Malaya	
Mournal of	MLJM
Matematik	computer applications...
www.malayajournal.org	

Existence of solution of a Coupled system of differential equation with nonlocal conditions

El-Sayed A.M.A ${ }^{a, *}$ Abd-El-Rahman R. O. ${ }^{b}$ and El-Gendy M. ${ }^{c}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Alexandria University, Egypt.
${ }^{b, c}$ Department of Mathematics,Faculty of Science, Damanhur University, Egypt.

Abstract

In this paper, we study the existence of at least one solution of the coupled system of differential equations with nonlocal conditions. Also, a coupled system of differential equations with the nonlocal integral conditions will be considered.

Keywords: Coupled systems, nonlocal conditions, at least one solution, integral conditions.
2010 MSC: 34B18, 34B10.
(C) 2012 MJM. All rights reserved.

1 Introduction

Problems with nonlocal conditions have been extensively studied by several authors in the last decades.The reader is referred to ([2]-[20]) and references therein.
In [13] the authors studied nonlocal cauchy problem

$$
\begin{gathered}
\grave{x}=f(t, x(t)), t \in[0, T] \\
\sum_{j=1}^{m} b_{j} x\left(\eta_{j}\right)=x_{1}, \eta_{j} \in(0, a) \subset[0, T] .
\end{gathered}
$$

Also, in [7] the authors studied the local and global existence of solutions of the nonlocal problem

$$
\begin{align*}
& \frac{d x}{d t}=f_{1}(t, y(t)), \quad t \in(0, T] \tag{1.1}\\
& \frac{d y}{d t}=f_{2}(t, x(t)), \quad t \in(0, T] \tag{1.2}
\end{align*}
$$

with the nonlocal conditions

$$
\begin{align*}
& x(0)+\sum_{k=1}^{n} a_{k} x\left(\tau_{k}\right)=x_{0}, \quad a_{k}>0, \tau_{k} \in(0, T) \tag{1.3}\\
& y(0)+\sum_{j=1}^{m} b_{j} y\left(\eta_{j}\right)=y_{0}, \quad b_{j}>0, \eta_{j} \in(0, T) \tag{1.4}
\end{align*}
$$

[^0]Here we are studied the existence of at least one solution of the nonlocal problem (1.1)-(1.4), the problem with nonlocal integral conditions

$$
\begin{align*}
& x(0)+\int_{0}^{T} x(s) d s=x_{0} \tag{1.5}\\
& y(0)+\int_{0}^{T} y(s) d s=y_{0} . \tag{1.6}
\end{align*}
$$

are studied.

2 Preliminaries

we need the following definitions.
Definition 2.1. [19] Let $F=\left\{f_{i}: X \rightarrow Y, i \in I\right\}$ be a family offunctions with Y being a set of real (or complex) numbers, then we call F uniformly bounded if there exists a real number c such that $\left|f_{i}(x)\right| \leq c \forall i \in I, x \in X$.

Definition 2.2. [19] Let $F=\{f(x)\}$ is the class of functions defined on A where $A=[a, b] \subset R$, the class of functions $F=\{f(x)\}$ is equicontinuous if $\forall \epsilon>0, \exists \delta(\epsilon)$ such that $|x-y|<\delta$, implies that $|f(x)-f(y)|<$ $\epsilon \forall f \in F, x, y \in A$.
Theorem 2.1. [1] The function $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$ is uniformly continuous in $I=[a, b]$ if and only if each f_{i} is uniformly continuous in $[a, b]$.
Theorem 2.2. [19](Lebesgue Dominated Convergence Theorem)
let f_{n} be a sequence of functions converging to a limit f of A, and suppose that
$\left|f_{n}(t)\right| \leq \phi(t), t \in A, n=1,2,3, \ldots . . .$. . where ϕ is integrable on A. Then

1. f is integrable on A
2. $\lim _{n \rightarrow \infty} \int_{A} f_{n}(t) d \mu=\int_{A} f(t) d \mu$.

Theorem 2.3. 18](Schauder)
Let Q be a convex subset of a Banach space $X, T: Q \rightarrow Q$ be a compact and continuous map, then T has at least one fixed point in Q.

