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On multidimensional fractional Langevin equations
in terms of Caputo derivatives
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Abstract

In this paper, we consider a more general and multidimensional fractional Langevin equations with nonlinear
terms that involve some unknown functions and their Caputo derivatives. Using some fixed point theorems,
we obtain new results on the existence and uniqueness of solutions in addition to the existence of at least
one solution. We also define and prove the generalized Ulam-Heyers stability of solutions for the considered
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1. Introduction and Preliminaries

In the last few decades, there has been an explosion of
research activities on the application of fractional differential
equations to very diverse scientific fields ranging from the
physics of diffusion and advection phenomena, to control
systems, finance and economics. For more details, see [9,
12, 17, 18]. Furthermore, Ulam-Hyers stability is one of the
important issues in the theory of differential equations and
their applications. Considerable work have been done in this
field of research, see, e.g., Abbas et al. [1], Chalishajar [4],
Dai et al. [6], Harikrishnan et al. [10], Ibrahim et al. [11],
Taieb [24-28], Taieb et al. [29-31] and Wang [33].

Let us now introduce some other important research pa-
pers related to the Langevin equation which has inspired our
work: we know that the Langevin equation was introduced by

Paul Langevin in 1908, in order to describe Brownian motion
[14]. The Langevin equation was used to describe the evo-
lution of physical phenomena in fluctuating environment [5].
The generalized Langevin equation which was concerned with
describing the fractal and memory properties, was proposed
by Kubo [13], in 1966.

Ever after, Langevin equations have exhausted the atten-
tion of many authors [2, 3, 7, 8, 16, 20, 21, 23, 32].

In 2008, A new type of fractional Langevin equation of
two different orders is introduced by S.C. Lim et al. [15]:

oD ()DF+A)ult) = f (t,u(1)).

The solutions for this equation, known as the fractional Ornstein—
Uhlenbeck processes, based on Weyl and Riemann—Liouville
fractional derivatives are obtained.

In 2018, a class of Langevin equations is studied by R.W.
Ibrahim et al. [11]:

PDUP (PD%P Q) x (1) = f(1,x(1)),
t€J:=(a,b],

I'""x(a) =x4, y=(1+m)(1-B)+p,

where the existence, uniqueness and stability results are ob-
tained, PD%B  PD%PB are Hilfer-Katugampola fractional
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differential operators of orders oy and &, B,p > 0and A is
any real number, f:J xR — R is given continuous function.

In 2020, a coupled system of nonlinear fractional Langevin
equations of o and f fractional orders, is proposed by A.
Salem et al. [22]:

DPL (DM + A)x, (1) = fi (t,x1(1),x2(1)),
DP2 (D% 4 A)xy (1) = fo (t,31(1),x2(1))

r€10,1],
supplemented by the following:

x1(0) =0, CDalxl (0) = F(OC] + 1)P1 171)61(1’]1),

mj

,):lajlxl(le) = 1 481" x (1),
j=

x1(0) =0, °D%xy(0) =T (0 + 1) 1%x3(n3),

¥V — u, ABIs
,):lajzx2(gjz)—#2 1" x2(N4),

J=

where “D is the Caputo fractional derivative of order
0<o<1 and 1<pBi<2for i=1,2. ABrand PI¥
are Atangana-Baleanu, and Katugampola fractional integrals,
respectively. p; > 0and A;, w; € R, for i=1,2, ¥ >0, for
k=1,2,3,4,a;, €R, for j=1,2,...,m;,and i=1,2.
O<m<&, <& <<@n<l for i=12and k=
1,...,4,

fi,/:[0,1] x R? — R, are continuous functions.

