

https://doi.org/10.26637/MJM0804/0007

New three step derivative free iterative method for solving nonlinear equations

Najmuddin Ahmad^{1*} and Vimal Pratap Singh²

Abstract

In this paper, we present a three step derivative free iterative method for solving nonlinear equations f(x) = 0. We discuss the convergence criteria of this new derivative free iterative method. A comparison with other existing methods is also given. The aim of this paper is to develop a new derivative free iterative method to find the approximation of the root α is nonlinear equations f(x) = 0, without the evaluation of the derivatives. This new method is based on Steffensen's method [11]. It is prove that the new method has cubic convergence. The benefit of this method is that it does not need to calculate any derivative. Numerical comparisons are made with other existing methods to show the better performance of the presented method.

Keywords

Nonlinear equations, convergence analysis, iterative methods, derivative free, three step.

AMS Subject Classification

65H05.

^{1,2} Department of Mathematics, Integral University, Lucknow-226026, Uttar Pradesh, India.

*Corresponding author: ¹najmuddinahmad33@gmail.com

Article History: Received 19 March 2020; Accepted 18 August 2020

Contents

	•••••••
1	Introduction1378
2	Description of the method1379
3	Convergence Analysis1379
4	Numerical Examples 1381
5	Conclusion and Discussion 1381
	References 1381

1. Introduction

Solving nonlinear equations is one of the most important and challenging problem in scientific and engineering applications. In this paper, we consider an iterative method to solve nonlinear equation [2]

$$f(x) = 0. \tag{1.1}$$

Recently, some method have been proposed and analyzed for solving nonlinear equations. These method have been suggested by using quadrature formulas, decomposition and Taylor's series [10,14-18].

The well known Newton Raphson's method is largely used

to solve nonlinear equation (1.1) and written as [11]

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$
(1.2)

©2020 MJM.

The Newton's method was modified by Steffensen's who replaced the first derivative f'(x) in Newton's method by forward difference approximation [11,13]

$$f'(x) = \frac{f(x_n + f(x_n)) - f(x_n)}{f(x_n)} = P_0(x_n)$$
(1.3)

and obtained the famous Steffensen's method (SM)

$$x_{n+1} = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}.$$
(1.4)

Newton's method and Steffensen's method are of second order convergence.[11,13] We use Predictor – corrector methods, we shall now discuss the application of the explicit and implicit multistep method, for solution of the initial value problems. We use explicit (predictor) method for predicting a value and then use the implicit (corrector) method iteratively until the convergence is obtained. [1, 5-7]

(Computational order of convergence)

Let x^* be a root of the function f(x) and suppose that x_{n+1}, x_n, x_{n-1} are three consecutive iterates closer to the root x^* . Then, the computational order of convergence ρ can be approximated using the following formula:[19]

$$\rho \approx \frac{\ln|(x_{n+1} - x^*)/(x_n - x^*)|}{\ln|(x_n - x^*)/(x_{n-1} - x^*)|}$$
(1.5)

2. Description of the method

A problem of great importance in applied mathematics and engineering is that of determining the roots of an equation of the form f(x) = 0.

A significant part in developing our new iterative methods free from first derivative with respect to y. To be more precise, we now approximate $f'(y_n)$, to reduce the number of evaluations per iteration by a combination. Toward this end, an estimation of the function $P_1(t)$ is taken into consideration as follows: [3]

$$P_1(t) = a + b(t - x_n) + c(t - x_n)^2,$$

$$P'_1(t) = b + 2c(t - x_n),$$

By substituting the known values, we have

$$P_{1}(y_{n}) = f(y_{n}) = a + b(y_{n} - x_{n}) + c(y_{n} - x_{n})^{2},$$

$$P_{1}'(y_{n}) = f'(y_{n}) = b + 2c(y_{n} - x_{n}),$$

$$P_{1}(x_{n}) = f(x_{n}) = a, P_{1}'(x_{n}) = f'(x_{n}) = b,$$

we could easily obtain the unknown parameters. Thus we have

$$f'(y_n) = 2\left(\frac{f(y_n) - f(x_n)}{(y_n - x_n)}\right) - f'(x_n) = P_1(x_n, y_n), \quad (2.1)$$

$$f'(y_n) = 2\left(\frac{f(y_n) - f(x_n)}{(y_n - x_n)}\right) - \frac{f(x_n + f(x_n)) - f(x_n)}{f(x_n)} = P_1(x_n, y_n)$$

$$f'(y_n) = 2\left(\frac{f(y_n) - f(x_n)}{(y_n - x_n)}\right) - \frac{f(x_n)}{(y_n - x_n)} = P_1(x_n, y_n), \quad (2.2)$$

Now using the trapezoidal rule and fundamental theorem of calculus, one can show that the function f(x) can be approximated by the series [3].

$$f(x) = f(\gamma) + \frac{x - \gamma}{2} [f'(x) + f'(\gamma)]$$
(2.3)

Where f'(x) is the differential of *x*.

