain stochastic
process g̃1

lim
n→∞

E‖g1(t + sn)− g̃1(t)‖2 = 0 and lim
n→∞

E‖g̃1(t − sn)− g1(t)‖2 = 0 (3.2)

hold for each t ∈ R and by condition (H2), for any ε > 0, there exists an N ∈ N such that for all n > N, it
follows that ‖U(t + sn, s + sn) − U(t, s)‖ ≤ εe−δ(t−s). Now, let W̃(σ) := W(σ + sn) − W(sn) for each σ ∈ R.
Note that W̃ is also a Brownian motion and has the same distribution as W. Moreover, if we let M̃1(t) =∫ t
−∞ U(t, s)g̃1(s)dW(s), then by making a change of variable σ = s − sn to get

E‖M1(t + sn)− M̃1(t)‖2

= E
∥∥∥∥∫ t+sn

−∞
U(t + sn, s)g1(s)dW(s)−

∫ t

−∞
U(t, s)g̃1(s)dW(s)

∥∥∥∥2

= E
∥∥∥∥∫ t

−∞
U(t + sn, σ + sn)g1(σ + sn)dW̃(σ)−

∫ t

−∞
U(t, σ)g̃1(σ)dW̃(σ)

∥∥∥∥2

≤ 2E
∥∥∥∥∫ t

−∞
[U(t + sn, σ + sn)−U(t, σ)]g1(σ + sn)dW̃(σ)

∥∥∥∥2

+2E
∥∥∥∥∫ t

−∞
U(t, σ)[g1(σ + sn)− g̃1(σ)]dW̃(σ)

∥∥∥∥2

.

Thus using an estimate on the Ito integral established in [15], we obtain that

E‖M1(t + sn)− M̃1(t)‖2

≤ 2
∫ t

−∞
‖U(t + sn, σ + sn)−U(t, σ)‖2E‖g1(σ + sn)‖2dσ

+2
∫ t

−∞
‖U(t, σ)‖2E‖g1(σ + sn)− g̃1(σ)‖2dσ

≤ 2ε2
∫ t

−∞
e−2δ(t−σ)E‖g1(σ + sn)‖2dσ

+2M2
∫ t

−∞
e−2δ(t−σ)E‖g1(σ + sn)− g̃1(σ)‖2dσ

≤ 1
δ

ε2 sup
t∈R

E‖g1(t)‖2 +
1
δ

M2 sup
t∈R

E‖g1(σ + sn)− g̃1(σ)‖2,

for all t ≥ s and all n > N. Since g1(·) is bounded and satisfies (3.2), then we immediately obtain that

lim
n→∞

E‖M1(t + sn)− M̃1(t)‖2 = 0 for all t ∈ R.

Arguing in a similar way, we infer that limn→∞ E‖M̃1(t − sn)− M1(t)‖2 = 0, for all t ∈ R. This implies that
M1(t) ∈ AA(R; L2(, )).

The next step consists of showing that N1(t) ∈ C0(R+; L2(, )), since g2 ∈ C0(R+; L2(, )), for any sufficient
small ε0 > 0, there exists a constant T > 0 such that E‖g2(s)‖2 ≤ ε0 for all s ≥ T. Then, for all t ≥ 2T, we
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obtain

E‖N1(t)‖2

= E

∥∥∥∥∥
∫ t

2

0
U(t, s)g2(s)dW(s) +

∫ t

t
2

U(t, s)g2(s)dW(s)−
∫ 0

−∞
U(t, s)g1(s)dW(s)

∥∥∥∥∥
2

≤ 3E

(∫ t
2

0
‖U(t, s)g2(s)‖2ds

)
+ 3E

(∫ t

t
2

‖U(t, s)g2(s)‖2ds

)

+3E

(∫ 0

−∞
‖U(t, s)g1(s)‖2ds

)

≤ 3M2
∫ t

2

0
e−2δ(t−s)E‖g2(s)‖2ds + 3M2

∫ t

t
2

e−2δ(t−s)E‖g2(s)‖2ds

+3M2
∫ 0

−∞
e−2δ(t−s)E‖g1(s)‖2ds

≤ 3M2

2δ
[e−δt − e−2δt] sup

t∈R+
E‖g2(s)‖2ds +

3M2

2δ
[1− e−δt]ε0

+
3M2

2δ
e−2δt sup

t∈R

E‖g1(s)‖2ds

≤ 3M2

2δ
e−δt Mu +

3M2

2δ
ε0 +

3M2

2δ
Mve−2δt

where Mu = supt∈R+ E‖g2(t)‖2 and Mv = supt∈R E‖g1(t)‖2. Therefore, the last estimation converges to zero
as t → +∞ since ε0 is arbitrary. Thus, it leads to limt→+∞ E‖N1(t)‖2 = 0. Recalling that Γ2x(t) = M1(t)+ N1(t)
for all t ≥ 0, we get Γ2x(t) ∈ AAA(R+; L2(, )).

