# An equitable edge coloring of some classes of product of graphs 

K. Manikandan ${ }^{1}$, S. Moidhen Aliyar ${ }^{2 *}$ and S. Manimaran ${ }^{3}$


#### Abstract

An equitable edge coloring for any graph $G$ is an assignment of colors to all the edges of graph $G$ such that adjacent edges receive the different color and for any two color classes different by at most one. In this paper, we prove theorem on equitable edge coloring for strong products of path and cycle.


## Keywords

Equitable edge coloring, Strong product, Cycle graph.

## AMS Subject Classification

05C15.
${ }^{1}$ Department of Mathematics, Guru Nanak College, Chennai-600042, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, The New College, Chennai-600 014, Tamilnadu, India.
${ }^{3}$ Department of Mathematics, RKM Vivekananda College, Chennai-600004, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ kmanimaths $1987 @$ gmail.com; ${ }^{2}$ moideenaliyar@gmail.com; ${ }^{3}$ ponsumanimaran@gmail.com
Article History: Received 11 April 2020; Accepted 22 August 2020

## Contents

1 Introduction ..... 1354
2 Results and Discussion ..... 1355
References ..... 1356

## 1. Introduction

Coloring problem is one among the most important research area in graph theory. As an extension of proper edge coloring [3, 9, 10] and conjectures on equitable edge coloring $[1,4,6,8]$ is established. It is tough to find a result using equitable edge chromatic number. In this paper, we consider a graph $G$ as finite, simple and undirected. Let $G=(V(G), E(G))$ be an ordered pair of graph $G$ with the vertices and the edges respectively. An equitable edge coloring of graph $G$ is a mapping $f: E(G) \rightarrow N$, where $N$ is a set of colors satisfying the following conditions.

1. $f(e) \neq f\left(e^{\prime}\right)$ for any two adjacent edges $e, e^{\prime} \in E(G)$.
2. $\| E_{i}\left|-\left|E_{j}\right|\right| \leq 1 ; i, j=1,2, \ldots, k$.

The minimum number of colors are required for an equitable edge coloring of graph $G$ is called the equitable edge chromatic number of $G$ and is denoted by $\chi_{e}^{\prime}(G)$. The edge chromatic number of graph $G$ is related to the maximum degree $\Delta(G)$, the greatest number of edges incident to any single vertex of $G$. it is clear that $\chi^{\prime}(G) \geq \Delta(G)$, for if $\Delta$ various number
of edges join at a single vertex $v$, then all of these edges to be received different colors from each other and that can be possible if there are at least $\Delta$ colors available to be received. The edge chromatic number of graph $G$ must be at least $\Delta$, the greatest vertex degree of graph $G$ given by Skiena [9]. However, Vizing[10] and Gupta[3] proved that any graph $G$ can be edge colored with at most $\Delta+1$ colors. Vizing's theorem states that, the tight bound of edge coloring for any simple graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$. If a graph $G$ with edge chromatic number equal to $\Delta(G)$, then the graph $G$ is called Type 1 and if edge chromatic number is equal to $\Delta(G)+1$ then it is called Type 2 graph. The number of colors for bipartite graph and high degree planar graphs is always $\Delta$ and for the multi graph may be as large as $\frac{3 \Delta}{2}$. In 1964 Paul Erdős[1] conjectured that an equitable coloring is achievable with only one more color; for any graph $G$ with greatest degree $\Delta$ has an equitable coloring with $\Delta+1$ colors. This conjecture was proved in 1970 by Hajnal and Szemerédi [4] with lengthy and difficulted proof is called as the HajnalSzemerédi Theorem. In the year 2008,Kierstead and Kostochka[6] was presented the same proof in a simple way.
Theorem 1.1. [2] For cycle graph $C_{n}$ with maximum degree $\Delta(G)$, then

$$
\chi_{e}^{\prime}\left(C_{n}\right)= \begin{cases}\Delta(G)+1, & \text { if } n \text { is odd } \\ \Delta(G), & \text { if } n \text { is even } .\end{cases}
$$

In this paper, we study the conjecture on equitable edge
coloring of strong product of path and cycle.