Theorem 2.1

From equation (1.1) and equation (2.3), we can have

$$x_{(n+1)} = x_n - \frac{(2f(x_n))}{[f'(x_{(n+1)}) + f'(x_n)]}$$

$$n = 0, 1, 2, 3, \dots$$

Theorem 2.2

From equation (1.1) and equation (2.1), we can have

$$x_{(n+1)} = x_n - \frac{(f(x_n)(y_n - x_n))}{[f(y_n) - f(x_n)]}$$

 $n = 0, 1, 2, 3, \dots$

Theorem 2.3

From equation (1.3) and equation (2.2), we can have

$$x_{n+1} = x_n - \frac{(f(x_n))}{2\frac{(f(y_n) - f(x_n))}{(y_n - x_n)} - \frac{f(x_n)}{(y_n - x_n)}}$$
$$n = 0, 1, 2, 3, \dots$$

Now using equations (1.4), theorem (2.2) and theorem (2.3) to suggest the following new derivative free iterative method for solving nonlinear equation, It is established that the following new method has convergence of order three, which will denote by THREE STEP DERIVATIVE FREE METHOD (TSDFM). Then it can be written in the following form

TSDFM

For a given initial choice x_0 , compute approximate solution x_{n+1} , by the iterative schemes

$$a_n = x_n - \frac{[f(x_n)]^2}{f(x_n + f(x_n)) - f(x_n)}$$

$$b_n = x_n - \frac{(f(x_n))}{2\frac{(f(a_n) - f(x_n))}{(a_n - x_n)} - \frac{f(x_n)}{(a_n - x_n)}}$$

$$x_{n+1} = x_n - \frac{(f(x_n)(b_n - x_n))}{[f(b_n) - f(x_n)]}$$

$$n = 0, 1, 2, 3, \dots$$

We use a_n as a predictor, b_n and x_{n+1} as a corrector then we have the following three step derivative free method third order convergence.

3. Convergence Analysis

Let us now discuss the convergence analysis of the TS-DFM method for numerical solution of nonlinear equations.

Theorem 3.1

let $\alpha \in I$ be a simple zero of sufficiently differential function $f: I \subseteq R \to R$ for an open interval I, if x_0 is sufficiently close to α then the three step derivative free method denoted by TSDFM of third order convergence.

Proof. Let α be a simple zero of f. Then by expanding $f(x_n)$ about α we have

$$f(x_n) = e_n c_1 + e_n^2 c_2 + e_n^3 c_3 + \dots$$
(3.1)

Where $c_k = \frac{1}{k!} f^{(k)}(\alpha)$ $k = 1, 2, 3, \dots$ and $e_n = x_n - \alpha$

$$[f(x_n)]^2 = c_1^2 e_n^2 + 2c_1 c_2 e_n^3 + c_2^2 e_n^4 + \dots$$
(3.2)
$$f(x_n + f(x_n)) = c_1 (1 + c_1) e_n + (3c_1 c_2 + c_1^2 c_2 + 2c_2^2)$$
(3.3)
$$(\times) e_n^2 + \dots$$

Equation (3.1) and (3.3) yield,

$$f(x_n + f(x_n)) - f(x_n) = c_1^2 e_n + (3c_1c_2 + c_1^2c_2 + 2c_2^2)e_n^2 + \dots$$
(3.4)

From (3.2) and (3.4), we have

$$\frac{[f(x_n)]^2}{(f(x_n+f(x_n))-f(x_n))} = e_n - (\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2})e_n^2 + \dots$$
(3.5)

From (3.5), we have

$$a_n = \alpha + \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right)e_n^2 \tag{3.6}$$

Let us set, $A = a_n - \alpha$. Then the equation (3.6) can be re - - written in the form written in the form

$$A = \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right)e_n^2......$$
(3.7)

