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Abstract

In this paper, we study the existence of at least one solution of the coupled system of differential equa-
tions with nonlocal conditions. Also, a coupled system of differential equations with the nonlocal integral
conditions will be considered.
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1 Introduction

Problems with nonlocal conditions have been extensively studied by several authors in the last decades.The
reader is referred to([2]-[20]) and references therein.
In [13] the authors studied nonlocal cauchy problem

x̀ = f (t, x(t)), t ∈ [0, T]

m

∑
j=1

bjx(ηj) = x1, ηj ∈ (0, a) ⊂ [0, T].

Also, in [7] the authors studied the local and global existence of solutions of the nonlocal problem

dx
dt

= f1(t, y(t)), t ∈ (0, T] (1.1)

dy
dt

= f2(t, x(t)), t ∈ (0, T] (1.2)

with the nonlocal conditions

x(0) +
n

∑
k=1

akx(τk) = x0, ak > 0, τk ∈ (0, T) (1.3)

y(0) +
m

∑
j=1

bjy(ηj) = y0, bj > 0, ηj ∈ (0, T) (1.4)
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Here we are studied the existence of at least one solution of the nonlocal problem (1.1)-(1.4), the problem with
nonlocal integral conditions

x(0) +

T∫
0

x(s)ds = x0, (1.5)

y(0) +

T∫
0

y(s)ds = y0. (1.6)

are studied.

2 Preliminaries

we need the following definitions.

Definition 2.1. [19] Let F = { fi : X → Y , i ∈ I} be a family of functions with Y being a set of real (or complex)
numbers, then we call F uniformly bounded if there exists a real number c such that | fi(x) | ≤ c ∀ i ∈ I , x ∈ X.

Definition 2.2. [19] Let F = { f (x)} is the class of functions defined on A where A = [a, b] ⊂ R, the class of
functions F = { f (x)} is equicontinuous if ∀ ε > 0, ∃δ(ε) such that | x − y |< δ, implies that | f (x)− f (y) |<
ε ∀ f ∈ F , x, y ∈ A.

Theorem 2.1. [1] The function f (x) = ( f1(x) , f2(x) , ..........., fn(x)) is uniformly continuous in I = [a, b] if and
only if each fi is uniformly continuous in [a, b].

Theorem 2.2. [19](Lebesgue Dominated Convergence Theorem)
let fn be a sequence of functions converging to a limit f of A, and suppose that
| fn(t) | ≤ φ(t) , t ∈ A , n = 1 , 2 , 3 , ........ where φ is integrable on A . Then

1. f is integrable on A

2. lim
n→∞

∫
A

fn(t)dµ =
∫
A

f (t)dµ.

Theorem 2.3. [18](Schauder)
Let Q be a convex subset of a Banach space X, T : Q → Q be a compact and continuous map, then T has at least
one fixed point in Q.

3 Integral Representation

Let X be the class of all columns vectors
(

x
y

)
, x, y ∈ C(0, T] with the norm

∣∣∣∣∣∣∣∣( x
y

)∣∣∣∣∣∣∣∣
X

= ||x||+ ||y|| = sup
t∈[0,T]

| x(t) | + sup
t∈[0,T]

| y(t) | .

Throughout the paper we assume that the following assumptions hold:

i. fi : [0, T] × R → R satisfies Caratheodory conditions, that is fi is

1. measurable in t ∈ (0, T], for any x ∈ R.

2. continuous in x ∈ R , for almost all t ∈ (0, T].

ii. There exist two integrable functions mi ∈ L1[0, T], i = 1, 2 such that
| fi (t, x)| ≤ mi(t),

t∫
0

mi(s) ds < ki , i = 1, 2 ∀ t ∈ [0, T].
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Lemma 3.1. The solution of the nonlocal problem (1.1)-(1.4) can be expressed by the system of the integral equations

(
x(t)
y(t)

)
=


a x0 +

t∫
0

f1 (s, y(s)) ds − a
n
∑

k=1
ak

τk∫
0

f1 (s, y(s))ds

b y0 +
t∫

0
f2 (s, x(s)) ds − b

m
∑

j=1
bj

ηj∫
0

f2 (s, x(s))ds

 ,

where
(

1 +
n
∑

k = 1
ak

)−1
= a,

(
1 +

m
∑

j = 1
bj

)−1

= b.