## 2. Results and Discussion

Definition 2.1. [5] Consider $G$ and $H$ be two graphs. The strong product $G \boxtimes H$, defined by $V(G \boxtimes H)=\{(g, h) \mid g \in$ $V(G), h \in V(H)\}$ and $E(G \boxtimes H)=E(G \boxtimes H) \cup E(G \times H)$.

Theorem 2.2. The equitable edge coloring of $P_{n} \boxtimes P_{m}$ and its edge chromatic number is $\Delta\left(P_{n} \boxtimes P_{m}\right)$ for all $n, m \geq 3$ and $n, m \in \mathbb{Z}^{+}$

Proof. Here $\Delta\left(P_{n} \boxtimes P_{m}\right)$ is the maximum degree of $P_{n} \boxtimes P_{m}$ and having
$n\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ rows and $m\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ columns. We divide $\left(P_{n} \boxtimes P_{m}\right)$ into three parts, say $X_{1}, X_{2}, X_{3} . X_{1}$ with three colors and $X_{2}$ with three colors and $X_{3}$ with the remaining colors of $\Delta\left(P_{n} \boxtimes P_{m}\right)$.
Case (i) If $n$ is odd and for any $m \geq 3$
Color all the edges in $R_{2}, R_{3}, \ldots, R_{n-1}$ using $X_{3}$ color. Then assign the colors to the remaining edges of $\left(P_{n} \boxtimes P_{m}\right)$ in the following way: at each maximum degree vertex in $R_{p}$ using $X_{1}$ color to the edges which are incident from $R_{p-1}$ and using $X_{2}$ color to the edges which are incident from $R_{p+1}$. Both the color will be given cyclically in order from $p$
adjustment to the repetition to attains the equitable conditions.
The balanced edges at maximum degree vertex in $C_{2}$ from $C_{1}$ and $C_{m-1}$ from $C_{m}$ be color with the missing color of $\Delta\left(P_{n} \boxtimes P_{m}\right)$. Finally, we color the remaining edges and boundary edges $R_{1}, R_{n}, C_{1}$ and $C_{m}$ according to satisfying the equitable edge coloring conditions.

## Case (ii) If $n$ is even and $m$ is odd:

Color all the edges in $C_{2}, C_{3}, \ldots, C_{m-1}$ using $X_{3}$ color. Then assign the colors to the remaining edges of $\left(P_{n} \boxtimes P_{m}\right)$ in the following way: at each maximum degree vertex in $C_{p}$ using $X_{1}$ color to the edges which are incident from $C_{p-1}$ and using $X_{2}$ color to the edges which are incident from $C_{p+1}$. Both the color will be given cyclically in order from $p=2,4,6, \ldots, m-1$, using a repeated pattern with the minor adjustment to the repetition to attains the equitable conditions.

The balanced edges at maximum degree vertex in $R_{2}$ from $R_{1}$ and $R_{n-1}$ from $R_{n}$ be color with the missing color of $\Delta\left(P_{n} \boxtimes\right.$ $\left.P_{m}\right)$. Finally, we color the remaining edges and boundary edges $C_{1}, C_{m}, R_{1}$, and $R_{n}$ according to satisfying the equitable edge coloring conditions.

## Case (iii) If both $n$ and $m$ are even:

Color all the edges in $R_{2}, R_{3}, \ldots, R_{n-1}$ using $X_{3}$ color. Then assign the colors to the remaining edges of $\left(P_{n} \boxtimes P_{m}\right)$ in the following way: at each maximum degree vertex in $R_{p}$ from $C_{2}$ to $C_{\frac{m}{2}}$, using $X_{1}$ color to the edges which are incident from $R_{p-1}$ and using $X_{2}$ color to the edges which are incident from $R_{p+1}$. Then at each maximum degree vertex in $R_{p}$ from $C_{\frac{m}{2}+1}$ to $C_{m}$ using $X_{2}$ color to the edges which are incident from $R_{p-1}$ and using $X_{1}$ color to the edges which are incident from $R_{p+1}$. Both the color will be given cyclically in
order from $p=2,4,6, \ldots, n-2$, using a repeated pattern with the minor adjustment to the repetition to attains the equitable conditions.