Now, expanding (a_n) about α and using (3.6), we have

$$f(a_n) = Ac_1 + A^2c_2 + A^3c_3 + \dots$$
(3.8)

$$a_n - x_n = -e_n + \left(\frac{c_2}{c_1} + c_2 + 2\frac{c_2^2}{c_1^2}\right)e_n^2 + \dots$$
(3.9)

From (3.1) and (3.8), we have

$$f(a_n) - f(x_n) = -c_1 e_n + (c_1 c_2 + \frac{2c_2^2}{c_1})e_n^2 - c_3 e_n^3 + \dots$$
(3.10)

From (3.9) and (3.10), we have

$$2\left[\frac{(f(a_n) - f(x_n))}{(a_n - x_n)}\right] = 2c_1 + 2c_2e_n + 2(c_2(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}) + c_3)e_n^2 + \dots \quad (3.11)$$

From (3.1) and (3.9), we have

$$\frac{(f(x_n))}{(a_n - x_n)} = -(c_1 + (2c_2 + c_1c_2 + \frac{2c_2^2}{c_1})e_n + (c_1(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2})^2 + c_2(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}) + c_3)e_n^2 + \dots$$

(3.12)

From (3.11) and (3.12), we have

$$2\left[\frac{(f(a_n) - f(x_n))}{(a_n - x_n)}\right] - \frac{(f(x_n))}{(a_n - x_n)} = 3c_1 + (4c_2 + c_1c_2 + \frac{2c_2^2}{c_1})e_n + (c_1(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2})^2 + 3c_2(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}) + 3c_3)e_n^2 + \dots$$
(3.13)

From (3.8) and (3.13), we have

$$\frac{f(a_n)}{2\left[\frac{(f(a_n)-f(x_n))}{(a_n-x_n)}\right] - \frac{(f(x_n))}{(a_n-x_n)}} = \frac{1}{3}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right)e_n^2 - \frac{1}{9}\left(\frac{4c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right)\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right)e_n^3 + \dots$$

$$(3.14)$$

From (3.14), we have

$$b_n = \alpha + \frac{2}{3} \left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2} \right) e_n^2 + \dots$$
(3.15)

Let us set, $B = b_n - \alpha$. Then the equation (3.15) can be rewritten in the form

$$B = \frac{2}{3} \left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) e_n^2 + \dots \dots$$
(3.16)

Now expanding $f(b_n)$ about α

$$f(b_n) = Bc_1 + B^2c_2 + B^3c_3 + \dots$$
(3.17)

From (3.1) and (3.17), we have

$$f(b_n) - f(x_n) = -c_1 e_n + \left(\frac{2}{3}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - c_2\right) e_n^2 - c_3 e_n^3 + \left(\frac{2}{3}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - c_4\right) e_n^4 + \dots$$
(3.18)

$$b_n - x_n = -e_n + \left(\frac{2}{3}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - c_2\right)e_n^2 + \dots$$
(3.19)

From (3.1) and (3.19), we have

$$f(x_n)(b_n - x_n) = -c_1 e_n^2 + \left(\frac{2}{3}c_1 c_2 - \frac{c_2}{3} + \frac{4}{3}\frac{c_2^2}{c_1}\right)e_n^3 + \left(\frac{2}{3}c_2\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - c_3\right)e_n^4 + \dots$$
(3.20)

From (3.18) and (3.20), we have

$$\frac{f(x_n)(b_n - x_n)}{f(b_n) - f(x_n)} = e_n - \left(\frac{2}{3}\frac{c_2}{c_1}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - \frac{c_3}{c_1}\right)e_n^3 + \dots$$

(3.21)

Now

$$x_{n+1} = \alpha + \left(\frac{2}{3}\frac{c_2}{c_1}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - \frac{c_3}{c_1}\right)e_n^3 + O(e_n^4),$$

$$(3.22)$$

$$e_{n+1} = \left(\frac{2}{3}\frac{c_2}{c_1}\left(\frac{c_2}{c_1} + c_2 + \frac{2c_2^2}{c_1^2}\right) - \frac{c_3}{c_1}\right)e_n^3 + O(e_n^4), \quad (3.23)$$

This shows that TSDFM of third order convergence.

4. Numerical Examples

We present some example to illustrate the roots of nonlinear equations by the newly developed three step derivative free iterative method. All computation are performed using MATLAB. The following examples are used for numerical testing Table 1.