3 Integral Representation

Let X be the class of all columns vectors $\binom{x}{y}, x, y \in C(0, T]$ with the norm

$$
\left\|\binom{x}{y}\right\|_{X}=\|x\|+\|y\|=\sup _{t \in[0, T]}|x(t)|+\sup _{t \in[0, T]}|y(t)| .
$$

Throughout the paper we assume that the following assumptions hold:
i. $f_{i}:[0, T] \times R \rightarrow R$ satisfies Caratheodory conditions, that is f_{i} is

1. measurable in $t \in(0, T]$, for any $x \in R$.
2. continuous in $x \in R$, for almost all $t \in(0, T]$.
ii. There exist two integrable functions $m_{i} \in L_{1}[0, T], i=1,2$ such that

$$
\begin{aligned}
& \left|f_{i}(t, x)\right| \leq m_{i}(t), \\
& \int_{0}^{t} m_{i}(s) d s<k_{i}, i=1,2 \quad \forall t \in[0, T] .
\end{aligned}
$$

Lemma 3.1. The solution of the nonlocal problem (1.1)-(1.4) can be expressed by the system of the integral equations

$$
\binom{x(t)}{y(t)}=\binom{a x_{0}+\int_{0}^{t} f_{1}(s, y(s)) d s-a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}(s, y(s)) d s}{b y_{0}+\int_{0}^{t} f_{2}(s, x(s)) d s-b \sum_{j=1}^{m} b_{j} \int_{0}^{\eta_{j}} f_{2}(s, x(s)) d s}
$$

where $\left(1+\sum_{k=1}^{n} a_{k}\right)^{-1}=a, \quad\left(1+\sum_{j=1}^{m} b_{j}\right)^{-1}=b$.

3.1 Existence of solution

Here, we study the existence of at least one solution of the nonlocal problem (1.1)-(1.4). Define the superposition operator F by

$$
F\binom{x(t)}{y(t)}=\binom{a x_{0}+\int_{0}^{t} f_{1}(s, y(s)) d s-a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}(s, y(s)) d s}{b y_{0}+\int_{0}^{t} f_{2}(s, x(s)) d s-b \sum_{j=1}^{m} b_{j} \int_{0}^{\eta_{j}} f_{2}(s, x(s)) d s}=\binom{F_{1} y}{F_{2} x}
$$

Now we have the following theorem.
Theorem 3.4. Consider the assumptions (i)-(ii) are satisfied, then there exists at least one solution of the nonlocal problem (1.1)-(1.4).

Proof. Define the operator $F(x, y)=\left(F_{1} x, F_{2} y\right)$, where

$$
\begin{aligned}
& F_{1} y=a x_{0}+\int_{0}^{t} f_{1}(s, y(s)) d s-a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}(s, y(s)) d s, \\
& F_{2} x=b y_{0}+\int_{0}^{t} f_{2}(s, x(s)) d s-a \sum_{j=1}^{m} b_{j} \int_{0}^{\eta_{j}} f_{2}(s, x(s)) d s .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|F_{1} y\right| & =\left|a x_{0}+\int_{0}^{t} f_{1}(s, y(s)) d s-a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}(s, y(s)) d s\right| \\
& \leq\left|a x_{0}\right|+\int_{0}^{t}\left|f_{1}(s, y(s))\right| d s+|a| \sum_{k=1}^{n}\left|a_{k}\right| \int_{0}^{\tau_{k}}\left|f_{1}(s, y(s))\right| d s \\
& \leq a\left|x_{0}\right|+\int_{0}^{t} m_{1}(s) d s+a \sum_{k=1}^{n}\left|a_{k}\right| \int_{0}^{\tau_{k}} m_{1}(s) d s \\
& \leq a\left|x_{0}\right|+K_{1}+a \sum_{k=1}^{n} a_{k} K_{1} \leq a\left|x_{0}\right|+K_{1}\left(1+a \sum_{k=1}^{n} a_{k}\right) \\
& \leq a\left|x_{0}\right|+K_{1}\left(1+\frac{\sum_{k=1}^{n} a_{k}}{1+\sum_{k=1}^{n} a_{k}}\right) \leq a\left|x_{0}\right|+2 K_{1}=M_{1}
\end{aligned}
$$

