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Degree tolerant coloring: Graphs from graphs
Johan Kok

Abstract
Degree tolerant coloring is a study on a new coloring regime which sets conditions in respect of deg(v) and deg(u)
where, v,u ∈V (G) and vu ∈ E(G). Results for graphs from graphs or (derivative graphs) such the line graph, the
middle graph, the total graph, the power graph and others, are presented in this paper.
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1. Introduction and preliminaries
It is assumed that the reader is familiar with most of the

classical concepts in graph theory and has good knowledge
of most classical graph structures such as trees, path graphs,
cycle graphs, complete graph, path in a graph, cycle in a graph,
and their properties. Throughout only finite, undirected, sim-
ple connected graphs will be considered. For more on general
notation and concepts in graphs see [1, 2, 6]. It is also as-
sumed that the reader is familiar with the concept of graph
coloring. Recall that in a proper coloring of G all edges are
good i.e. ∀ uv∈ E(G), c(u) 6= c(v). The set of colors assigned
in a graph coloring is denoted by C and a subset of colors
assigned to a subset of vertices X ⊆V (G) is denoted by c(X).
The number of times a color ci ∈ C is assigned is denoted by,
θ(ci). In an improper (or defect) coloring it is permitted that
for some uv ∈ E(G), c(u) = c(v) (see[3]).

Since any graph G has the parameters, δ (G) and ∆(G), an
integer degree condition related to an integer k, δ (G)≤ k ≤

∆(G) has been introduced in [4]. Recall from [4] that a degree
tolerant coloring abbreviated as, DT -coloring of a graph G
has the following conditions:
(i) If uv /∈ E(G) then, either c(u) = c(v) or c(u) 6= c(v);
(ii) If uv ∈ E(G) and deg(u) = deg(v) then, c(u) = c(v) else,
c(u) 6= c(v).
Alternative formulation for condition (ii) is: if uv∈E(G) then,
c(u) = c(v) if and only if deg(u) = deg(v). The minimum
number of colors which yields a DT -coloring is called the
degree tolerant chromatic number of G and is denoted by,
χdt(G). For ease of reference we recall some results from [4].

Theorem 1.1. [4] Any graph permits a DT -coloring.

Theorem 1.2. [4] For n ∈ N there exists a graph G with,
χdt(G) = n.

Theorem 1.3. [4] For k∈N there exists a minimal graph G of
order n = 2k−1 (or ν(G) = 2k−1) and size, ε(G) = k(k−1)
for which, χdt(G) = k. Also, this minimal graph is unique.

Theorem 1.4. [4] For a graph G of order n ≥ 1 it follows
that,

χdt(G)≤ b n+1
2 c.

Theorem 1.5. [4] For a graph G of size ε(G) = q ≥ 1 it
follows that,

χdt(G)≤ b 1+
√

(1+4q)
2 c.

The next section will present results for certain graphs
from graphs.
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2. Graphs from Graphs
Recall the formal definition of a graph i.e. a graph G

is, an ordered triple (V (G),E(G), ιG) consisting of an non-
empty set V (G) of vertices, a set E(G), disjoint from V (G),
of edges and an incidence function, ιG that associates with
each edge of G an unordered pair of vertices of G (vertices
in an unordered pair are not necessarily distinct). Since it
is agreed to consider simple connected graphs the formal
definition is specialised to read, a simple connected graph G
is, an ordered triple (V (G),E(G), ιG) consisting of an non-
empty set V (G) of vertices, a set E(G), disjoint from V (G), of
edges and an incidence function, ιG that associates with some
unordered pairs of vertices (vertices are distinct) an unique
edge of G such that, between any two distinct vertices u and
v there exists a uv-path. It is immediate from the specialised
definition that a simple connected graph G has been derived
from at least one other, more general graph Gs. It sets the
notion of a graph from a graph at intuitive level. Another
example is that, the graph G obtained by deleting all loops
and multiple edges from a graph Gs, if such exist. The graph
G is called a spanning subgraph of Gs.
If V (G) = {v1,v2,v3, . . . ,vn} and X = {{vi,v j}i 6= j : ∀ vi,v j ∈
V (G)}, then label each viv j = ek to obtain the set X ′ = {ei :
i = 1,2,3, . . . , n(n−1)