In Table 2. For comparisons, we have used Jain method (JM) [9], Jarratt method (JAM) [4], Ostrowski's method (OM) [4, 18], Householder iterative method (HHM) [4, 8], Improvement of Super–Halley method (ISHM) [12] and the newly developed Three Step Derivative Free Method (TSDFM). The methods are compared in the terms of number of iteration (IT), the total number of function evaluation (NFE) [19], the computational order of convergence (COC) [19] and the absolute values of the function |f(x)|.

Table 1. Test function and their roots:

Functions	Roots
$f_1(x) = e^x - 3x$	0.619061286735945
$f_2(x) = \cos(x) - x$	0.739085633215161
$f_3(x) = xtan(x) + 1$	2.79838604578389
$f_4(x) = \sin(x) - 1 + x$	0.510973429388569
$f_5(x) = 2sin(x) - x$	1.89549426703398
$f_6(x) = x^2 - 9$	3
$f_7(x) = \cos(x) - xe^x$	0.51775736382458
$f_8(x) = x^2 + 4sin(x)$	-1.93375376282702
$f_9(x) = \cos(x) - \sqrt{x} + 1$	1.39058983057821
$f_{10}(x) = xtan(x) - 1.28$	-3.49285716965564

5. Conclusion and Discussion

In this paper, new method tested for almost all types of nonlinear equations. Table 2 shows that the newly developed three step derivative free iterative method of third order convergence is comparable with the existing methods of this domain in terms of number of iterations and number of functions evaluations per iteration. In almost all examples the newly developed methods perform better than the existing method and the comparable methods diverges for the functions but the newly method (TSDFM) converges for all functions.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	method	JM	JaM	OM	HHM	ISHM	TSDFM
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_1, x_0 = -10$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IT	7	4	4	5	4	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfe	21	12	12	15	16	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CÓC	3.50	3.55	3.81	2.15	2.65	3.45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ f(\mathbf{r}) $	2 2204e-016	$6.0267e^{-009}$	2 13030012	1.9631,011	2 6225e-011	3 7050e-006
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\int (x_n)$	2.22040	0.02070	2.15050	1.70510	2.02250	5.70500
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$J_2, x_0 = -2$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	4	6	11	-	_	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfe	12	18	33	-	_	16
$\begin{array}{ $	000	2.92	3.67	4.45	-	-	2.82
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ f(x_n) $	$1.8491e^{-000}$	$2.4439e^{-012}$	2.5421e ⁰⁰⁷	D	D	$1.9473e^{-007}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_3, x_0 = 1.5$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IT	4	_	-	-	_	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfe	12	_	-		_	16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	coc	5.12	_	_		_	4.52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ f(x_n) $	$2.4144e^{-004}$	D	D	D	D	$9.1385e^{-008}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_4 x_0 = 3$				-		,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J4,X0 = J	5	_	_			1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfa nfa	15	_	_	_		16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	nje COC	13	_	_	-	_	2 22
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	000	3.04	_	_	_	_	3.33
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ f(x_n) $	$7.3275e^{-015}$	D	D	D	D	2.9618e ⁻⁰⁰⁷
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_5, x_0 = 0.9$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IT	4		–	-	-	4
$ \begin{vmatrix} COC & 2.74 & - & - & - & - & 2.94 \\ f(x_n) & 7.5403e^{-007} & D & D & D & D & 2.2032e^{-009} \\ \hline f_{6,x_0} = 0 & & & & & & & & & & & \\ IT & 7 & - & - & - & - & - & 5 \\ nfe & 21 & - & - & - & - & - & 20 \\ COC & 2.96 & - & - & - & - & - & 3.10 \\ f(x_n) & 1.8212e^{-008} & D & D & D & D & D & 4.0940e^{-007} \\ \hline f_{7,x_0} = 0.5 & & & & & & \\ IT & 7 & - & - & - & - & - & 4 \\ nfe & 21 & - & - & - & - & - & 4 \\ nfe & 21 & - & - & - & - & - & 46 \\ COC & 3.00 & - & - & - & - & - & - & 46 \\ COC & 3.00 & - & - & - & - & - & - & 66 \\ nfe & 15 & - & - & 39 & - & 24 \\ COC & 3.10 & - & - & - & 3.12 & - & 2.98 \\ f(x_n) & 2.4012e^{-007} & D & D & 2.5111e^{007} & D & 3.3213e^{-011} \\ \hline f_{9,x_0} = 5 & & & & & & \\ nfe & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & - & - & 66 & 4 \\ nfe & - & - & - & - & - & - & - & - & - & $	nfe	12		-		-	16
