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Abstract

In this paper, we construct a bijective proof of the identity nk = ∑ ˜[λ]∈Λk
n

f ˜[λ]m
˜[λ]

k , where m
˜[λ]

k is the mul-

tiplicity of the irreducible representation of Zr o Sn module indexed by ˜[λ] ∈ Λk
n, f ˜[λ] is the degree of the

corresponding representation indexed by ˜[λ] ∈ Λk
n and Λk

n = { ˜[λ] ` n|∑k
i=1 i|λ(i)| = k}. We give the proof of

Robinson-Schensted correspondence for the party algebras which gives the bijective proof of party diagrams
and the pairs of vacillating tableaux.
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1 Introduction

Let G be the group of linear transformations on a n-dimensional vector space V. Suppose that G acts
diagonally on the k-fold tensor space V⊗k. Then the k-fold tensor space V⊗k decomposes into irreducible
representation of G as centraliser algebra EndG

(
V⊗k

)
. This work was successfully done in Partition algebra

EndSn

(
V⊗k

)
, Brauer algebra EndO(n)

(
V⊗k

)
where O(n) is the orthogonal group of degree n and so on.

The party algebra CLk is the subalgebra of the partition algebra which is generated by Sn and the diagram
corresponding to the set partition {{1, 2, 1′, 2′}{3, 3′} . . . {k, k′}}

Masashi Kosuda defined the irreducible representations of the party algebras. There exists a surjective
homomorphism from CLk to EndG(r,1,n)

(
V⊗k

)
. Moreover if n ≥ k and r > n, this homomorphism is injective

and thus forms an irreducible representations of party algebras.
The number of standard Young tableaux of shape [λ] is f [λ] which is the degree of the corresponding

representation of the group G(r, 1, n). In this paper, we develop a Robinson-Schensted correspondence for the
party algebras which gives the bijection between the diagrams in CLk and the pairs of vacillating tableaux(

P[λ], Q[λ]
)

in Γk. We also develop the bijection proof for the identity nk = ∑ ˜[λ]∈Λk
n

f ˜[λ]m
˜[λ]

k , where m
˜[λ]

k is

the multiplicity of the irreducible representation of Zr o Sn module indexed by ˜[λ], by constructing a bijection
between the sequences (i1, i2, . . . , ik), 1 ≤ ij ≤ n and the pair

(
T ˜[λ], P ˜[λ]

)
where T ˜[λ] is a standard tableau of

shape ˜[λ] and P ˜[λ] is the vacillating tableaux of shape ˜[λ].

2 Preliminaries

Definition 2.1. [7] A partition λ = (λ1, λ2, . . . , λk) of n is a non-increasing sequence of positive integers, that is
λ1 ≥ λ2 ≥ . . . ≥ λk such that |λ1|+ |λ2|+ . . . + |λk| = n. It is denoted by λ ` n.
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Definition 2.2. [4] A multipartition [λ] = (λ(1), λ(2), . . . , λ(k)) such that each λ(i) is a partition and ∑i |λ(i)| = n.
We say that λ(i) is the i−th component of [λ].

Definition 2.3. [4] A diagram of a partition λ is an array of boxes in which first row contains λ1 number of boxes,
second row contains λ2 number of boxes and so on.

Definition 2.4. [4] Let [λ] = (λ(1), λ(2), . . . , λ(k)) be a multipartition of n. A [λ] -tableau t = (t(1), t(2), . . . , t(k)) is
obtained by filling the boxes of the diagram from {1, 2, ..., n}.

1. A [λ]−tableau t is said to be row standard if the entries in each row of each component is strictly increasing

2. A [λ]−tableau t is said to be standard if the entries in each row and in each column of each component is strictly
increasing.

Definition 2.5. [7] A rim hook is a connected skew shape containing no 2× 2 square.

2.1 Party algebras

For k ∈ Z, let

Ak = { set partitions of {1, 2, . . . , k, 1
′
, 2
′
, . . . , k

′
}} and

Ak+ 1
2

= {d ∈ Ak+1|(k + 1) and (k + 1)
′

are in the same block}.