2 }. Let {X1,X2} be any 2-partition of X ′.
Hence, with E(G) = X ′ having an incidence function implicit,
the notation can be abbreviated to read, a graph G = G(V,E)
and it yields a complete graph Kn, n ≥ 1. Similarly, G =
G(V,X ′1) yields a simple graph (not necessarily connected).
The graph G = H(V,X ′2) is called the complement graph of G.
Or differently put, G = H(V,X ′\X ′1). Again it sets the notion
that G is a graph from a graph, G. There are numerous defined
ways to obtain a graph from a graph.

2.1 Unary operations on graph
The vertices and the edges of a graph are called the elements
of a graph. Unary operations on a graph G are those opera-
tions which define a local change to G or put differently, it
defines some change to the elements of G. Examples are,
merging of vertices, splitting of vertices (both connected or
disconnected splitting), contraction of edges, edge deletion
etc. More advanced unary operations are deemed more com-
plex such as obtaining the complement graph, the line graph,
power graphs etc. Following any unary operation the resultant
graph will by convention be reduced to a maximal simple
graph (not necessarily connected) by eliminating loops and
multiple edges, if any. The next results are for some of the
well known unary operations.

The contraction of an edge e = uv ∈ E(G) is denoted by,
G/e and results in a new vertex denoted by, uv.

Proposition 2.1. For a simple connected graph G and e =
uv ∈ E(G) we have:

(a) If either u or v was distinctly colored amongst all other

vertices in G (say, θ(c(u)) = 1), and it is permissible to color
uv with a color in C \{c(u)} then, χdt(G/e) = χdt(G)− 1.
Else, χdt(G/e) = χdt(G);
(b) If both u and v were distinctly colored amongst all other
vertices in G (say, θ(c(u)) = θ(c(v)) = 1 and c(u) = c(v)),
and it is permissible to color uv with a color in C \{c(u)} then,
χdt(G/e) = χdt(G)−1. Else, χdt(G/e) = χdt(G);
(c) If both u and v were distinctly colored amongst all other
vertices in G (say, θ(c(u) = θ(c(v)) = 1 and c(u) 6= c(v)),
and it is permissible to color uv with a color in C \{c(u),c(v)}
then, χdt(G/e) = χdt(G)−2. Else, χdt(G/e) = χdt(G)−1.
(d) If both u and v were not distinctly colored amongst all
other vertices in G and it is permissible to color uv with a color
in C then, χdt(G/e) = χdt(G). Else, χdt(G/e) = χdt(G)+1.

Proof. Let e = uv in G. In G/e, let the merged vertex be uv.
Now max{deg(u),deg(v)}−1≤ deg(uv)≤ deg(u)+deg(v)−
2. Also, with regards to the open open neighborhood we have
N(uv)=N(u)∪N(v). (a) If either u or v was distinctly colored
amongst all other vertices in G, we assume without loss of gen-
erality that say, θ(c(u)) = 1. If there exist a vertex w ∈ N(uv)
with deg(w) = deg(uv) then color, c(uv) = c(w) as prescribed
by condition (ii). Clearly a minimum DT -coloring is yielded.
If a vertex w∈V (G)\N[uv] exists with deg(w) = deg(uv) then
color, c(uv) = c(w) as prescribed by condition (i). Clearly a
minimum DT -coloring is yielded. If a vertex w∈V (G)\N[uv]
exists with c(w) /∈ c(N(uv)) then let c(uv) = c(w) as per-
mitted by condition (i). Clearly a minimum DT -coloring
is yielded. If any of the three options are permissible then,
χdt(G/e) = χdt(G)−1. Else, χdt(G/e) = χdt(G).
(b), (c) and (d) follow by similar reasoning as in (a).