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	COC	2.74		-		_	2.94
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ f(x_n) $	$7.5403e^{-007}$	D	D	D	D	$2.2032e^{-009}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$f_{6} x_0 = 0$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IT	7	_	_	_	_	5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfe	21	_	_	_	_	20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	COC	2 96	_	_			3 10
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	f(x)	1 8212 -008				D	4.0040007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\int (\lambda_n)$	1.02120	D	<i>D</i>	<i>D</i>	D	4.0940e
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$J_7, x_0 = 0.5$	-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	II	/	_		-	_	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfe	21	-		-	-	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	COC	3.00	-	-	-	-	3.02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ f(x_n) $	$1.0136e^{-013}$	D	D	D	D	$6.8392e^{-011}$
$ \begin{vmatrix} IT & 5 & - & - & 13 & - & 6\\ nfe & 15 & - & - & 39 & - & 24\\ COC & 3.10 & - & - & 3.12 & - & 2.98\\ f(x_n) & 2.4012e^{-007} & D & D & 2.5111e^{007} & D & 3.3213e^{-011}\\ \hline f_{9,x_0} = 5 & & & & \\ IT & - & - & - & - & 6 & 4\\ nfe & - & - & - & - & 24 & 16\\ COC & - & - & - & - & 3.81 & 3.47\\ f(x_n) & D & D & D & D & 5.2464e^{010} & 3.7857e^{-006}\\ \hline f_{10,x_0} = -2 & & & & & \\ nfe & 12 & - & - & 4 & - & 4\\ nfe & 12 & - & - & 12 & - & 16\\ COC & 2.97 & - & - & 2.89 & - & 2.99\\ f(x_n) & 7.7107e^{-007} & D & D & D & 9.6185e^{012} & D & 7.7116e^{-010} \\ \end{vmatrix} $	$f_{8}, x_{0} = -1$						
$ \begin{vmatrix} nfe & 15 & - & - & 39 & - & 24 \\ COC & 3.10 & - & - & 3.12 & - & 2.98 \\ f(x_n) & 2.4012e^{-007} & D & D & 2.5111e^{007} & D & 3.3213e^{-011} \\ \hline f_{9,x_0} = 5 & & & & & & & & \\ nfe & - & - & - & - & 6 & 4 \\ nfe & - & - & - & - & 24 & 16 \\ COC & - & - & - & & 3.81 & 3.47 \\ f(x_n) & D & D & D & D & D & 5.2464e^{010} & 3.7857e^{-006} \\ \hline f_{10,x_0} = -2 & & & & & & & \\ nfe & 12 & - & - & 12 & - & 4 \\ nfe & 12 & - & - & 12 & - & 16 \\ COC & 2.97 & - & - & 2.89 & - & 2.99 \\ f(x_n) & 7.7107e^{-007} & D & D & 9.6185e^{012} & D & 7.7116e^{-010} \\ \end{vmatrix} $	IT	5	-	-	13		6
$ \begin{vmatrix} COC & 3.10 & - & - & 3.12 & - & 2.98 \\ f(x_n) & 2.4012e^{-007} & D & D & 2.5111e^{007} & D & 3.3213e^{-0.11} \\ \hline f_{9,x_0} = 5 & & & & & & & \\ IT & - & - & - & - & 6 & 4 \\ nfe & - & - & - & - & 24 & 16 \\ COC & - & - & - & & 3.81 & 3.47 \\ f(x_n) & D & D & D & D & D & 5.2464e^{010} & 3.7857e^{-006} \\ \hline f_{10,x_0} = -2 & & & & & \\ IT & 4 & - & - & 4 & - & 4 \\ nfe & 12 & - & - & 12 & - & 16 \\ COC & 2.97 & - & - & 2.89 & - & 2.99 \\ f(x_n) & 7.7107e^{-007} & D & D & 9.6185e^{012} & D & 7.7116e^{-010} \\ \end{vmatrix} $	nfe	15	-	-	39	-	24
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	coc	3.10	_		3.12	_	2.98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ f(x_n) $	$2.4012e^{-007}$	מ	ם ו	$2.5111e^{007}$	D	$3.3213e^{-011}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f_0 x_0 = 5$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199,x0 = 5 IT	_		_	_	6	1
$ \begin{vmatrix} n_{J}e & - & - & - & - & - & - & - & - & - & $	II vf-	_	_	_	_	24	12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nje	-	-			24	10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-		-	5.81	3.4/
$ \begin{vmatrix} f_{10}, x_0 = -2 \\ IT & 4 \\ nfe & 12 \\ COC & 2.97 \\ f(x_n) & 7.7107e^{-007} \\ \hline D & D \\ \hline D & 9.6185e^{012} \\ \hline D & 7.7116e^{-010} \\ \hline 0 & 7.7116e^{-010} $	$ f(x_n) $	D	D		D	5.2464e ³¹⁰	3.7857e ⁻⁰⁰⁰
$\begin{bmatrix} IT & 4 & - & - & 4 & - & 4 \\ nfe & 12 & - & - & 12 & - & 16 \\ COC & 2.97 & - & - & 2.89 & - & 2.99 \\ f(x_n) & 7.7107e^{-007} & D & D & 9.6185e^{012} & D & 7.7116e^{-010} \\ \end{bmatrix}$	$f_{10}, x_0 = -2$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>IT</i>	4	-	-	4		4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nfe	12			12	-	16
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	COC	2.97	-		2.89	-	2.99
*D - divergence	$ f(x_n) $	$7.7107e^{-007}$	D	D	$9.6185e^{012}$	D	$7.7116e^{-010}$
	[<i>J</i> (* <i>n</i>)]		*D	dinara		. –	