For a set partition d = {B1, B2, . . . , Bs} ∈ Ak and Bi ∈ d, let N(Bi) = #(Bi ∩ k) and M(Bi) = #(Bi ∩ k′).
For k > 0, let Lk = {d ∈ Ak|N(Bi) = M(Bi) for all Bi ∈ d}. Represent d ∈ Lk as a graph with two rows

of k vertices, the first row of k vertices is labeled by 1, 2, . . . , k and the second row of k vertices is labeled by
1′, 2′, . . . , k′. For example,

1

1′

2

2′

3

3′

4

4′

5

5′

6

6′

Definition 2.6. Let d1, d2 ∈ Lk, the multiplication of diagrams d1 ◦ d2 is obtained by placing d2 below d1 and identifying
each vertex i′ in the bottom row of d1 with the each vertex i in the top row of d2 and by removing any component that lie
entirely in the middle row.

For example,

d1 =

d2 =

d1 ◦ d2 =

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′ 6′

For k ∈ N, the party algebra CLk is an associative subalgebra of the partition algebra CAk with basis Lk.
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3 Schur Weyl Duality between Zr o Sn and CLk

The irreducible representations of Zr o Sn are indexed by the multi partition [λ] of n.
If [λ] = (λ(0), λ(1), . . . , λ(r−1)) where each λ(i) is the partition of the i− th component and ∑r−1

i=0 |λ
(i)| = n.

Let V be the n dimensional representation of the group Zr o Sn. Consider Sn−1 ⊆ Sn as the subgroup of per-
mutations that fix n. Let V⊗k be the k fold tensor representation of V. Let V [λ] be the irreducible representation
of Zr o Sn indexed by [λ] ` n where [λ] = (λ(0), λ(1), λ(2), . . . , λ(r−1)) and ∑r−1

i=0 |λ
(i)| = n. The induction and

restriction rules for Zr o Sn are as follows:
If [λ] ` n, ResZr oSn

Zr oSn−1
V [λ] denotes the irreducible representation obtained from restricting the multi partition

[λ] ` n to the multi partition [µ] ` n− 1 by removing a box from any one of the residues in [λ]. IndZr oSn−1
Zr oSn

V [µ]

denotes the irreducible representation obtained from inducing the multi partition [µ] ` n − 1 to the multi
partition [λ] ` n by adding a box in the λ(l+1) if the box is removed from µ(l) while restriction.

ResZr oSn
Zr oSn−1

V [λ] ∼=
⊕

[µ]`n−1,[µ]⊆[λ]

V [µ],

for [λ] ` n .
IndZr oSn−1

Zr oSn
V [µ] ∼=

⊕
[µ]`n,[λ]⊆[µ]

V [λ].

for [µ] ` n− 1.
Suppose that [λ] = (λ(0), λ(1), λ(2), . . . , λ(r−1)) and [µ] = (µ(0), µ(1), µ(2), . . . , µ(r−1)) are multi partitions of

n. we say that [µ] ⊆ [λ] if,
m−1

∑
i=1
|µi|+

j

∑
i=1

µ
(m)
j ≤

m−1

∑
i=1
|λ(i)|+

j

∑
i=1

λ
(m)
i .

Starting with the trivial representation (n, ∅, . . . , ∅)︸ ︷︷ ︸
rtuples

and iterating the restriction and induction rules. We

see the irreducible Zr o Sn representation that appears in V⊗k are labeled by the partition in Λk
n. If [λ] =

(λ(0), λ(1), . . . , λ(r−1) ` n and if ˜[λ] = (n− t, λ(1), λ(2), . . . , λ(k), ∅(k+1), . . . , ∅(r−1)), where (λ(1), λ(2), . . . , λ(k)) `
t, 1 ≤ t ≤ k and r > k.

Λk
n = { ˜[λ] ` n|

k

∑
i=1

i|λ(i)| = k}

and the irreducible Zr o Sn−1 representation that appear in V⊗k are labeled by the partitions in Λk
n−1. If ˜[λ] `

n− 1, 0 ≤ t ≤ k.