The merging of two or more vertices does not require
adjacency between the vertices. However, if two vertices are
adjacent and merged then a loop is created. By our reduction
convention this loop is removed to result in a simple graph.
The merging of vertices u,v ∈V (G) is denoted by G∼ (u,v)
and it results in a new vertex denoted by, u∼v. These observa-
tions lead to the next immediate corollary.

Corollary 2.1. For a simple connected graph G and u,v ∈
V (G) we have:

(a) If either u or v was distinctly colored amongst all
other vertices in G (say, θ(c(u)) = 1), and it is permissible
to color uv with a color in C \{c(u)} then, χdt(G∼ (u,v)) =
χdt(G)−1. Else, χdt(G∼ (u,v)) = χdt(G);
(b) If both u and v were distinctly colored amongst all other
vertices in G (say, θ(c(u)) = θ(c(v)) = 1 and c(u) = c(v)),
and it is permissible to color uv with a color in C \{c(u)} then,
χdt(G∼ (u,v)) = χdt(G)−1. Else, χdt(G∼ (u,v)) = χdt(G);
(c) If both u and v were distinctly colored amongst all other
vertices in G (say, θ(c(u) = θ(c(v)) = 1 and c(u) 6= c(v)),
and it is permissible to color uv with a color in C \{c(u),c(v)}
then, χdt(G ∼ (u,v)) = χdt(G)− 2. Else, χdt(G ∼ (u,v)) =
χdt(G)−1.
(d) If both u and v were not distinctly colored amongst all
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other vertices in G and it is permissible to color uv with a color
in C then, χdt(G∼ (u,v)) = χdt(G). Else, χdt(G∼ (u,v)) =
χdt(G)+1.

The k-power graph Gk of graph G is obtained by adding
all edges such that two distinct vertices at a distance of at
most k in G, are adjacent in Gk. It is well known that, 1≤ k≤
diam(G).

Theorem 2.1. For a graph G we have, χdt(Gk)≤ χdt(G).

Proof. Case 1: Consider any two non-adjacent vertices u,v ∈
V (G) for which uv ∈ E(Gk). If c(u) = c(v) in a DT -coloring
of G and deg(u) = deg(v) in Gk then, c(u) = c(v) remains.
If however, deg(u) 6= deg(v) let either c(u) = c(w), uw /∈
E(Gk) or c(v) = c(w), vw /∈ E(Gk). Such vertex w exists else,
deg(u) = deg(v) which is a contradiction. For this case the
result holds.
Case 2: Consider any two non-adjacent vertices u,v ∈V (G)
for which uv ∈ E(Gk). If c(u) 6= c(v) in a DT -coloring of G
and deg(u) = deg(v) in Gk then, c(u) can be colored c(v) or
the other way around, as is permissible. Similar reasoning as
in Case 1 for the possibility that, deg(u) 6= deg(v) settles the
result for this case.
Through immediate induction over all pairs of distinct vertices
of G it follows that, χdt(Gk)≤ χdt(G).

Corollary 2.2. For a graph G of order n we have,
lim

k→diam(G)
χdt(Gk) = 1.

Proof. Since, lim
k→diam(G)

χdt(Gk) = Gdiam(G) = Kn and

χdt(Kn) = 1, the result holds.

In a graph G of size q≥ 1 with edge set E(G) = {ei : i =
1,2,3, . . . ,q}, the subdivision operation is executed by insert-
ing a new vertex ui on the edge ei, ∀ i. Put differently, delete
the edge ei = vw and insert the vuiw-path. The new edges are
labeled e′i,e

′′
i , respectively. The new graph is denoted by, G÷.