3.1 Existence of solution

Here, we study the existence of at least one solution of the nonlocal problem (1.1)-(1.4).
Define the superposition operator F by

F
(

x(t)
y(t)

)
=


ax0 +

t∫
0

f1(s, y(s))ds− a
n
∑

k=1
ak

τk∫
0

f1(s, y(s))ds

by0 +
t∫

0
f2(s, x(s))ds− b

m
∑

j=1
bj

ηj∫
0

f2(s, x(s))ds

 =
(

F1y
F2x

)
.

Now we have the following theorem.

Theorem 3.4. Consider the assumptions (i)-(ii) are satisfied, then there exists at least one solution of the nonlocal
problem (1.1)-(1.4).

Proof. Define the operator F (x, y) = (F1x, F2y) , where

F1y = a x0 +

t∫
0

f1(s, y(s)) ds − a
n

∑
k=1

ak

τk∫
0

f1(s, y(s)) ds,

F2x = b y0 +

t∫
0

f2(s, x(s)) ds − a
m

∑
j=1

bj

ηj∫
0

f2(s, x(s)) ds.

Now

| F1y | =

∣∣∣∣∣∣ a x0 +

t∫
0

f1(s, y(s)) ds − a
n

∑
k=1

ak

τk∫
0

f1(s, y(s)) ds

∣∣∣∣∣∣
≤ | ax0 | +

t∫
0

| f1(s, y(s)) | ds+ | a |
n

∑
k=1

| ak |
τk∫

0

| f1(s, y(s)) | ds

≤a | x0 | +

t∫
0

m1(s) ds + a
n

∑
k=1

| ak |
τk∫

0

m1(s) ds

≤ a | x0 | + K1 + a
n

∑
k=1

ak K1 ≤ a | x0 | + K1(1 + a
n

∑
k=1

ak )

≤ a | x0 | + K1

1 +

n
∑

k=1
ak

1 +
n
∑

k=1
ak

 ≤ a | x0 | + 2K1 = M1,
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then F1 is uniformly bounded.
Similarly

| F2x | ≤ b | y0 | + 2K2 = M2,

then F2 is uniformly bounded.
Hence ‖ F(x, y) ‖X = ‖ F1y ‖ + ‖ F2x ‖ ≤ M1 + M2 = M,
and then F is uniformly bounded.
For t1, t2 ∈ (0, T] , t1 < t2, let | t2 − t1 | < δ , then

| F x(t2) − F x(t1) |= | F1y(t2) − F1y(t1) |

=

∣∣∣∣∣∣
t2∫

0

f1(s, y(s)) ds −
t1∫

0

f1(s, y(s)) ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
t2∫

t1

f1(s, y(s)) ds

∣∣∣∣∣∣∣
≤

t2∫
t1

| f1(s, y(s)) | ds

≤
t2∫

t1

m1(s) ds ≤ ε,

then {F1y} is a class of equicontinuous functions.
Similarly

| F y(t2) − F y(t1) | = | F2x(t2) − F2x(t1) | ≤
t2∫

t1

m2(s) ds ≤ ε,

then {F2x} is a class of equicontinuous functions.
Therefore the operator F is equicontinuous and uniformly bounded.
Let
{yN(t)} ∈ C[0, T] , yN(t) → y(t), {xN(t)} ∈ C[0, T] , xN(t) → x(t),
So,

lim
N→∞

F1(yN) = lim
N→∞

 a x0 +
∫ t

0
f1(s, yN(s)) ds − a

n

∑
k=1

ak

τk∫
0

f1(s, yN(s)) ds

 ,

but | fi (s, yN (s)) | ≤ mi, and fi (s, yN (s)) → fi (s, y(s))
applying Lebesgue dominated convergence theorem [19], then we deduce that