then F_{1} is uniformly bounded.
Similarly

$$
\left|F_{2} x\right| \leq b\left|y_{0}\right|+2 K_{2}=M_{2}
$$

then F_{2} is uniformly bounded.
Hence $\|F(x, y)\|_{X}=\left\|F_{1} y\right\|+\left\|F_{2} x\right\| \leq M_{1}+M_{2}=M$, and then F is uniformly bounded.
For $t_{1}, t_{2} \in(0, T], t_{1}<t_{2}$, let $\left|t_{2}-t_{1}\right|<\delta$, then

$$
\begin{aligned}
\left|F x\left(t_{2}\right)-F x\left(t_{1}\right)\right| & =\left|F_{1} y\left(t_{2}\right)-F_{1} y\left(t_{1}\right)\right| \\
& =\left|\int_{0}^{t_{2}} f_{1}(s, y(s)) d s-\int_{0}^{t_{1}} f_{1}(s, y(s)) d s\right| \\
& =\left|\int_{t_{1}}^{t_{2}} f_{1}(s, y(s)) d s\right| \\
& \leq \int_{t_{1}}^{t_{2}}\left|f_{1}(s, y(s))\right| d s \\
& \leq \int_{t_{1}}^{t_{2}} m_{1}(s) d s \leq \epsilon
\end{aligned}
$$

then $\left\{F_{1} y\right\}$ is a class of equicontinuous functions.
Similarly

$$
\left|F y\left(t_{2}\right)-F y\left(t_{1}\right)\right|=\left|F_{2} x\left(t_{2}\right)-F_{2} x\left(t_{1}\right)\right| \leq \int_{t_{1}}^{t_{2}} m_{2}(s) d s \leq \epsilon
$$

then $\left\{F_{2} x\right\}$ is a class of equicontinuous functions.
Therefore the operator F is equicontinuous and uniformly bounded.
Let
$\left\{y_{N}(t)\right\} \in C[0, T], y_{N}(t) \rightarrow y(t),\left\{x_{N}(t)\right\} \in C[0, T], x_{N}(t) \rightarrow x(t)$,
So,

$$
\lim _{N \rightarrow \infty} F_{1}\left(y_{N}\right)=\lim _{N \rightarrow \infty}\left(a x_{0}+\int_{0}^{t} f_{1}\left(s, y_{N}(s)\right) d s-a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}\left(s, y_{N}(s)\right) d s\right),
$$

but $\left|f_{i}\left(s, y_{N}(s)\right)\right| \leq m_{i}$, and $f_{i}\left(s, y_{N}(s)\right) \rightarrow f_{i}(s, y(s))$
applying Lebesgue dominated convergence theorem [19], then we deduce that

$$
\lim _{N \rightarrow \infty} \int_{0}^{t} f_{1}\left(s, y_{N}(s)\right) d s=\int_{0}^{t} \lim _{N \rightarrow \infty} f_{1}\left(s, y_{N}(s)\right) d s=\int_{0}^{t} f_{1}\left(s, \lim _{N \rightarrow \infty} y_{N}(s)\right) d s=\int_{0}^{t} f_{1}(s, y(s)) d s
$$

and

$$
\begin{aligned}
\lim _{N \rightarrow \infty} a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}\left(s, y_{N}(s)\right) d s & =a \sum_{k=1}^{n} a_{k} \lim _{N \rightarrow \infty} \int_{0}^{\tau_{k}} f_{1}\left(s, y_{N}(s)\right) d s \\
& =a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} \lim _{N \rightarrow \infty} f_{1}\left(s, y_{N}(s)\right) d s \\
& =a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}\left(s, \lim _{N \rightarrow \infty} y_{N}(s)\right) d s \\
& =a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}(s, y(s)) d s
\end{aligned}
$$

then

$$
\lim _{N \rightarrow \infty} F_{1}\left(y_{N}\right)=a x_{0}+\int_{0}^{t} f_{1}\left(s, y_{N}(s)\right) d s-a \sum_{k=1}^{n} a_{k} \int_{0}^{\tau_{k}} f_{1}\left(s, y_{N}(s)\right) d s=F_{1} y .
$$

