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Abstract

In this article, we drive mathematical model for nutrient uptake by the plant root which is considered
as cylindrical, i.e, we obtain concentration of nutrient entering into the root surface by advection diffusion
equation. The equation is written in the radial form and solved using Michal Menten boundary condition,
which is nonlinear boundary condition. It is found that generally advection diffusion is solved taking Peclet
number as zero, then equation reduces to the diffusion equation and solved by Laplace method[9]. But we
solve the advection diffusion equation without taking Plect number as zero and solved by re-scaling and
using separation of variable which reduces it into Bessel’s equation. For particular solution, we use extreme
parameters.
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1 Introduction

The primary physiological function of root is uptaking the water as well as nutrients and transport to
leaves for photosynthesis. Investigations and observation of the uptake of water and nutrient in plant root
and stem can be traced back to many years ago, it possesses importance in point of view of agricultural pro-
duction and economical development[3,7-9]. In traditional farming like planting and agricultural the mech-
anism of water and nutrients is invaluable for utilizing water and fertilizer for increasing production. Now
a new trend of planting inedible plant, emerge on industrial basis. The view of planting inedible plant are
prevent the salinization, desertification of soil, to clean pollution of heavy metals, radioelement and plant’s
mining. To collect the valuable metals, like gold, from soil by planting some plants whose roots possess a
special capability of absorbing the valuable metals. The plants of genus Bauhina have many species out of
which Bauhinia Variegata plant extract is analyzed and found it contain micro-particles of gold. Since ancient
times Bauhinia Racemosa Lam. family: Caesalpinaceae has been an integral part of life in India. Leaves of
Bauhinia Racemosa are traditionally used on occasion of Dashera festival as symbol of gold in India. Re-
cently proved that Bauhina Racemosa extract also contain micro particles of gold. In recent years, a number
of researchers from various fields, such as physics, applied mathematics and plant physiology, paid more at-
tention to develop mathematical model for water and nutrient uptake. The outstanding work in this field is
done by T.Roose and proposed a mathematical model for uptake of water and nutrient. Roose work is the
development of Nye, Tinker and Barber model for water and nutrient uptake assuming that the root is an
infinitely long cylinder. To develop Mathematical model, we first derive advection diffusion equation of nu-
trient transport in the groundwater and then try to solve the advection diffusion equation by transforming it
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into non-dimensional form and using Michal Menten boundary condition as boundary condition. We re-scale
the equation and reduce into the Bessel’s equation, so we write solution in terms of Bessel’s function.

2 Uptake in saturated zone

The root surrounded by soil is mainly divided in three parts namely solid, liquid and gas. We indicate φl
volume fraction of soil occupied by the liquid, φs volume fraction of soil occupied by the solid and φg volume
fraction of soil occupied by gas. Other phases like microbes, mucigel etc are neglected. The conservation of
soil volume equation is written as:

φs + φg + φl = 1. (2.1)

The porosity φ of the soil is defined as φg + φl = φ or φ = 1− φs. Soil is described as fully saturated if the pore
space is full of water, i.e. φ = φl . Nutrients in solid phase can be exchanged with the liquid phase and diffuse
in the solid phase. The diffusion of ions in this phase is negligible, so we neglect it. Thus the equation for the
ion the solid phase becomes

∂cs

∂t
= ds. (2.2)

Where cs indicate the amount of ions in the solid form and ds indicate the rate of liquid-solid inter-facial ion
transport.
Nutrient comes in contact with surface of the root by flow of pore water in which diffusion of nutrient takes
place. Then the equation for ions in the liquid phase is written as

∂

∂t
(φlcl) +∇.(clu) = ∇.(φl D∇cl) + dl , (2.3)

where u is the Darcy flux of water in the soil, cl is the nutrient concentration in the liquid phase of the soil D is
the diffusion coefficient in the liquid phase of the soil and dl is the rate of solid-liquid inter-facial ion transport.
Addition of equation (2.2) and (2.3), we get