At each vertex in $R_{n}$ from $C_{2}$ to $C_{\frac{m}{2}}$, using $X_{1}$ color to the edges which are incident from $R_{n-1}$ and from $C_{\frac{m}{2}+1}$ to $C_{m-1}$ using $X_{2}$ color to the edges which are incident from $R_{n-1}$. The balanced edges between $\left(C_{1}, C_{2}\right)$ and $\left(C_{m-1}, C_{m}\right)$ be colors with the missing color of $\Delta\left(P_{n} \boxtimes P_{m}\right)$. Finally, we color the remaining edges and boundary edges $R_{1}, R_{n}, C_{1}$ and $C_{m}$ according to satisfying the equitable edge coloring conditions.
Therefore, $\chi_{e}^{\prime}\left(P_{n} \boxtimes P_{m}\right)=\Delta\left(P_{n} \boxtimes P_{m}\right)$.

Theorem 2.3. The equitable edge coloring of $P_{n} \boxtimes C_{m}$ and its edge chromatic number is $\Delta\left(P_{n} \boxtimes C_{m}\right)$ for all $n, m \geq 3$ and $n, m \in \mathbb{Z}^{+}$

Proof. Here $\Delta\left(P_{n} \boxtimes C_{m}\right)$ is the maximum degree of $P_{n} \boxtimes C_{n}$ and having
$n\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ rows and $m\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ columns. We divide $\Delta\left(P_{n} \boxtimes C_{m}\right)$ into three parts, say $X_{1}, X_{2}, X_{3} . X_{1}$ with three colors and $X_{2}$ with three colors and $X_{3}$ with the remaining colors of $\Delta\left(P_{n} \boxtimes C_{m}\right)$.
Case (i) If $n$ is odd and $m$ is even:
Color all the edges in $R_{2}, R_{3}, \ldots, R_{n-1}$ using $X_{3}$ color. Then assign the colors to all the edges between $R_{1}$ and $R_{2}$ using $X_{1}$ color and edges between $R_{2}$ and $R_{3}$ with $X_{2}$ color. Then color the remaining edges between
$\left(\left(R_{3}, R_{4}\right),\left(R_{4}, R_{5}\right),\left(R_{5}, R_{6}\right),\left(R_{6}, R_{7}\right), \ldots,\left(R_{n-1}, R_{n}\right)\right)$ using the colors of $X_{1}, X_{2}$ cyclically. Finally, we color the remaining edges $R_{1}, R_{n}$ using $\Delta\left(P_{n} \boxtimes C_{m}\right)$ colors according to satisfying the equitable edge coloring conditions.
Case (ii) If both $n$ and $m$ are odd:
Assign $X_{3}$ color to all the edges in $R_{2}, R_{3}, \ldots, R_{n-1}$ from $C_{1}$ to $C_{m}$. Color the edges of $C_{m}$ using one of the color of $X_{3}$ and assign the remaining color of $X_{3}$ in $C_{1}$ edges. Then color the remaining edges between
$\left(\left(R_{1}, R_{2}\right),\left(R_{2}, R_{3}\right),\left(R_{3}, R_{4}\right),\left(R_{4}, R_{5}\right), \ldots,\left(R_{n-1}, R_{n}\right)\right)$ using the colors of $X_{1}, X_{2}$ cyclically. Now, we color the remaining edges between $\left(C_{m}, C_{1}\right)$ using the missing color of $\Delta\left(P_{n} \boxtimes C_{m}\right)$. Finally, we color the remaining edges $R_{1}$ and $R_{n}$ using $\Delta\left(P_{n} \boxtimes\right.$ $C_{m}$ ) colors according to satisfying the equitable edge coloring conditions.

## Case (iii) If both $n$ and $m$ are even:

Assign $X_{3}$ color to all the edges in $C_{1}, C_{2}, \ldots, C_{m}$ from $R_{1}$ to $R_{n-1}$. Color the edges of $R_{n-1}$ using one of the color of $X_{3}$ and assign the remaining color of $X_{3}$ in $R_{n}$ edges. Then color the remaining edges between
$\left(\left(C_{1}, C_{2}\right),\left(C_{2}, C_{3}\right),\left(C_{3}, C_{4}\right),\left(C_{4}, C_{5}\right), \ldots,\left(C_{m-1}, C_{m}\right)\right)$ using the colors of $X_{1}, X_{2}$ cyclically using a repeated pattern with the minor adjustment to the repetition to attains the equitable conditions except the boundary edges. Finally, we color the remaining boundary edges $R_{1}$ and $R_{n}$ using $\Delta\left(P_{n} \boxtimes C_{m}\right)$ colors according to satisfying the equitable edge coloring conditions. Case (iv) If $n$ is even and $m$ is odd:

Assign $X_{3}$ color to all the edges in $R_{2}, R_{3}, \ldots, R_{n-1}$ from $C_{1}$ to $C_{m}$. Color the edges of $C_{m}$ using one of the color of $X_{3}$ and assign the remaining color of $X_{3}$ in $C_{1}$ edges. Then assign the color to the remaining edges of $\left(P_{n} \boxtimes C_{m}\right)$ in the following way: at each maximum degree vertex in $R_{p}$ from $C_{2}$ to $C_{\frac{m+1}{2}}$, using $X_{1}$ color to the edges which are incident from $R_{p-1}^{2}$ and use $X_{2}$ color to the edges which are incident from $R_{p+1}$. Then at each maximum degree vertex in $R_{p}$ from $C_{\frac{m+3}{2}}$ to $C_{m}$ using $X_{2}$ color to the edges which are incident from $R_{p-1}$ and use $X_{1}$ color to the edges which are incident from $R_{p+1}$. Both the color will be given cyclically in order from $p=$ $2,4,6, \ldots, n-2$. At each vertex in $R_{n}$ from $C_{2}$ to $C_{\frac{m+1}{2}}$, use $X_{1}$ color to the edges which are incident from $R_{n-1}$ and from $C_{\frac{m+3}{2}}$ to $C_{m}$ use $X_{2}$ color to the edges which are incident from $R_{n-1}$. Now, we color the remaining edges between $\left(C_{m}, C_{1}\right)$ and $\left(C_{1}, C_{2}\right)$ using the missing color of $\Delta\left(P_{n} \boxtimes C_{m}\right)$. Finally, we color the remaining edges $R_{1}$ and $R_{n}$ using $\Delta\left(P_{n} \boxtimes C_{m}\right)$ colors according to satisfying the equitable edge coloring conditions.
Therefore, $\chi_{e}^{\prime}\left(P_{n} \boxtimes C_{m}\right)=\Delta\left(P_{n} \boxtimes C_{m}\right)$.
Theorem 2.4. The equitable edge coloring of $C_{n} \boxtimes C_{m}$ for all $n, m \geq 3$ and $n, m \in \mathbb{Z}^{+}$
$\chi_{e}^{\prime}\left(C_{n} \boxtimes C_{m}\right)= \begin{cases}\Delta\left(C_{n} \boxtimes C_{m}\right)+1, & \text { if both } n \text { and } m \text { are odd } \\ \Delta\left(C_{n} \boxtimes C_{m}\right), & \text { otherwise. }\end{cases}$