In this paper, we consider a more general and multidi-
mensional fractional Langevin equations that involve some
unknown functions and their Caputo derivatives. Then, we
discuss the existence, uniqueness and some types of Ulam sta-
bilities for the proposed coupled nonlinear fractional system.
So, let us consider:

0P (0D + A) xi (1) = i (Ae (1)),

k=1,..n, teJ:=]0,1], (1.1)

x(0) = oD% x(0) = xe(1) + of{*xi (1) =0,
where
. 0 on
Av(t) = (t,xl(t),...,xn(t),oD, X1(t), o0 D! xn(t)),

O<oy <1, 1<B<2 0<&<oy,
JxR? 3R, k=1,..,n, neN-{0},
functions. The operators oD/, on k) OD?" are the
derivatives in the sense of Caputo, defined by:

1 ! _Smeflx(m) $)ds
—F(m_K)/O (t—s) (s)d

lk S ]R, fk :
are continous

oDf x(t)

= Oltmin(m) (t)’

with m—1<x<m, meN-{0}. TheRiemann-Liouville
fractional integral 01,19 of order ¥ >0 for a continuous
function yon [0,) is defined by:

s (-

y(s)ds, ¥ >0,
OItl9 y(r) =
y(r), ©=0,

where >0 and T'(9):= ;e *x? ldx.

We give some properties of the fractional calculus theory
which can be found in [19].

(i): Fora,f >0, n—1<a<n,wehave:

ap-1__LB) pa
A =T

i=0,1,...,n—1,

B >n,

and D%t/ =0,
(i) :
oDl f(t) =0 1P f (1),
where ¢>p>0 and f€L'([ab)]),
(iii) : Letn e N—{0},n—1 < ot <n, and oD u(r) = 0.
Then,

n—1
u(t) =y ¢t
j=0
and
n—1 )
olioDfu(t) = u(t) + zz)cjﬂv (Cj)jzo,l,m,n—l cR.
=

We also need to the following fundamental Lemma to prove
our existence results.

Lemma 1.1 (Shaefer Fixed Point Theorem). Let E be a Ba-
nach space. Assume that T : E — E is a completely continu-
ous operatorandthe set Q={x € E: x=ATx ,0<A <1},
is bounded. Then, T has a fixed point in E.

From the following auxiliary result, we will import the
integral representation of system (1.1).

Lemma 1.2. Let given 0< oy <1, 1<fi<2, k=
L.,n, neN-{0}, A&€R, andafamily (Gi)_, ,€
C([0,1],R). Then, the following problem:

oDP (oD + 1) xi (1) = G (1), k=1,.m, (1.2)
associated with the conditions:

x6(0) = oD*x(0) = xi (1) + A ol i (£) = 0, (1.3)

has a unique solution (x,...,x,), where

xk(t) = m/ot (I—S)ak-‘rﬁk_le(S) ds
F(;Lgtk) /Ot (1 =) % xi(s) ds
oy+1 1

(1.4)

"
<800,

608267
3

)
AW
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Proof. The property (iii) allow us to write problem (1.2) to
an equivalent integral equations:

: ) =55 Gyt as

w0 = I (o + Br) Jo

A /’ o1
— t—8)* " xi(s) ds
F(ak) 0 ( ) k( )
koo, kooy+1
1%k %% /
S ka5
F(ogp+1) T(og+2)

where c’é,c’{,cg‘ eR, k=1,...,n. Using the boundary

conditions (1.3), we obtain:

;)k = C{{):()v
I'(oy+2) /1 Bi—1
k o+
= TS ()%t B G(s) ds.
1 F(Olk-l-ﬁk) 0 ( S) k(s) S

(1.6)

Substituting Eq. (1.6) in Eq. (1.5), we receive Eq. (1.4).
This completes the proof. O

Now, we introduce the Banach space:

B:= {(xh...,xn) eR:x €C(,R), ()D,(Skx;< € C(J,R)},
k=1,...,n, endowed with the norm:
I
et = max (Jelo oD | ).
such that,

x|l = max xi (£)] and HOkaxk H — max ‘OD,S"xk(t)’ .
teJ o teJ

2. Main results
We begin this section by introducing the following hy-

potheses:

(#4) : There exist nonegative constants (1nx);, k=
1,...,n, j=1,...,2n, such that,

2n

‘fk(t,bll,...ﬂ/tzn)—fk(l,VI,...,Vzn Z T’k ’uj V'|a
for all € J and all (l/tl, ...,uzn), (V], ...,VQ,,) € Rzn,