∂

∂t
(φlcl + cs) +∇.(clu) = ∇.(φl D∇cl) + ds + dl , (2.4)

assuming mass conservation during the inter-facial transport of ions

ds + dl = 0. (2.5)

Hence, the equation (2.4) in terms of cl becomes,

(b + φl)
∂cl
∂t

+∇.(clu) = ∇.(φl D∇cl). (2.6)

Noting cl = c and writing equation (2.6) in radial polar coordinates we get

(b + φl)
∂c
∂t
− aV

r
∂c
∂r

= Dφl
1
r

∂

∂r
(r

∂c
∂r

), (2.7)

where a is the radius of the root. The water flux is given by u = − aV
r , which derives from the law of mass

conservation for water, i.e, ∇.u = 0. The quantity V is the Darcy flux of water into the root.

3 Boundary condition

Root surface accept the nutrient up to a certain level even if the nutrient concentration in liquid increases
indefinitely. It is also verified that the root surface accept nutrient up to a critical level(low) of nutrient in
liquid phase near the root surface below which first it stop the uptake of nutrient and then start bleeding in
the soil. The experimentally measured, heuristic Michaelis-Menten type nutrient uptake boundary condition
is therefore given by, see [5]

φl D
∂c
∂r

+ Vc =
Fmc

Km + c
− E, (3.1)

at r = a. Where c indicate the concentration of nutrient in the liquid phase of the soil, Km indicate the
Michaelis-Menten constant that is equal to the root surface nutrient concentration when the flux of nutri-
ent into the root is half of the maximum possible, Fm indicate the maximum flux of nutrient into the root,
E = Fmcmin

Km+cmin
where cmin indicate the minimum concentration when the roots stop the uptake of nutrients, and

a is the radius of the root.
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4 Initial Condition and boundary condition

Initial condition can be write as for t = 0

c = c0 at t = 0 f or a < r < ∞, (4.1)

for later time
c → c0 as r → ∞ f or t > 0. (4.2)

5 Non-dimensionalisation of Nutrient Transport equation

Choosing time, space, and concentration-scale as follows and substitute in (2.7)

t =
a2(φl + b)

Dφl
t∗, r = ar∗, c = Kmc∗. (5.1)

Where c∗, t∗ and r∗are dimensionless nutrient concentration, time, and radial variables,respectively, we obtain
(after dropping ∗s) the following dimensionless model

∂c
∂t
− Pe

1
r

∂c
∂r

=
1
r

∂

∂r
(r

∂c
∂r

), (5.2)

with boundary conditions
∂c
∂r

+ Pec = λ
c

1 + c
− ε at r = 1. (5.3)

c → c∞ as r → ∞ f or t > 0, (5.4)

the dimensionless initial condition is given by

c = c∞ at t = 0 f or 1 < r < ∞. (5.5)

the dimensionless parameters in above equations are defined as

Pe =
aV
Dφl

, λ =
Fma

DKmφl
, ε =

Ea
DKmφl

, c∞ =
c0

Km
. (5.6)

equation (5.2) write as
∂c
∂t
− (

Pe + 1
r

)
∂c
∂r

=
∂2c
∂r2 , (5.7)

implies
∂c
∂t

= (
Pe + 1

r
)

∂c
∂r

+
∂2c
∂r2 , (5.8)

re-scaling with r = (1 + Pe)R, then ∂r = (1 + Pe)∂R. Then equation (5.8) become

(1 + Pe)
∂c
∂t

=
∂2c
∂R2 +

1
R

∂c
∂R

, (5.9)

Corresponding boundary condition changes

∂c
∂R

+ (1 + Pe)Pec = λ(1 + Pe)[
c

1 + c
− ε], at R =

1
1 + Pe

, (5.10)

for λ = Fma
DKmφl

value of λ with large value of φ and small radius R we have

λ ≡ 0. (5.11)

Then the boundary condition becomes

∂c
∂R

+ (1 + Pe)Pec = 0, (5.12)
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Consider c(R, t) = U(R)T(t) substituting in (5.9) and (5.12) then it becomes