Λk
n−1 = { ˜[λ] ` n− 1|

k

∑
i=1

i|λ(i)| ≤ k}.

There is an action of CLk on V⊗k [6] that commutes with Zr o Sn and maps surjectively onto centralizer of
EndZr oSn V⊗k. Furthermore when n ≥ k and r > k we have

CLk
∼= EndZr oSn V⊗k and CLk+ 1

2
∼= EndZr oSn−1 V⊗k.

The Bratelli diagram for CLk consists of rows of vertices with the rows labeled by 0, 1
2 , . . . , k such that the

vertices in row i are labeled by Λi
n and the vertices in row i + 1

2 are Λi
n−1. Two vertices are connected by an

edge if they are in consecutive rows and they differ by exactly one box. The irreducible representations of CLk

are indexed by Λk
n, so we let M

˜[λ]
k denote the irreducible representation of CLk indexed by ˜[λ] ∈ Λk

n.
The decomposition of V⊗k as an Zr o Sn ×CLk bimodule is given by

V⊗k ∼=
⊕
˜[λ]∈Λk

n

V [λ] ⊗M
˜[λ]

k . (3.1)

The dimension of M
˜[λ]

k equals the multiplicity of V [λ] in V⊗k.

m
˜[λ]

k = dim(M
˜[λ]

k ) = {the number of paths from the top of the Bratelli diagram to ˜[λ]}.
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4 Vacillating Tableaux

Let [λ] ∈ Λk
n. A vacillating tableaux of shape λ and length 2k is a sequence of partitions,(

(n, ∅, . . . , ∅) = [λ](0), [λ](
1
2 ), [λ](1), [λ]1(

1
2 ), . . . , [λ](k− 1

2 ), [λ](k) = [λ]
)

,

satisfying, for each i,

1. [λ](i) ∈ Λi
n, [λ](i+ 1

2 ) ∈ Λi
n−1,

2. [λ](i) ⊇ [λ](i+ 1
2 ) and |[λ](i)/[λ](i+ 1

2 )| = 1,

3. [λ](i+ 1
2 ) ⊆ [λ](i+1) and |[λ](i+1)/[λ](i+ 1

2 )| = 1.

The vacillating tableaux of shape [λ] correspond exactly with paths from the top of the Brattelli diagram to
[λ].

For n ≥ k and r > n, the sets

Λk
n = { ˜[λ] ` n|

k

∑
i=1

i|λ(i)| = k}

and if [λ] = (λ(1), λ(2), . . . , λ(k)),

Γk = {[λ] ` t|
k

∑
i=1

i|λ(i)| = k and 0 ≤ t ≤ k}

are in bijection with one another. For example, the following sequence represents the same vacillating tableaux
P[λ].
P[λ]=

((
, ∅, ∅, ∅

)
,
(

, ∅, ∅, ∅
)

,
(

, , ∅, ∅
)

,
(

, ∅, ∅, ∅
)

,
(

, ∅, , ∅
)

,
(

, ∅, , ∅
)

,
(

, , , ∅
))

(
(∅, ∅, ∅) , (∅, ∅, ∅) ,

(
, ∅, ∅

)
, (∅, ∅, ∅) ,

(
∅, , ∅

)
,
(

∅, , ∅
)

,
(

, , ∅
))

Bratelli diagram for EndZ5oS4(V⊗3)
Thus, if we let VTk( ˜[λ]) denote the set of vacillating tableaux of shape ˜[λ] and length k, then

m
˜[λ]

k = dim(M
˜[λ]

k ) = |VTk( ˜[λ])|.

5 A Bijective Proof of nk = ∑ ˜[λ]∈Λk
n

f ˜[λ]m
˜[λ]

k

Comparing dimensions on both sides of equation 3.1, gives

nk = ∑
˜[λ]∈Λk

n

f
˜[λ]m

˜[λ]
k

where f ˜[λ] is the number of standard Young tableaux of shape ˜[λ].
Bratelli diagram for CLk

We now give the combinatorial proof of the above equality. Let T ˜[λ] be the standard Young tableau of shape
˜[λ] and P ˜[λ] be the vacillating tableau of shape ˜[λ]. Let SYT( ˜[λ]) be the set of all standard Young tableau of

shape ˜[λ].