## Proof. Case (1) If both $n$ and $m$ are odd:

Here $\Delta\left(C_{n} \boxtimes C_{m}\right)$ is the maximum degree of $\Delta C_{n} \boxtimes C_{m}$ and having
$n\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ rows and $m\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ columns. We divide $\Delta\left(C_{n} \boxtimes C_{m}\right)+1$ into three equal parts, say $X_{1}, X_{2}, X_{3}$.
Subcase (1.1) If $n=3 k, k=1,3,5, \ldots$.
Color all the edges in $R_{1}$ using $X_{1}, R_{2}$ with $X_{2}$ and $R_{3}$ with $X_{3}$ color. Then assign the colors to all the edges in the remaining rows $R_{4}, R_{5}, \ldots, R_{n}$ of ( $C_{n} \boxtimes C_{m}$ ) using $X_{1}, X_{2}, X_{3}$ colors cyclically using a repeated pattern with the minor adjustment to the repetition to attains the equitable conditions. Then assign the colors to all the edges between $R_{1}$ and $R_{2}$ using $X_{3}$ color and edges between $R_{2}$ and $R_{3}$ with $X_{1}$ color and edges between $R_{3}$ and $R_{4}$ with $X_{2}$ color. Finally, we color the remaining edges between $\left(\left(R_{4}, R_{5}\right),\left(R_{5}, R_{6}\right),\left(R_{6}, R_{7}\right), \ldots,\left(R_{n}, R_{1}\right)\right)$ using the colors of $X_{3}, X_{1}, X_{2}$ cyclically which satisfies the conditions of equitable edge coloring.
Subcase (1.2) If $n=3 k+2, k=1,3,5, \ldots$.
Color all the edges in $R_{1}$ using $X_{1}, R_{2}$ with $X_{2}$ and $R_{3}$ with $X_{3}$ color. Then assign the colors to all the edges $R_{4}, R_{5}, \ldots$, $R_{n-2}$ of $\left(C_{n} \boxtimes C_{m}\right)$ using $X_{1}, X_{2}, X_{3}$ colors cyclically using a repeated pattern with the minor adjustment to the repetition to attains the equitable conditions and for all the edges in the remaining rows $R_{n-1}$ and $R_{n}$ use $X_{1}$ color. Thencolor the remaining edges between
$\left(\left(R_{1}, R_{2}\right),\left(R_{2}, R_{3}\right),\left(R_{3}, R_{4}\right), \ldots,\left(R_{n-2}, R_{n-1}\right)\right)$ using the colors of $X_{3}, X_{1}, X_{2}$ cyclically. Finally, we color the edges between $\left(R_{n-1}, R_{n}\right)$ using $X_{3}$ color and the missing color of $X_{1}$ and the edges between $\left(R_{n}, R_{1}\right)$ using $X_{2}$ and the missing
color of $X_{1}$ according to satisfying the equitable edge coloring conditions.
Subcase (1.3) If $n=3 k+4, k=1,3,5, \ldots$.
Color all the edges in $R_{1}$ using $X_{1}, R_{2}$ with $X_{2}$ and $R_{3}$ with $X_{3}$ color. Then assign the colors to all the edges $R_{4}, R_{5}, \ldots, R_{n-2}$ of $\left(C_{n} \boxtimes C_{m}\right)$ using $X_{1}, X_{2}, X_{3}$ colors cyclically using a repeated pattern with the minor adjustment to the repetition to attains the equitable conditions. To color all the edges in the remaining rows $R_{n-1}$ use $X_{2}$ and for $R_{n}$ use $X_{1}$ colors. Then color the remaining edges between $\left(\left(R_{1}, R_{2}\right),\left(R_{2}, R_{3}\right),\left(R_{4}, R_{5}\right), \ldots\right.$, $\left.\left(R_{n-3}, R_{n-2}\right)\right)$ using the colors of $X_{3}, X_{1}, X_{2}$ cyclically. Finally, we color the edges between $\left(R_{n-2}, R_{n-1}\right)$ using $X_{1}$ color and the missing color of $X_{2}$ and the edges between $\left(R_{n-1}, R_{n}\right)$ using $X_{3}$ and the missing colors of $X_{1}$ and $X_{2}$ and the edges between $\left(R_{n}, R_{1}\right)$ using $X_{2}$ and the missing color of $X_{1}$ according to satisfying the equitable edge coloring conditions.
Therefore, $\chi_{e}^{\prime}\left(C_{n} \boxtimes C_{m}\right)=\Delta\left(C_{n} \boxtimes C_{m}\right)+1$.
Case(2) Both $m$ and $n$ are not odd:
Here, we divide $\Delta\left(C_{n} \boxtimes C_{m}\right)$ into three parts, say $X_{1}, X_{2}, X_{3}$. $X_{1}$ with three colors and $X_{2}$ with three colors and $X_{3}$ with the remaining colors of $\Delta\left(C_{n} \boxtimes C_{m}\right)$

## Subcase (2.1) If both $n$ and $m$ are even:

Color all the edges in $R_{1}, R_{2}, R_{3}, \ldots, R_{n}$ using $X_{3}$ color. Then assign the colors to all the edges between $R_{1}$ and $R_{2}$ using $X_{1}$ color and edges between $R_{2}$ and $R_{3}$ with $X_{2}$ color. Then color the remaining edges between
$\left(\left(R_{3}, R_{4}\right),\left(R_{4}, R_{5}\right),\left(R_{5}, R_{6}\right),\left(R_{6}, R_{7}\right), \ldots,\left(R_{n}, R_{1}\right)\right)$ using the colors of $X_{1}, X_{2}$ cyclically which satisfies the conditions of equitable edge coloring.