 Table 2. Comparison of various iterative methods

Acknowledgment

Manuscript communication number (MCN) : IU/R&D/2018-MCN00349 office of research and development integral university, Lucknow.

References

- [1] Ahmad N., Singh V. P., Some new two step iterative methods for solving nonlinear equations using steffensen's method, *Journal of Mathematical and Computational Sciences*, 6, 2016-2688, 2016.
- [2] Ahmad N., Singh V. P., Some new three step iterative methods for solving nonlinear equations using Steffensen's and Hally method, *British Journal of Mathematics & Computer Science*, 19(2)(2016), 1–9.
- ^[3] Ahmad N., Singh V. P., Some derivative free a new two step iterative method for solving nonlinear equations using Steffensen's method, *Journal of Science and Arts*, 4(37)(2016), 329–336.
- ^[4] Bahgat S.M., Hafiz M. A., Three Step iterative method with Eighteenth order convergence for solving nonlinear

equations, International Journal of Pure and Applied Mathematics, 93(1)(2014), 85–94.

- [5] Chun C., Iterative methods improving Newton's method by decomposition method, *Computers Math. Appl.*, 50(2005), 1559–1568.
- Dehghan M., Hajarian M., Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations, *J. Comput, Appl. Math.*, 29(2010), 19– 38.
- [7] Feng X., Y. He, High order iterative methods without derivatives for solving nonlinear equations, *Applied Mathematics and Computation*, 186(2007), 1617–1623.
- [8] Householder A. S., *The Numerical Treatment of a Single Nonlinear Equation*, McGraw Hill, New York, 1970.
- [9] Hafiz M. A., Bahgat S. M., Solving nonlinear equations using family of derivative - free optimal methods, *Journal* of the Egyptian Mathematical Society, 21(2013), 38–43.
- ^[10] Jain P., Steffensen type methods for solving nonlinear equations, *Appl. Math. Comput.*, 194(2007), 527–533.
- [11] Jain M. K., Iyengar S. R. K. and Jain R. K., Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, 2009.
- ^[12] Kou J., The improvements of modified Newton's method, *Appl. Math. Comput.*, 189(2007), 602–609.
- ^[13] Kandasamy, P., Thilagavathy, K., and Gunavathi, K., *Numerical Methods*, S. Chand & Company LTD., 2010.
- [14] Noor K. I. and Noor M. A., Predicot-Corrector Halley method for nonlinear equations, *Appl. Math. Comput.*, 188(2007), 1587–1591.
- [15] Noor M. A., Noor K.I. and Aftab K., Some New Iterative Methods for Solving Nonlinear Equations, *World Applied Sciences Journal*, 20(6)(2012), 870–874.
- ^[16] Noor M. A., New classes of iterative methods for nonlinear equations, *Appl. Math. Comput.*, 191(2007), 128–131.
- ^[17] Noor, M. A., Some developments in general variational inequalities, *Appl. Math. Comput.*, 152(2004), 199–277.
- ^[18] Ostrowaki A.M., Solution of Equations and Systems of Equations, Academic Press, New-York, London, 1966.
- [19] Zafar F. and Bibi G., A family of fourteenth-order convergent iterative methods for solving nonlinear equations, *Chinese Journal of Mathematics*, 2014, doi:http://dx.doi.org/10.1155/2014/313691.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