This proves that $F_{1} y$ is continuous operator,
Similarly, we can prove that

$$
\lim _{N \rightarrow \infty} F_{2}\left(x_{N}\right)=a y_{0}+\int_{0}^{t} f_{2}\left(s, x_{N}(s)\right) d s-b \sum_{j=1}^{m} b_{j} \int_{0}^{\eta_{j}} f_{2}\left(s, x_{N}(s)\right) d s=F_{2} x,
$$

then $F_{2} x$ is continuous operator.
Then $F: X \rightarrow X$ is continuous and compact.
Now we show that X is convex,
let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X$

$$
\left\|\left(x_{i}, y_{i}\right)\right\|_{X}=\left\|x_{i}\right\|+\left\|y_{i}\right\|<M, i=1,2
$$

For $\lambda \in[0, T]$

$$
\begin{aligned}
\| \lambda\left(x_{1}, y_{1}\right) & +(1-\lambda)\left(x_{2}, y_{2}\right) \|_{x} \\
& =\left\|\left(\lambda x_{1}, \lambda y_{1}\right)+\left((1-\lambda) x_{2},(1-\lambda) y_{2}\right)\right\| \\
& =\left\|\left(\lambda x_{1}+(1-\lambda) x_{2}, \lambda y_{1}+(1-\lambda) y_{2}\right)\right\| \\
& \leq\left\|\lambda x_{1}+\left((1-\lambda) x_{2}\|+\| \lambda y_{1}+(1-\lambda) y_{2}\right)\right\| \\
& \leq \lambda\left\|x_{1}\right\|+(1-\lambda)\left\|x_{2}\right\|+\lambda\left\|y_{1}\right\|+(1-\lambda)\left\|y_{2}\right\| \\
& =\lambda\left[\left\|x_{1}+\right\| y_{1} \|\right]+(1-\lambda)\left[\left\|x_{2}\right\|+\left\|y_{2}\right\|\right] \\
& \leq \lambda M+(1-\lambda) M=M
\end{aligned}
$$

this means that X is convex.
Then F has a fixed point $(x, y) \in X$ which proves that there exists at least one solution of the nonlocal problem (1.1)-(1.4).

4 Nonlocal Integral Condition

Let $a_{k}=\left(t_{k}-t_{k-1}\right), \tau_{k} \in\left(t_{k-1}, t_{k}\right)$, and $b_{j}=\left(t_{j}-t_{j-1}\right), \eta_{j} \in\left(t_{j-1}, t_{j}\right)$,
where $0<t_{1}<t_{2}<t_{3}<\ldots .<1$.
Then, the nonlocal conditions (1.3)-(1.4) will be in the form

$$
x(0)+\sum_{k=1}^{n}\left(t_{k}-t_{k-1}\right) x\left(\tau_{k}\right)=x_{0}, \quad y(0)+\sum_{j=1}^{m}\left(t_{j}-t_{j-1}\right) x\left(\eta_{j}\right)=y_{0} .
$$

From the continuity of the solution of the nonlocal problem (1.1)-(1.4), we obtain

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(t_{k}-t_{k-1}\right) x\left(\tau_{k}\right)=\int_{0}^{T} x(s) d s, \quad \lim _{m \rightarrow \infty} \sum_{j=1}^{m}\left(t_{j}-t_{j-1}\right) y\left(\eta_{j}\right)=\int_{0}^{T} y(s) d s
$$

that is, the nonlocal conditions (1.3)-(1.4) is transformed to the integral condition

$$
x(0)+\int_{0}^{T} x(s) d s=x_{0}, \quad y(0)+\int_{0}^{T} y(s) d s=y_{0}
$$

Now, we have the following theorem.
Theorem 4.5. Let the assumption (i)-(ii) be satisfied, then the coupled system of differential equations (1.1) and (1.4) with the nonlocal integral condition (1.5)and(1.6) has at least one solution represented in the form

$$
U=\binom{x(t)}{y(t)}=\binom{a^{\star} x_{0}+\int_{0}^{t} f_{1}(\theta, y(\theta)) d \theta-a^{\star} \int_{0}^{T} \int_{0}^{s} f_{1}(\theta, y(\theta)) d \theta d s}{a^{\star} y_{0}+\int_{0}^{t} f_{2}(\theta, x(\theta)) d \theta-a^{\star} \int_{0}^{T} \int_{0}^{s} f_{2}(\theta, x(\theta)) d \theta d s}
$$

where $a^{\star}=(1+T)^{-1}$.