Lemma 2.1. A non-regular connected graph G of order n≥ 3
has at least one pair of distinct vertices say u,v such that,
uv ∈ E(G) and deg(u) 6= deg(v).

Proof. Any connected graph G has a spanning tree T . Con-
sider such T for a non-trivial non-regular graph G. Choose
any longest path P along the edges, e1,e2,e3, . . . ,et . Choose
any endpoint of P and consider the internal vertex adjacent
to this endpoint say vertex v1. Compare degG(v1) vis-a-vis
degG(u), ∀ u ∈ N(v1). If degG(v1) 6= degG(u) is found, the
result holds. Else, the path-vertex adjacent to v1 say, v2
has degG(v2) = degG(v1). Now repeat the comparison for
degG(v2) and its neighborhood N(v3). Exhaust the compari-
son consecutively along the path P. Hereafter, branch from
any vi along a new path in T . Iteratively T can be covered
by this degree comparison test. Hence, either all vertices
v ∈V (G) have equal degree which implies G is regular. This
is a contraction. Thus, at least one pair of distinct vertices say,
u,v exists such that, uv ∈ E(G) and deg(u) 6= deg(v).

Theorem 2.2. For a graph G of size q≥ 1 we have:
Cases 1 and 2:

χdt(G÷) =


1, G =Cn, n ≥ 3;
2, G is k-regular, k = 1; or
k ≥ 3.

Case 3. χdt(G÷) = either χdt(G) or χdt(G)+ 1, if G is not
regular.

Proof. Case 1: For Cn, n ≥ 3 on vertices v1,v2,v3, . . . ,n,
deg(vi) = 2, ∀ i. Also in C÷n , deg(vi) = 2 and deg(u j) = 2,
j = 1,2,3, . . . ,n. Hence, the result.
Case 2(a): For K2, deg(v1) = deg(v2) = 1. In K÷2 , deg(v1) =
deg(v2) = 1 and deg(u1) = 2. By condition (ii) it follows that
χdt(K÷2 ) = 2.
(b) For any k-regular graph G, k ≥ 3, n ≥ 4 and size q, it
follows that deg(vi) = k > 2, i = 1,2,3, . . . ,n. The aforesaid
vertex degrees remain the same in G÷n whilst, deg(u j) = 2,
j = 1,2,3, . . . ,q. Thus by condition (ii), χdt(K÷n ) = 2.
Case 3: Let G of order n ≥ 3 and size q ≥ 2 be non-regular.
There exist at least two vertices vi and v j such that, deg(u) 6=
deg(v). Because G is connected some viv j-path exists in G.
Also because G is non-trivial and non-regular, by Lemma 2.5
we have, χdt(G)≥ 2.
Subcase 3(a): If for edge el = viv j in G the DT -coloring is
c(vi) = c(v j) say, c1. Color c(ul) = c2 which is permissible.
Subcase 3(b): If for edge el = viv j in G the DT -coloring is
c(vi) 6= c(v j) say, c(vi) = c1 and c(v j) = c2. If χdt(G) ≥ 3
then let, c(ul) = c3. Similarly, all other subdivision vertices
can be colored such that, χdt(G) = χdt(G). If χdt(G) = 2 then
let, c(ul) = c1. If it is possible to recolor a DT -coloring for
G÷ with colors c1,c2 then, χdt(G) = χdt(G). If not, color all
subdivision vertices the color c3. The aforesaid is permissible
by condition (ii) and clearly a DT -coloring is obtained. Hence,
χdt(G) = χdt(G)+1.

An important corollary follows from Lemma 2.1 with
regards to the Nordhaus-Gaddum type bounds in Theorem 3.4
of [4].

Corollary 2.3. For a non-regular connected graph G of order
n≥ 3 it holds that,

4≤ χdt(G)+χdt(G)≤ 2di(G),
4≤ χdt(G) ·χdt(G)≤ di(G)2.