lim
N→∞

∫ t

0
f1(s, yN(s))ds =

t∫
0

lim
N→∞

f1(s, yN(s))ds =
∫ t

0
f1(s, lim

N→∞
yN(s))ds =

t∫
0

f1(s, y(s)) ds,
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and

lim
N→∞

a
n

∑
k=1

ak

τk∫
0

f1(s, yN(s))ds =a
n

∑
k=1

ak lim
N→∞

τk∫
0

f1(s, yN(s))ds,

= a
n

∑
k=1

ak

τk∫
0

lim
N→∞

f1(s, yN(s)) ds,

= a
n

∑
k=1

ak

τk∫
0

f1(s, lim
N→∞

yN(s)) ds,

= a
n

∑
k=1

ak

τk∫
0

f1(s, y(s)) ds,

then

lim
N→∞

F1(yN) = a x0 +

t∫
0

f1(s, yN(s)) ds − a
n

∑
k=1

ak

τk∫
0

f1(s, yN(s)) ds = F1y.

This proves that F1y is continuous operator,
Similarly, we can prove that

lim
N→∞

F2(xN) = a y0 +

t∫
0

f2(s, xN(s)) ds − b
m

∑
j=1

bj

ηj∫
0

f2(s, xN(s)) ds = F2x,

then F2x is continuous operator.
Then F : X → X is continuous and compact.
Now we show that X is convex,
let (x1 , y1) , (x2 , y2) ∈ X

‖ (xi , yi) ‖X = ‖ xi ‖ + ‖ yi ‖ < M, i = 1, 2.

For λ ∈ [0 , T]

‖ λ (x1 , y1)+ (1 − λ) (x2 , y2) ‖X

= ‖ (λ x1 , λ y1) + ((1 − λ) x2 , (1 − λ) y2) ‖
= ‖ (λ x1 + (1 − λ) x2 , λ y1 + (1 − λ) y2) ‖
≤ ‖ λ x1 + ((1 − λ) x2 ‖ + ‖ λ y1 + (1 − λ) y2) ‖
≤ λ ‖ x1 ‖ + (1 − λ) ‖ x2 ‖ + λ ‖ y1 ‖ + (1 − λ) ‖ y2 ‖
= λ [ ‖ x1 + ‖ y1 ‖ ] + (1 − λ) [ ‖ x2 ‖ + ‖ y2 ‖ ]

≤λ M + (1 − λ) M = M,

this means that X is convex.
Then F has a fixed point (x , y) ∈ X which proves that there exists at least one solution of the nonlocal
problem (1.1)-(1.4).

4 Nonlocal Integral Condition

Let ak = (tk − tk−1), τk ∈ (tk−1, tk), and bj = (tj − tj−1), ηj ∈ (tj−1, tj),
where 0 < t1 < t2 < t3 < .... < 1.
Then, the nonlocal conditions (1.3)-(1.4) will be in the form

x(0) +
n

∑
k=1

(tk − tk−1) x(τk) = x0, y(0) +
m

∑
j=1

(tj − tj−1) x(ηj) = y0.
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From the continuity of the solution of the nonlocal problem (1.1)-(1.4), we obtain

lim
n→∞

n

∑
k=1

(tk − tk−1) x(τk) =
∫ T

0
x(s)ds, lim

m→∞

m

∑
j=1

(tj − tj−1) y(ηj) =
∫ T

0
y(s)ds,

that is, the nonlocal conditions (1.3)-(1.4) is transformed to the integral condition

x(0) +

T∫
0

x(s)ds = x0, y(0) +

T∫
0

y(s)ds = y0.

Now, we have the following theorem.

Theorem 4.5. Let the assumption (i)-(ii) be satisfied, then the coupled system of differential equations (1.1) and (1.4)
with the nonlocal integral condition (1.5)and(1.6) has at least one solution represented in the form

U =
(

x(t)
y(t)

)
=


a? x0 +

t∫
0

f1 (θ, y(θ)) dθ − a?
T∫
0

s∫
0

f1 (θ, y(θ))dθds

a? y0 +
t∫

0
f2 (θ, x(θ)) dθ − a?

T∫
0

s∫
0

f2 (θ, x(θ))dθds

 ,

where a? = (1 + T)−1.
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