(%) :  There exist nonnegative constants Ly, such that
forall r€J andall (uy,...,uz,) € R,

|fk ([7”{13 "'7“2)’1) | < Lk7

(#4): The functions (fi)k=1...:J x R?" are contin-
uous,

(¥): The constant

A := max (Zk®k +Ak,2k®,t +AZ) s
1<k<n

1406

satisfies 0 < A < 1, where

Y = i(nk)ﬁ
p
UV 1%7
O e =}
% = FarpTT
% = F(ak+B:_5k+1)
I'(og+2)

C(og—&+2)T (o +Pe+1)

2.1 Existence and Uniqueness of Solutions
Our first main result is based on the Banach contraction prin-
ciple.

Theorem 2.1. Assume that (J4 ) and (€') hold. Then, system
(1.1) has a unique solution on J.

Proof. Define the nonlinear operator < :B— B by:
A (X1, o) (1) = (A1 (X1, wees X)) (0)soes (X1 s 20) (1))
with
A (51, ) (1)
1 t u B
= gy b I &0
A 1 .
‘r<§k>/() (1=9)% " () ds
oy +1 1
_m/o (1) fe (A (1)) ds,
DX (x1, .. ) (1)
1 ! Q —OL—
= m/o (t—s) e+ Bre— Sk lfk(Ax(t))ds

_L d _ ak75k7]
T (0 — 50 /0 (1—ys) xi(s) ds

B F((Xk 4 2) tak76k+l
[ (og — & +2)T (o + Br)

« /01 (1= )%l £ (AL (1)) ds,
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forall k=1,...,n, andall te€lJ.
We will show that the operator .« is contractive on B.

Let
have:

| (x1520) (1) = (Y1530 (1))

£ 0%+ Pr
< max|fi (Ac() — fi (A ()]

|| 2%
mf?él} i (s) — yi(s)]
tOt/Hrl

+7
F((Xk+ﬁk+ 1) seJ
Using (.747), we can write:

(1, x0) = (V15 - Yn) || oo
2 2n

||x1 _y1||oc""7 ||Xn —ynHm,

(0 + B +1)

max |fic (Ax (1)) — fie (8 (1)) -

Example 2.2. Consider the following Langevin system:

(x1,--s%n), V1, ---s¥n) € B. Then, for all r € J, we

7 3
oD/ (on4 - 3%,) x1 (1)

1 | 1
X1 ([)“r Xz(t>+)(3([)+ ()D,Z)fl (t)+ ()D,sz(t)Jr ()D,4X3([)

1 1 1
1807(r2+1) <1+ x1(2)+ x2(t)+x3(t)+ 0D2 x1 (t)+ oD x2(t)+ oD;* x5 (1)

5 2
()Dz3 (ODt3 + 4%) XZ(t)

1 1 1
sinx; (t)+cosg D x; (t)+coso D x5 (1) +coso D x3(t)

32m(t+1) ’

i

™M

3 1
()Dl2 (()th + %) X3 (t)

1 i |
oD? x1(1)+ 0DF x2(1)+ oD x3(t)

1+

)

3
1
=— cosx;(t
321+ (E’] i(t) (

1 1 1
(JDIZXI O+ oD xo(t)+ UDrZ x3(t)

3 3

x1(0) = oD/ x1(0) = x1 (1) + ol{ x1(1) =0,

2

2 2
x2(0) = oD7 x2(0) = x2(1) + ol x2(t) =0,

51 1 1
xXmax HODt (xl_yl)Hoow"a X';(O)Z ODZZX';(O)—X3(1)+ 011 X3(I)=O
2.4)
on
oD?" (xXn —yn) || )
H " (xn = n) H For this example, we have: n =73,
ey Pl TR
k | 4’ 2 = 37 3 = 2’
Thus, o - § o _g o _1
1 = 4’ 2 = 37 3= 7’
[ (15 2n) = (3159 oo 5 o5l 5]
< Ok A [ = Y15 X =) [lp- (2.1 Lo 3 Py
1 T 2
Using the same arguments, we can write: Moo= 37 A= 40’ = 37
s On the other hand,
oD (A (1) = A 1,e)) | .
< (O +AD (1 = Visesa—ya)lp. (22) L ui(r)
fi(tui(t),...,us(t)) = 3 ,
2 ‘
Combining inequalities (2.1) and (2.2), we get 1807 (12 +1) (1 + E’l (1) )
3 6
6/ (1,vta) = (31, S A 51 =315 =30 g L ult)+ ¥ cosut)
Thanks to (¢’), we deduce that <7 is a contractive operator. ;: cos u;(f) % (1)
Consequently, by the Banach fixed point Theorem .7 has a i=1 s
. L. . . . f3 (t7u1(t),...,l/t6(l‘)) =
fixed point which is a solution of fractional Langevin system 241 6
(1.1). This completes the proof. O 32e 1+ i§4 u; 1)