Proof. Lemma 2.5 implies that χdt(G)≥ 2. Since G is also
of order n ≥ 3 and non-regular, the improved lower bounds
are settled.

2.2 New graphs from subgraphs of graph
In this subsection certain derivative graphs which are conven-
tionally obtained through unary operations, will be obtained
from an intersection graph perspective. Results for the respec-
tive degree tolerant chromatic number will be presented. It
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is agreed that, as much as the vertices u,v of the edge e = uv
are said to be adjacent, similarly, if the edges e1,e2 share a
common end-vertex in G it is said, e1 and e2 are adjacent.
Also, an edge e = uv is said to be adjacent to its end-vertices
(instead of ”incident with”).

Definition 2.1. Let C be a non-empty set of non-empty sub-
graphs of G. Then, let each element (subgraph) in C be
represented by a unique vertex say vi. Hence, vi ∈ C, i =
1,2,3, . . . , |C|, has well-defined meaning. Define the deriva-
tive graph G(C) on the vertex set C with edge set, E(G(C)) =
{viv j : if and only if vi 6= v j and vi,v j satisfy some adjacency
condition}.

For a graph G let C = E(G). Then the line graph of G
denoted by, L(G) is defined by, L(G) = G(C) subject to: if
and only if vi,v j are adjacent in G. As a research tool the
expanded line graph denoted by, L··(G) has been defined in
[5]. We recall the construction thereof.

Construction of expanded line graph[5].
(a) Label the edges of the graph G as e1,e2,e3, . . . ,eε(G).
(b) Replace each vertex v ∈V (G) with a complete graph Kt ,
t = dG(v) such that each distinct vertex of the complete graph
is inserted into a distinct edge adjacent to vertex v. Hence
each edge ei ∈ E(G) will have two new vertices inserted. The
complete graph KdG(v) is called the v-clique of vertex v.
(c) For each edge ei, label the new inserted vertices ui,1 and
ui,2.
(d) Connect the pairs of vertices ui,1,ui,2 with a broken edge.

The graph obtained is called the expanded line graph of
G and is denoted by L··(G). Clearly by contracting all broken
edges hence, by merging all vertices ui,1 and ui,2 for 1≤ i≤
ε(G) we obtain the line graph L(G). We recall figures 1 and
2 from [5] which depict an example. Note that any vertex
in L··(G) has some solid edges (possibly none) adjacent to it.
If a broken edge is adjacent to a vertex it is always exactly
one. The reduced expanded line graph denoted by, L··r (G) is
obtained by eliminating (removing) all vertices which have
only a broken edge adjacent to it. The solid vertex degree
denoted by, degs(ui, j) in L··r (G) is the number of solid edges
adjacent to the vertex ui, j. The weight of a broken edge
denoted by, w(ui,1ui,2) is defined by, w(ui,1ui,2) = degs(ui,1)+
degs(ui,2). The parameter di(L··r (G)) is the number of distinct
broken edge weights. For figure 2 we have, di(L··r (G)) = 2
because the distinct broken edge weights are 4 and 5.

Proposition 2.2. For a graph G we have that,
χdt(L(G)) = di(L··r (G)).

Proof. When a broken edge ui,1ui,2 is contracted the new
vertex say, ui has deg(ui) = w(ui,1ui,2) in L(G). Since every
vertex ui, i = 1,2,3, . . . ,ε(G) is a vertex in a clique, condition
(ii) settles the result.

Corollary 2.4. For a regular graph G we have, χdt(L(G)) = 1.

Proof. If G is regular then L(G) is regular. Thus, the result.

Fig. 1. Graph G.

Fig. 2. Expanded line graph L··(G).

Theorem 2.3. For a tree T 6= S1,n, n≥ 2 we have,
χdt(L(T ))≥ χdt(T ) = 2.