1
T

(1 + Pe)
∂T
∂t

=
1
U

[
∂2U
∂R2 +

1
R

∂U
∂R

], (5.13)

corresponding boundary condition becomes

∂U
∂R

+ (1 + Pe)PeU = 0. (5.14)

From the equation (5.9) we can write

1
T

(1 + Pe)
∂T
∂t

=
1
U

[
∂2U
∂R2 +

1
R

∂U
∂R

] = −β2. (5.15)

We have the Bessel equation with boundary condition

∂2U
∂R2 +

1
R

∂U
∂R

+ β2U = 0. (5.16)

∂U
∂R

+ (1 + Pe)PeU = 0, at R =
1

1 + Pe
(5.17)

and
∂T
∂t

= − β2

1 + Pe
T. (5.18)

c = c∞ at t = 0 as 1 < R <
1

1 + Pe
(5.19)

Solution of Bessels equation is given by,

U(β, R) = J0(βR)[βY1(β
1

(1 + Pe)
) + Pe(−1− Pe)Y0(β

1
(1 + Pe)

)]

−Y0(βR)[βJ1(β
1

(1 + Pe)
) + Pe(−1− Pe)J0(β

1
1 + Pe

)], (5.20)

also

N(β) = [βJ1(β
1

(1 + Pe)
) + (−1− Pe)J0(β

1
(1 + Pe)

)]2

+[βY1(β
1

(1 + Pe)
) + (−1− Pe)Y0(β

1
(1 + Pe)

)]2. (5.21)

Replacing R by R = r
(1+Pe)

in equation (5.20)
Above solution of Bessels equation become

U(β, r) = J0(β
r

(1 + Pe)
)[βY1(β

1
(1 + Pe)

) + Pe(−1− Pe)Y0(β
1

(1 + Pe)
)]

−Y0(β
r

(1 + Pe)
)[βJ1(β

1
(1 + Pe)

) + Pe(−1− Pe)J0(β
1

1 + Pe
)]. (5.22)

Then the complete solution is given by, see [4]

c(r, t) =
∫ ∞

β=0

β

N(β)
e−

1
(1+Pe) β2tU(β, r)dβ

∫ ∞

r′=1
r′U(β, r′)c∞dr′. (5.23)

Amount of nutrient absorb by root is given as, [1-2]

M = 2πrt
∂c
∂t

. (5.24)
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6 Steady state uptake of nutrient

Consider equation (5.7) with boundary condition (5.3) and (5.5) in steady state it takes the form

∂2c
∂r2 +

(1 + Pe)
r

∂c
∂r

= 0, (6.25)

with the substitution r = (1 + Pe)R equation (6.1) changes to the form

∂2c
∂R2 +

1
R

(
∂c
∂R

) = 0. (6.26)

With the assumption of section (5.1), λ approaches to zero and ε is of order zero then boundary condition
for (5.12) is the equation changes to the form,

∂c
∂R

+ (1 + Pe)Pec = 0. (6.27)

And initial condition changes to c → c∞ as R → ∞ f ort > 0

c = c∞, at t = o f or
1

1 + Pe
< R < ∞, (6.28)

we may take for large R as L Solution of equation (6.2) is given by, see [1-2],

c = A + BlogR. (6.29)

We can find the arbitrary constant A and B by applying initial and boundary condition as follwes
B
R + (1 + Pe)Pe(A + BlogR) = 0 at R = 1

1+Pe
,

B = − (1 + Pe)Pec∞

[(1 + Pe) + (1 + Pe)Pe log 1
L(1+Pe)

]
. (6.30)

A = c∞ +
(1 + Pe)Pec∞

[(1 + Pe) + (1 + Pe)Pe log 1
L(1+Pe)

]
logL. (6.31)

Then the general solution for equation is given by
c = c∞ + (1+Pe)Pec∞

[(1+Pe)+(1+Pe)Pe log 1
L(1+Pe) ]

logL− (1+Pe)Pec∞
[(1+Pe)+(1+Pe)Pe log 1

L(1+Pe) ]
logR.