1407
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Then for all t € J and (uy,..., ) € R®, we have :

u6),(v1,...,v6

|fi (t,ur,..,u6) — f1(t,v1,..,v6)] < 180n2|u, vil,
‘fZ(t7ula~"7u6)_fZ(IaVIa"'7V6)| < 32”Z|ul l )
‘f3 (l7ul,...7u6)—f3(t,V1,...7V6)| S 32€Z|ul l .
We can take
(M) = s (M) = 2=+ (D) = 2ams = 1,6
Th 1807T 772 32717, 773 j_32€7]_ 9oy sy
Indeed,
1 3 3
Y=—, Xo=——, X3=—
"T 300 TP lem T 16e
A1 = 0.1154, A, =0.32, =0.239%4,
A} = 0.1171, =0.3235, A;=0.2341,
®, = 06018, ©,=0.7199, O3;=1,
@] = 09272, ©;=0.9549, ©3=1.2083.

Furthermore, we have:

20 +A; = 0.1218,
$0,+A, = 0.363,
$303+A; = 0.3084,
0 +AT = 0.1269,
05+A; = 0.3805,
305+A; = 0.3175.

Using Theorem 2.1, we deduce that system (2.4) has a unique
solution on J.

2.2 Existence of at Least One Solution
Theorem 2.3. Assume that (%) and (543) hold. Then, sys-
tem (1.1) has at least one solution on J.

Proof. The proof will be given in two steps:

(1): We show that & is completely continuous:

We begin by proving that </ maps bounded sets into
bounded sets in B : Let us consider the set:

Sp = {(xlv"'axn) €B; ||(x1""7x’l

s <p, p>0},

and (xp,...,x,) € Sp. Then, for each ¢ € J, and using (%),
we can obtain:

| (x1552) ()]

%+ B

(F((Xk+ﬁk+ 1) *

tak“rl
(o + B +1)

| A 1%

Ax (S))| + F((Xk—|— 1) seJ

ax |x(s)|.

X
max /i (

Hence,
| (x1, %) || oo < OpLy + pAg. (2.5)
Similarly, it can be shown that
HOD;S"M((xl,...x,,) _<O[L+pA. 2.6)

It follows from inequalities (2.5) and (2.6) that

||A2f(xl , ...xn)HB < lrill?i(n (@kLk +pAk,®,’§Lk erAZ) < oo,
2.7

This means that .27 maps bounded sets into bounded sets in B.

Thanks to (.743), the operator 7 is continuous on B. On
the other hand, forany 0 <, <, <land (x,...,x,) € Sp,
we have:

||,;27k(x1,...x,,

)(tz) — ,ka(xl, .

)@l

Ly o+f
———— [ 2(—)*™*
F((Xk+ﬁk+1)< (2 =h)

t;1k+l)>

A’ [07 Q
+F((X11i|fr)1) (2(t2_“)ak+(’zk flk)>’
(2.8)

807
% Qn"rfl 4o
o

+ (tzakﬂﬁv _t{kaFBk) + (tgkﬂ

DS
40

1408
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and

Honk (G (31 o) (12) —,Qik(xl,...xn)(tl))H

oo

Ly
C(og+Pr—o+1)

X (2 (t2 _ tl)O!kﬁLﬁk*sk + ([gk+ﬁk75k . t{)gk+ﬁk,5k) )

IN

Al p
T(og—0+1)

x <2 (=) % + (tf‘k*‘s" - tf‘k’ak) )

T(og +2) L (tgkfakﬂ _t;xk—akﬂ)
T(og— 8 +2)T (0 + B+ 1)

(2.9)

The right-hand sides of inequalities (2.8) and (2.9) are inde-
pendent of (xp,...,x,) € Sp and tend to zero as 1, tends to 7.
Thus, 7 is equi-continuous. Finally, we can see by Arzela-
Ascoli Theorem and the above arguments that <7 is a com-
pletely continuous operator.