Proof. It is easy to verify that for n≥ 2, χdt(L(S1,n)) = 1 6=
2 = χdt(S1,n). Furthermore, it is easy to verify that the line
graph of any tree T of order n with say, t pendent vertices is a
cluster of (n− t) complete graphs with each in the expanded
line graph, corresponding to order deg(v) of the vertex it
corresponds to. Upon contracting all broken edges each pair
of distinct complete graphs share exactly one merged vertex.
Hence, it is possible to yield a complete graph with more that
two vertices, each of degree unequal to the others. Therefore,
χdt(L(T ))≥ χdt(T ) = 2.

Corollary 2.5. Stars S1,n, n≥ 2 are the only trees for which,
χdt(L(T )) = 1 < χdt(T ) = 2.

For a graph G let C = V (G)∪E(G). Then the middle
graph of G denoted by, M(G) is defined by, M(G) = G(C)
subject to: if and only if vi,v j are adjacent edges or, vi is a
vertex, adjacent to v j an edge in G.

Proposition 2.3. For a graph G we have that,
χdt(M(G))≤ χdt(L(G))+1.

Proof. The line graph L(G) is the largest (maximum) induced
subgraph of M(G) such that v ∈ V (G) in M(G) is not in
V (L(G)). Assign a DT -coloring in M(G) to only the vertices
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corresponding to L(G). If v ∈V (G)⊂V (M(G)) is adjacent
to ui then deg(ui) ≥ deg(v)+ 1. Hence, a vertex v ∈ V (G)
can be assigned a color assigned to some vertex in L(G)
and possibly, this is possible for all v ∈ V (G). If so then,
χdt(M(G)) = χdt(L(G)). Else, all v ∈V (G) can be assigned
the same additional color because vw /∈ E(M(G)) for any pair
v,w ∈M(G). Then, χdt(M(G)) = χdt(L(G))+1. Hence, the
result is settled.

For a graph G let C=V (G)∪E(G). Then the total graph
of G denoted by, T (G) is defined by, T (G) = G(C) subject to:
if and only if vi,v j are adjacent in G.

Proposition 2.4. For a graph G we have that,
χdt(T (G))≤ χdt(L(G))+χdt(G).

Proof. Consider only v ∈ V (G) in T (G). In T (G) we have,
degT (G)(v) = 2degG(v), ∀ v ∈ V (G). Hence, to begin with
a DT -coloring can be assigned to G. Either, the color set
of c(V (G)) suffices to color the vertices of L(G) in T (G) or,
fewer or equal than ε(G) new colors are required. Therefore,
χdt(T (G))≤ χdt(L(G))+χdt(G).

3. Conclusion
This study reported on results in respect of certain unary

operations and certain new graphs obtained from the sub-
graphs of a given graph. Since many other unary operations
exist and numerous other new graphs from subgraphs of a
given graph can be defined, scope for further research exists.

Of particular interest is to find an improvement on the
upper bound in Proposition 2.4, if possible.

4. Acknowledgments
The author would like to express sincere gratitude to the

reviewers for his/her valuable suggestions.

References
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Appli-

cations. Macmillan Press, London, 2017.
[2] F. Harary, Graph Theory. Addison-Wesley, Reading MA,

1969.
[3] E.G. Mphako-Banda, An introduction to the k-defect

polynomials, Quaestiones Mathematicae, (2018), 1–10.
[4] J. Kok, Degree Tolerant Coloring of Graphs, Communi-

cated.
[5] J. Kok, N.K. Sudev and M. Jamil, Rainbow neighbour-

hood number of graphs. Proyecciones Journal of Mathe-
matics., 38(3)(2019), 469–485.

[6] B. West, Introduction to Graph Theory, Prentice-Hall,
Upper Saddle River, 1996.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

1391

http://www.malayajournal.org

	Introduction and preliminaries
	Graphs from Graphs
	Unary operations on graph
	New graphs from subgraphs of graph

	Conclusion
	Acknowledgments
	References