c = c∞ +
Pec∞

[1 + Pe log 1
L(1+Pe)

]
logL− Pec∞

[1 + Pe log 1
L(1+Pe)

]
logR, (6.32)

solution modified as

c(R) = c∞[1 +
Pelog L

R

[1 + Pe log 1
L(1+Pe)

]
], (6.33)

replacing value of R is

c(r) = c∞[1 +
Pelog L(1+Pe)

r

[1 + Pe log 1
L(1+Pe)

]
]. (6.34)

Solution of steady state advection diffusion equation is written as

c(r) = c∞[
1− Pelogr

1− PelogL(1 + Pe)
], (6.35)

total nutrient uptake per unit length is given by

Q = −2πDc∞
r− Pe

1− PelogL(1 + Pe)
. (6.36)
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7 Nutrient transport equation with c∞ << 1 and ε < Pe << 1

In this section we consider Pe, ε and c∞ are negligible. If Michaelis-Menten coefficient K∞ much larger than
the far field concentration c0 ,i.e., c∞ << 1, the equation (5.2) reduces to the form

∂c
∂t

=
1
r

∂

∂r
(r

∂c
∂r

). (7.37)

∂c
∂t

=
∂2c
∂r2 +

1
r

∂c
∂r

. (7.38)

Corresponding boundary condition reduces to the form

∂c
∂r

= λ
c

1 + c
, (7.39)

re-scaling c = c∞C then the model in scaled concentration is written as

∂C
∂t

=
∂2C
∂r2 +

1
r

∂C
∂r

, (7.40)

scaled boundary condition are as follows

∂C
∂r

= λ
C

1 + c∞C
, r = 1 and C → 1 as r → ∞. (7.41)

for c∞ << 1 we can approximate the root surface boundary condition,using the binomial expansion,at the
leading order given by

∂C
∂r

≈ λC at r = 1. (7.42)

Initial condition scaled in following manner

C = 1 at t = 0 f or 1 < r < ∞. (7.43)

We solve the above boundary value problem by separation of the variables .substituting the substitution
C(r, t) = T(t)U(r) the value in equation(7.4) we have

1
U

[
∂2U
∂r2 +

1
r

∂U
∂r

] =
1
T

[
∂T
∂t

] = −β2. (7.44)

Now consider the boundary value problem

∂2U
∂r2 +

1
r

∂U
∂r

+ β2U = 0. (7.45)

With the boundary condition
dU
dr

− λU = 0. (7.46)

The complete solution is given by, see [4],

C(r, t) =
∫ ∞

β=0

β

N(β)
e−β2tU(β, r)dβ

∫ ∞

r=1
r′U(β, r′)dr′, (7.47)

where U(βm, r) is eigenvalue function.

U(β, r) = J0(βr)[βY1(β) + λY0(β)]−Y0(βr)[βJ1(β) + λJ0(β)]. (7.48)

N(β) = [βJ1(β) + λJ0(β)]2 + [βY1(β) + λY0(β)]2. (7.49)

So the general solution of equation is given by

c(r, t) =
∫ ∞

β=0

β

N(β)
e−β2tR(β, r)dβ

∫ ∞

r=1
r′R(β, r′)dr′. (7.50)
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8 Advection diffusion equation with Case c∞ << 1and ε << 1

With the very very small space concentration ε value is negligible for the advection diffusion equation
(5.2) with boundary condition (5.3) can be reduced in the diffusion equation by re-scaling r = (1 + Pe)R and
c = c∞C

‘(1 + Pe)
∂C
∂t

=
∂2C
∂R

+
1
R

∂C
∂R

. (8.51)

∂C
∂R

+ (1 + Pe)PeC = λ(1 + Pe)[
C

1 + c∞C
] at R =

1
1 + Pe

, (8.52)

for c∞ << 1 we can approximate the root surface boundary condition,using the binomial expansion,at the
leading order given by