(2) : We consider the set

Q:= {(Xl,...,.xn) € B; ('xlv"'axi’l) = ﬂ%()ﬂ,...,xn), 0< u< 1}7

and show that is bounded:
Let (x1,...,x,) € Q, then,

(X1 ooy Xn) = U (X1, 00 x), O< <1, (2.10)

Thus, for each ¢ € J and corresponding to inequality (2.7), we
have:

II(x1, ...xn)||B < “1211??” (O Ly +pAk,®sz+pA]t) < oo,
2.11)

Therefore, € is bounded.

Consequently by the steps (1), (2) and using Lemma 1.1,
we deduce that </ has at least one fixed point which is a
solution of system (1.1). Theorem 2.3 is thus proved. O

Example 2.4. To illustrate the second main result, let us

1409

consider the Langevin system:

3
3

2
ODt <0Dt3 + \g) X1 (t)
el +sin(xy (1) 4x; (1) +x3 (1) +x4(1))

1 2 1 1 ’
(242)+cos <0Dr3 X1 (1)+ 0D x2(1)+ oD x3(1)+ 0D X4(t)>

8 4
oD; <on - ’g) x(t)
1

7(t+1)+arccos (xl )+ oD7 x1 (t)> +arcsin ()Q (t)—&-oD,% x (t))

- 1 1 ’
me! +sin(x3(¢)+x4 (1)) cos (OD,4 x3()+ oDZ x4 (t))

1
<0D;2 - §) x3(t)
1 2
5

2 1 1
€ +sin (00?)61 1)+ oD x2(1)+ oD, x3(1)+ oD x4 (l)>

ol

oD

2m(t+1)+arctan (xy (1) +xp (1) +x3(¢)+x4 (1)) ’

3
oD} —|—% x4(t)

2(t+e)+cos(xy (1) +xo (1) +x3(1)+x4(1))
1 2 1 1
(t+2)*—cos (00? x1(6)+ 0D x2(t)+ oD/ x3(t)+ 0DP x4 (t)>

?

(2.12)
We have: n =4,
5 8 4 7
B = 3 ﬁzfg, Bs 3 ﬁ4—17
o = % (04 i 07 1 (0% §
1 — 37 2 = 57 3 = 27 4 = 41
1 2 1 1
6 = — = — = — 6 -
1 37 62 57 63 47 4 27
V2 T e T
1 127 2 87 3 3) 4 37
and
e’+sin(u1+u2+u3+u4)
t,uy ...,u = s
filtsuee.ous) (12+2) +cos (us + ug+ u7+ ug)
fg(t,ul,...,ug)

7 (t+ 1)+ arccos (u; + us) +arcsin (up + ue)
me' + sin (u3 + ug) cos (u7 + ug)
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' +sin (us + ug + u7 + ug)
f3 (I,ML...,MS) = 5
27 (t 4 1) + arctan (ug + up + u3 + uq)
2(t+e)+cos(up+ur+us+uy
faltiuy,...,ug) = tte) ( )

(t42)% — cos (us + ug + u7 + ug)

Then, we can see that the functions fi, k =1,2,3,4, are con-
tinuous and bounded on J x R®. So by Theorem 2.3, system
(2.12) has at least one solution on J.

2.3 Generalized Ulam-Hyers Stability

Definition 2.5. cf. [24-28] Fractional Langevin system (1.1)
is Ulam-Hyers stable if there exists a constant 65, > 0, such
that for all (g, ...,€&,) > 0, and for all solution ~ (y1,...,yn) €
B of

IODPI{ (D™ + A) yic (1) — fi (A ()| < &, €,

(1) + oI*y(t) =0,
2.13)

y%(0) = oD%y (0) = yi

there exists (xi, ...,
system (1.1), with

Xn) € B a solution of fractional Langevin

(G =x1, v —xa) |l < 08, €>0.