On the other hand, since the evolution family U(t, s) is exponentially stable, it follows that limt→+∞ E‖Γ0x(t)‖2 =
0. Thus, Γx(·) ∈ AAA(R+; L2(, )). Hence, in view of the above, it is clear that Γ maps AAA(R+; L2(, )) into
itself.

Now to complete the proof, we have to prove that Γ is a contraction mapping on AAA(R+; L2(, )). Indeed,
for each x(t), y(t) ∈ AAA(R+; L2(, )), we see that

E‖(Γx)(t)− (Γy)(t)‖2

= E
∥∥∥∥∫ t

0
U(t, s)[ f (s, B1x(s))− f (s, B1y(s))]ds +

∫ t

0
U(t, s)[g(s, B2x(s))− g(s, B2y(s))]dW(s)

∥∥∥∥2

≤ 2E
∥∥∥∥∫ t

0
U(t, s)[ f (s, B1x(s))− f (s, B1y(s))]ds

∥∥∥∥2

+2E
∥∥∥∥∫ t

0
U(t, s)[g(s, B2x(s))− g(s, B2y(s))]dW(s)

∥∥∥∥2

≤ 2M2E
(∫ t

0
e−δ(t−s)‖ f (s, B1x(s))− f (s, B1y(s))‖

)2

+2E
(∫ t

0
‖U(t, s)[g(s, B2x(s))− g(s, B2y(s))]‖2ds

)
≤ 2M2E

[(∫ t

0
e−δ(t−s)ds

)(∫ t

0
e−δ(t−s)‖ f (s, B1x(s))− f (s, B1y(s))‖2ds

)]
+2M2

∫ t

0
e−2δ(t−s)E‖g(s, B2x(s))− g(s, B2y(s))‖2ds

≤ 2M2L f

(∫ t

0
e−δ(t−s)ds

)(∫ t

0
e−δ(t−s)E‖B1x(s)− B1y(s)‖2ds

)
+2M2Lg

∫ t

0
e−2δ(t−s)E‖B2x(s)− B2y(s)‖2ds
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≤ 2M2L f w2
(∫ t

0
e−δ(t−s)ds

)2

sup
t∈R+

E‖x(t)− y(t)‖2

+2M2Lgw2
(∫ t

0
e−2δ(t−s)ds

)
sup
t∈R+

E‖x(t)− y(t)‖2

≤ 2M2

δ2 L f w2 sup
t∈R+

E‖x(t)− y(t)‖2 +
M2

δ
Lgw2 sup

t∈R+
E‖x(t)− y(t)‖2

≤ M2w2
[

2
δ2 L f +

1
δ

Lg

]
sup
t∈R+

E‖x(t)− y(t)‖2,

that is,
‖(Γx)(t)− (Γy)(t)‖2

2 ≤ L0 sup
t∈R+

E‖x(t)− y(t)‖2. (3.3)

Note that

sup
t∈R+

‖x(t)− y(t)‖2
2 ≤

(
sup
t∈R+

‖x(t)− y(t)‖2

)2

, (3.4)

and (3.3) together with (3.4) gives, for each t ∈ R.

‖(Γx)(t)− (Γy)(t)‖2 ≤
√

L0‖x − y‖∞.

Hence, we obtain
‖Γx − Γy‖∞ = sup

t∈R+
‖(Γx)(t)− (Γy)(t)‖2 ≤

√
L0‖x − y‖∞.

which implies that Γ is a contraction by (3.1). So by the Banach contraction principle, we conclude that there
exists a unique fixed point x(·) for Γ in AAA(R+; L2(, )) such that Γx = x, that is

x(t) = U(t, 0)x0 +
∫ t

0
U(t, s) f (s, B1x(s))ds +

∫ t

0
U(t, s)g(s, B2x(s))dW(s)

for all t ∈ R+. It is clear that x is a square-mean asymptotically almost automorphic mild solution of Eq. (1.1).
The proof is now completed.
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