## Subcase (2.2) If $n$ is even and $m$ is odd:

Assign $X_{3}$ color to all the edges in $R_{1}, R_{2}, \ldots, R_{n}$ from $C_{1}$ to $C_{m}$. Color the edges of $C_{m}$ using one of the color of $X_{3}$ and assign the remaining color of $X_{3}$ in $C_{1}$ edges. Then color the remaining edges between
$\left(\left(R_{1}, R_{2}\right),\left(R_{2}, R_{3}\right),\left(R_{3}, R_{4}\right),\left(R_{4}, R_{5}\right), \ldots,\left(R_{n}, R_{1}\right)\right)$ using the colors of $X_{1}, X_{2}$ cyclically. Now, we color the remaining edges between $\left(C_{m}, C_{1}\right)$ using the missing colors of $\Delta\left(C_{n} \boxtimes C_{m}\right)$ which satisfies the conditions of equitable edge coloring.

## Subcase (2.3) If $n$ is odd and $m$ is even:

Assign $X_{3}$ color to all the edges in $C_{1}, C_{2}, \ldots, C_{m}$ from $R_{1}$ to $R_{n}$. Color the edges of $R_{n}$ using one of the color of $X_{3}$ and assign the remaining color of $X_{3}$ in $R_{1}$ edges. Then color the remaining edges between
$\left(\left(C_{1}, C_{2}\right),\left(C_{2}, C_{3}\right),\left(C_{3}, C_{4}\right),\left(C_{4}, C_{5}\right), \ldots,\left(C_{m}, C_{1}\right)\right)$ using the colors of $X_{1}, X_{2}$ cyclically. Now, we color the remaining edges between $\left(R_{n}, R_{1}\right)$ using the missing colors of $\Delta\left(C_{n} \boxtimes C_{m}\right)$ which satisfies the conditions of equitable edge coloring. Therefore, $\chi_{e}^{\prime}\left(C_{n} \boxtimes C_{m}\right)=\Delta\left(C_{n} \boxtimes C_{m}\right)$.

## References

${ }^{[1]}$ Erdős, Paul(1964), "Problem 9", in Fieldler, M., Theory of Graphs and its Applications, Prague: Czech Acad. Sci. Publ., p. 159.
${ }^{[2]}$ M.A. Gang, M.A. Ming, The equitable total chromatic number of some join graphs, open journal of Applied Sciences (2012).
${ }^{\text {[3] }}$ Gupta, R. P. The Chromatic Index and the Degree of a Graph. Not. Amer. Math. Soc. 13, 719, 1966.
${ }^{\text {[4] }}$ Hajnal, A. and Szemer'edi, E. (1970) Proof of a conjecture of P. Erdős. In Combinatorial Theory and its Application (P. Erdős, A. R'enyi, and V. T. S'os, eds), NorthHolland, London, pp. 601-623.
${ }^{[5]}$ R. Hammack, W. Imrich and S. Klavzar, Handbook of Product Graphs, CRC Press, Taylor and Francis Group, Boca Raton, 2011.
${ }^{[6]}$ Kierstead, H. A.; Kostochka, A. V. (2008), "A short proof of the Hajnal-Szemerédi theorem on equitable colouring", Combinatorics, Probability and Computing, 17 (2): 265-270.
${ }^{\text {[7] }}$ S. Mohan, J. Geetha, K. somasundaram, Total coloring of certain classes of product graphs, Electronic notes in Disc. Math. 53(2016), 173-180.
${ }^{\text {[8] }}$ Seymour, P. (1974), "Problem section", in McDonough, T. P.; Mavron, Eds., V. C., Combinatorics: Proceeding of the British Combinatorial Conference 1973, Cambridge, UK: Cambridge Univ. Press, pp. 201-202.
${ }^{[9]}$ S. Skiena, Edge Colorings, §5.5.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica.Reading, MA: Addison-Wesley, p. 216, 1990.
${ }^{[10]}$ V. G. Vizing, On an Estimate of the Chromatic Class of a p-Graph [Russian]. DiskretAnaliz 3, 23-30,1964.
$\operatorname{ISSN}(\mathrm{P}): 2319-3786$
Malaya Journal of Matematik
ISSN(O):2321-5666