Definition 2.6. cf. [24-28] Fractional Langevin system
(1.1) is generalized Ulam-Hyers stable if there exists Yy, €
C(RT,RT), Y (0)=0, such thatforall €>0 and
for each solution  (yi,...,yn) € B of (2.13), there exists a
solution  (x1,...,x,) € B of fractional Langevin system (1.1)
with

€>0.

H(yl *xlw'-;)’n*xn)”B < Yfk(8)7

Theorem 2.7. Let (A1) and (€) hold. Then, Langevin frac-
tional system (1.1) is generalized Ulam-Hyers stable in B.

Proof. Let (y1,...,y») € B be a solution of inequalities (2.13).
Then, by integrating inequalities (2.13), we obtain:

Vi (1) — Wfo(f—s)ak+ﬁk 'fi(Ay(s))ds

1% +1

A
+T.’§k)f(;(t_s)ak ! yi(s) ds +1"( B

x Jo (1 =) Pt £ (A, (5)) ds

oY+
ol ¢ Bkgk

IN

%P

Flou+ Bt 1) @19

Using (.41) and (%), there exists a solution (xj,...,x,) € B

of system (1.1) :

xi(t)
_ 1 ! oo tB—1
= g b I R aw)ds
)Lk 1 o1 [ak+1
o b RO -
x/l (1—5)% Pt £ (A () ds, (2.15)
0
k=1,...n
Then, we get
k() — i (2)]
30 (0) — praeg Ja =) f (8 () ds

ak+1

1
ey Jo (=% 3ls) ds+ mgpo

X Jo (1=8)% B f (A () ds + gt

X Jo (1 —s) Pt (fk (Ay (5)) = fi (Ac(s)) ) ds

(0t
T(oy+Br)

—xi(s))ds —

x Jo (1—s) %Pt (fk (Ay (5)) = fi(Ax (s)) ) ds

Using inequality (2.14), we get:

[k (£) = (1)

0%+ B
g
C(og+Be+1) ¢

0%+Br

* (T(ak+ﬁk+1) -
><r£1€ajx|fk (Ay (5)) = fi (Ax (5))]

IA

(Ot
T (o + B+ 1))

P 1%

F(ock+1) S‘GJ ax bils) =

x(s)]-
Thanks to (7] ), we get

llyi () — xi(t) |

g
L + (OkZg + Ag) | (X1 = Y105 %n

W —)’n)”B-

(2.16)

20
S0,
G0t

0,
40

1410
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By differentiating inequality (2.14), we get:
5 1

oD yi (1) — ot Bi=0)

X Jo (1 —s) PO £ (A (5)) ds

A —&—1
Jrr(T’iak)fé(t—s)a" " yi(s) ds

r 2 =8 +1 1 1
+ e s fo (=) % (A (5)) ds

IN

o+ =9,
ol % B ey

£ 0%+ B — Ok
I+ B — 0 +1)

Similarly as before, we can show that

llyi () = xi(2)]].

E.

&
F(OCk Jrﬁk — O+ 1)

+ (O + A (et = Y1,y = yu) g~ (2.17)
Using inequalities (2.16) and (2.17), we get

H(yl —X1y-3Yn 7xn)HB

IN

Ek Ex
max ,
1<k<n <F(O‘k+ﬁk+ 1) T(og + B — &+ 1))
+ gfén (OrZg + Ay, O L+ AL)

X H(y] —Xly-3¥n _xn)HB'

Thus,

H(yl —X1y3¥n _xn)HB

IN

eM +All(y1 — X150 —Xn) |
where

max &,
1<k<n

1 1
12 <r<ak+ﬁk+ D) T(o+Be— &+ 1)) '

Hence,

eM
H(yl_xlv---ayn_xn)”BSmlz Gfk&', (218)

G.:_ %

Thanks to (%), we get 6y, > 0. That is fractional Langevin
system (1.1) is Ulam-Hyers stable. Putting Y (€) = o€,

we receive the generalized Ulam-Hyers stability for system
(L.1). O
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