References

[1] T.M.Apostol, Mathematical Analysis, $2^{\text {nd }}$ Edition, Addison-Weasley Publishing Company Inc., (1974).
[2] A. Boucherif and Radu Precup, On The Nonlocal Initial Value Problem For First Order Differential Equations, Fixed Point Theory, 4,2(2003)205-212.
[3] A. Boucherif, A First-Order Differential Inclusions with Nonlocal Initial Conditions, Applied Mathematics Letters, 15(2002)409-414.
[4] A. Boucherif, Nonlocal Cauchy Problems for First-Order Multivalued Differential Equations, Electronic Journal of differential equations, 47,(2002)1-9.
[5] L.Byszewski and V.Lakshmikantham, Theorem about The Existence and Uniqueness of A Solution of A Nonlocal Abstract Cauchy Problem in A Banach Space, Applicable analysis, 40(1991)11-19.
[6] A. M. A. El-Sayed and Sh. A. Abd El-Salam, On The Stability of A Fractional-Order Differential Equation with Nonlocal Initial Condition, Electronic Journal of differential equations, 29(2008)1-8.
[7] A. M. A. El-Sayed and R. O. Abd El-Rahman and M. El-Gendy, Uniformly Stable Solution Of A Nonlocal Problem Of Coupled System Of Differential Equations, Ele-Math-Differential Equattions and applications, 5,3(2013)355-365.
[8] A. M. A. El-Sayed and I. Ameen, Continuation of a Parameterized Impulsive Differential Equation to An Internal Nonlocal Cauchy Problem, Alexandria journal of Mathematics, 2,1(2011).
[9] A. M. A. El-Sayed and E. O. Bin-Taher, A nonlocal Problem for a Multi-Term Fractional Order Differential Equation, Journal of Math. Analysis, 5,29(2011)1445-1451.
[10] A. M. A. El-Sayed and E. O. Bin-Taher, An Arbitraty Fractional Order Differential Equation With Internal Nonlocal and Integral Conditions, Advances in pure mathematics, 1,3(2011)59-62.
[11] A. M. A. El-Sayed and E. O. Bin-Taher, A Nonlocal Problem of An Arbitay Fractional Ordes Differential Equation Alexandria journal of Mathematics, 1, 2(2010).
[12] A. M. A. El-Sayed and Kh. W. Elkadeky, Caratheodory Theorem for A Nonlocal Problem of The Differential Equation, Alexandria journal of Mathematics, 1,2(2010).
[13] A. M. A. El-Sayed, E. M .Hamdallah and Kh. W. Elkadeky, Uniformly Stable Positive Monotonic Solution Of A Nonlocal Cauchy Problem, Advances in pure Mathematics, 2,2(2012)109-113.
[14] A. M. A El-Sayed, E. M. Hamdallah and Kh. W. Elkadeky, Internal Nonlocal and Integral Condition Problems of The Differential Equation , J.Nonlinear Sci.Appl., 4,3(2011)193-199.
[15] A. M. A El-Sayed, E. M. Hamdallah and Kh. W. Elkadeky, Solution of A Class of Deviated-Advanced Nonlocal Problems for The Differential Inclusion $x^{1}(t) \in F(t, x(t))$ Abstact and Applied Analysis, 2011(2011)9 pages
[16] E. Gatsori, S. K. Ntouyas and Y. G. Sficas, On A Nonlocal Cauchy Problem for Differential Inclusions, Abstract and Applied Analysis, 2004(2004)425-434.
[17] G. M. Guerekata , A Cauchy Problem for some Fractional Abstract Differential Equation with Nonlocal Conditions, Nonlinear Analysis, 70(2009)1873-1876.
[18] K.Goebel and W.A.Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, (1990)243 pages.
[19] A.N.Kolmogorov and S.V.Fomin, Introductory Real Analysis, Prentice Hallinc, (1970).
[20] O. Nica, IVP for First-Order Differential Systems with General Nonlocal Condition, Electronic Journal of differential equations, 74(2012)1-15.

Received: ?, 2014; Accepted: ?, 2014

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: amasyed5@yahoo.com (El-Sayed A.M.A).