Theorem 5.1. The map (i1, i2, . . . , ik) 7→ (T ˜[λ], P ˜[λ]) is bijective where {(i1, i2, . . . , ik)||1 ≤ ij ≤ n} and the pair

(T ˜[λ], P ˜[λ]) ∈ SYT( ˜[λ])×VTk( ˜[λ]).

Proof. To prove (i1, i2, . . . , ik) 7→ (T ˜[λ], P ˜[λ]), we first initiate

T(0) =
(

1 2 · · · n (0) , ∅(1), ∅(2), . . . , ∅(r−1)
)

Then recursively define standard tableaux T j+ 1
2 and T j+1 as

T(j+ 1
2 ) =

(
ij+1 ←− T(j)

)
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, ∅, ∅, ∅, ∅k = 0

k = 1
2 , ∅, ∅, ∅, ∅

k = 1 , , ∅, ∅, ∅

k = 11
2 , ∅, ∅, ∅, ∅ , , ∅, ∅, ∅

k = 2 , ∅, , ∅, ∅ , , ∅, ∅, ∅ , , ∅, ∅, ∅

k = 21
2 , ∅, ∅, ∅, ∅ , ∅, , ∅, ∅ , , ∅, ∅, ∅ , , ∅, ∅, ∅ , , ∅, ∅, ∅

k = 3 , ∅, ∅, , ∅ , , , ∅, ∅ , , ∅, ∅, ∅ , , ∅, ∅, ∅ , , ∅, ∅, ∅

T(j+1) =
(

ij+1 −→ T(j+ 1
2 )

)
ij+1 ←− T(j) means delete ij+1 using Jeu-de-taquin [see [7], p.113] from the corresponding residue where it

lies. ij+1 −→ T(j+ 1
2 ) means insert ij+1 in the λ(l+1) using RSK insertion [see [7], p.92] if ij+1 is removed from

λ(l).
Let ˜[λ]

(j) ∈ Λj
n be the shape of T(j) and ˜[λ]

(j+ 1
2 ) ∈ Λj

n−1 be the shape of T(j+ 1
2 ). Then let

P ˜[λ] =
(

˜[λ]
(0)

, ˜[λ]
1
2 , . . . , ˜[λ]

(k− 1
2 )

, ˜[λ]
(k)

)
and T ˜[λ] = T(k).

This insertion and deletion process produces the vacillating tableaux P ˜[λ] of shape ˜[λ] = ˜[λ]
(k) ∈ Λk

n and

the standard tableau T ˜[λ] of the same shape ˜[λ]. Hence (i1, i2, . . . ik) 7→ (T ˜[λ], P ˜[λ]).
To prove (T ˜[λ], P ˜[λ]) ←− (i1, i2, . . . , ik).

Given (T ˜[λ], P ˜[λ]) of shape ˜[λ] = ˜[λ]
(k) ∈ Λk

n. We use RSK reverse insertion [see [7], p.94] to obtain the
sequence (i1, i2, . . . , ik) from the given pair (T ˜[λ], P ˜[λ]).

For example, consider the sequence (i1, i2, i3) as (4, 2, 3).

j ij T(j)

0
(

1 2 3 4 (0) , ∅(1), ∅(2), ∅(3), ∅(4)
)

1
2 4 ←−

(
1 2 3 (0) , ∅(1), ∅(2), ∅(3), ∅(4)

)
1 4 −→

(
1 2 3 (0) , 4 (1) , ∅(2), ∅(3), ∅(4)

)
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j ij T(j)

1 1
2 2 ←−

(
1 3 (0) , 4 (1) , ∅(2), ∅(3), ∅(4)

)
2 2 −→

(
1 3 (0) ,

2 (1)

4
, ∅(2), ∅(3), ∅(4)

)

2 1
2 3 ←−

(
1 (0) ,

2 (1)

4
, ∅(2), ∅(3), ∅(4)

)

3 3 −→
(

1 (0) ,
2 3 (1)

4
, ∅(2), ∅(3), ∅(4)

)

6 R− S correspondence for Party algebra

Represent d ∈ Lk in a single row with vertices labeled by 1, 2, . . . , 2k where we relate vertex j′ with the
label 2k − j + 1. Connect vertices i and j in d ∈ Lk as the graph represented in a single row by the standard
representation with i ≤ j if and only if i and j are related in d and there does not exist k related to i and j with
i < k < j. Each vertex is connected only to its nearest neighbours in its block.

We label each edge e of the diagram d represented in the standard representation by 2k + 1− l where l is
the right vertex of e.

Define the insertion sequence of a diagram to be the sequence E = {Ej} indexed by j in the sequence
1
2 , 1, 1 1

2 , . . . , 2k where

Ej =
{

a, if vertex j is the left endpoint of edge a
∅, if vertex j is not a left endpoint of edge a.

Ej− 1
2

=
{

a, if vertex j is the right endpoint of edge a
∅, if vertex j is not a right endpoint of edge a.

For example, the standard representation and insertion sequence of d ∈ Lk is as

j 1
2 1 1 1

2 2 2 1
2 3 3 1

2 4 4 1
2 5 5 1

2 6 6 1
2 7 7 1

2 8
Ej ∅ 2 ∅ 6 6 3 ∅ 4 4 ∅ 3 1 2 ∅ 1 ∅

For a given d ∈ Lk, with insertion sequence {Ej}, we will produce a pair of vacillating tableaux (P[λ], Q[λ])
of shape [λ] ∈ Γk. Begin with the empty tableau,

T(0) = (∅, ∅, . . . , ∅)

Deleting and inserting, Ej, j = 1, . . . , 2k in the corresponding residues 1, . . . , k, are the two procedures involved
in this algorithm, then we successively deleting Ej− 1

2
and inserting Ej as follows.

T(0) = (∅(1), ∅(2), ∅(3), ∅(4))

T(j− 1
2 ) =

{
T(j−1) if Ej− 1

2
= ∅,

Ej− 1
2
←− T(j−1) if Ej− 1

2
6= ∅,

Ej− 1
2
←− T(j−1) means that, delete Ej− 1

2
in T(j−1) using jeu-de-taquin from where it lies.

T(j) =

{
T(j− 1

2 ) if Ej = ∅,
Ej −→ T(j− 1

2 ) if Ej 6= ∅,
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k = 0 ∅, ∅, ∅

k = 1
2 ∅, ∅, ∅

k = 1 , ∅, ∅

k = 11
2 , ∅, ∅ ∅, ∅, ∅

k = 2 , ∅, ∅ , ∅, ∅ ∅, , ∅

k = 21
2 ∅, ∅, ∅ , ∅, ∅ , ∅, ∅ , ∅, ∅ ∅, , ∅

k = 3 ∅, ∅, , ,∅ , ∅, ∅ , ∅, ∅ , ∅, ∅

1 2 3 4

1′ 2′ 3′ 4′

1

2

3

46

1 2 3 4 5 6 7 8

Ej −→ T(j− 1
2 ) means that the insertion of Ej into T(j− 1

2 ) in the following way:

1. For j = 1, . . . , k, insert Ej into λ(1) if Ej− 1
2

= ∅, else insert Ej in λ(l+1) if Ej− 1
2

is deleted from λ(l).
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2. For j = k + 1, . . . , 2k, insert Ej into the λ(1) if Ej− 1
2

= ∅, else insert Ej in λ(l−1) if Ej− 1
2

is deleted from λ(l).

Let [λ](i) be the shape of T(i), let [λ](i+ 1
2 ) be the shape of T(i+ 1

2 ) and let [λ] = [λ](k). Define

Q[λ] =
(

∅, [λ](
1
2 ), . . . , [λ](k− 1

2 ), [λ](k)
)

.
P[λ] =

(
[λ](2k), [λ](2k− 1

2 ), . . . , [λ](k)
)

.

In this insertion process, every edge of the diagram is inserted when we come to its left endpoint and deleted
when we come to its right endpoint. so the final shape is [λ](2k) = ∅. So we associate a pair of vacillating
tableaux (P[λ], Q[λ]) to d ∈ Lk. Denote this process by d −→ (P[λ], Q[λ]).

j Ej T(j)

0
(

∅(1), ∅(2), ∅(3), ∅(4)
)

1
2 ∅ ←−

(
∅(1), ∅(2), ∅(3), ∅(4)

)
1 2 −→

(
2 (1) , ∅(2), ∅(3), ∅(4)

)
1 1

2 ∅ ←−
(

2 (1) , ∅(2), ∅(3), ∅(4)
)

2 6 −→
(

2 6 (1) , ∅(2), ∅(3), ∅(4)
)

2 1
2 6 ←−

(
2 (1) , ∅(2), ∅(3), ∅(4)

)
3 3 −→

(
2 (1) , 3 (2) , ∅(3), ∅(4)

)
3 1

2 ∅ ←−
(

2 (1) , 3 (2) , ∅(3), ∅(4)
)

4 4 −→
(

2 4 (1) , 3 (2) , ∅(3), ∅(4)
)

4 1
2 4 ←−

(
2 (1) , 3 (2) , ∅(3), ∅(4)

)
5 ∅ −→

(
2 (1) , 3 (2) , ∅(3), ∅(4)

)
5 1

2 3 ←−
(

2 (1) , ∅(2), ∅(3), ∅(4)
)

6 1 −→
(

1 (1)

2
, ∅(2), ∅(3), ∅(4)

)

6 1
2 2 ←−

(
1 (1) , ∅(2), ∅(3), ∅(4)

)
7 ∅ −→

(
1 (1) , ∅(2), ∅(3), ∅(4)

)
7 1

2 1 ←−
(

∅(1), ∅(2), ∅(3), ∅(4)
)

8 ∅ −→
(

∅(1), ∅(2), ∅(3), ∅(4)
)
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Theorem 6.2. The map d −→ (P[λ], Q[λ]) provides a bijection between the set of d ∈ Lk and the pairs of vacillating
tableaux of shape [λ], [λ] ∈ Γk,

Proof. From the above example it is clear that, for a given d ∈ Lk we can construct a pair of vacillating tableau
(P[λ], Q[λ]) of shape [λ]. We prove the theorem by constructing the inverse of d −→ (P[λ], Q[λ]). First we

use Q[λ] followed by P[λ] in reverse order to construct the sequence
[
λ( 1

2 )
]

,
[
λ(1)

]
, . . . ,

[
λ(2k)

]
. We initialize

T(2k) = ∅.
We now show how to construct T(i) and Ei+1 so that T(i+1) =

(
Ei+1 −→ T(i) )

. If [λ](i+1)/[λ](i) is a box
containing a, and we use reverse algorithm [see [7], p.94] on the value in the box containing a to produce T(i)

and I(d,n)
i+1 such that T(i+1) =

(
Ei+1 −→ T(i) )

. Since we remove the value in position a by using reverse RS
insertion [see [7], p.92], we know that T(i) has shape [λ](i).

We then show how to construct T(i) and Ei+1 so that T(i+1) =
(

Ei+1 ←− T(i) )
. If [λ](i)/[λ](i+1) is a box

containing a. Let T(i) be the tableau of shape λ(i) with the same entries as T(i+1) and having the entry 2k − i
in box containing a. Let Ei+1 = 2k− i. At any given step i, 2k− i is the largest entry added to the tableau thus
far, so T(i) is standard. Furthermore, T(i+1) =

(
Ei+1 ←− T(i) )

, since Ei+1 = 2k− i is already in the rim hook
and thus simply delete it.

Proceeding in this manner, we will produce E2k, E2k−1, . . . , E1 which completely determines d. By the way
we have constructed d, we have d −→ (P[λ], Q[λ]).
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