∂C
∂R

+ (1 + Pe)PeC = λ(1 + Pe)C at R =
1

1 + Pe
. (8.53)

∂C
∂R

+ [(1 + Pe)Pe − λ(1 + Pe)]C = 0 at R =
1

1 + Pe
. (8.54)

∂C
∂R

+ (1 + Pe)(Pe − λ)C = 0 at R =
1

1 + Pe
. (8.55)

The complete solution is given by separation of variable as similar to equation (7.8) with the substitution
C(R, t) = U(R)T(t)

C(R, t) =
∫ ∞

β=0

β

N(β)
e−β2tU(β, R)dβ

∫ ∞

R= 1
1+Pe

R′U(β, R′)dR′ (8.56)

where U(βm, R) is solution of Bessel equation.

U(β, R) = J0(βR)[βY1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)Y0(βR)]

−Y0(βr)[βJ1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)J0(β

1
1 + Pe

)]. (8.57)

N(β) = [βJ1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)J0(β

1
1 + Pe

)]2

+[β
1

1 + Pe
Y1(β) + (1 + Pe)(Pe − λ)Y0(β

1
1 + Pe

)]2. (8.58)

Re-substituting value of R = r
1+Pe

U(β, r) = J0(β
r

1 + Pe
)[βY1(β

1
1 + Pe

) + (1 + Pe)(Pe − λ)Y0(βR)]

−Y0(βr)[βJ1(β
1

1 + Pe
) + (1 + Pe)(Pe − λ)J0(β

1
1 + Pe

)], (8.59)

so the general solution of equation is given by

c(r, t) = c∞

∫ ∞

β=0

β

N(β)
e−β2tU(β, r)dβ

∫ ∞

r=1
r′U(β, r′)dr′. (8.60)

9 High Nutrient uptake forλ >> 1

If the gradient of nutrient concentration near root surface is high, i.e., ∂c
∂r |r=1 = λ >> 1 for c ∼ O(1). Then

re-scaling the independent variables r and t to stretched variables R and T i.e. r = 1 + R
λ and t = T

λ2 , the
problem reduces to

∂c
∂T

=
∂2c
∂R2 +

1
R + λ

∂c
∂R

. (9.61)

Which at the leading order simplifies to
∂c
∂T

=
∂2c
∂R2 , (9.62)
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since 1
λ+R << 1 for λ >> 1. The re-scaled boundary conditions are

∂c
∂R

= c at R = 0 and c → 1 as R → ∞, (9.63)

and the initial condition is c = 1 at T = 0 for 0 < R < ∞. Then the general solution to this leading order
problem is given by

c(R, T) = er f (
R

2
√

T
) + eR+Ter f c(

R
2
√

T
+
√

T), (9.64)

with the flux F(T) = ∂c
∂R

∂R
∂r |R=0, of nutrient into the root given by

F(T) = λeTer f c(
√

T). (9.65)

As T → ∞, the concentration of nutrient at the surface c → 0 and F → 0, since eTer f c(
√

T) → 0 as T → ∞.

10 Zero-sink Model

For t > tc ∼ 1
λ2 the root surface nutrient concentration has dropped to a very low level then we take the

boundary condition at the root surface at the leading order to be c = 0 at r = 1, i.e, the problem to be solved
is, see [6],

∂c
∂t

+
(−Pe)

r
∂c
∂r

=
1
r

∂

∂r
(r

∂c
∂r

) (10.66)

c = 0 at r = 1 and c → 1 as r → ∞, (10.67)

Let q = Pe + 1 the equation (10.1) becomes

∂c
∂t

=
∂2c
∂r2 +

q
r

∂c
∂r

. (10.68)

Using variable separation technique where λ is the separation constant yield

1
T

∂T
∂t

=
1
U

[
∂2U
∂r2 +

q
r

∂U
∂r

] = −λ. (10.69)

Then above equation reduces to the equations

∂T
∂t

+ λT = 0. (10.70)

r
∂2U
∂r2 + q

∂U
∂r

+ rλU = 0, (10.71)

R(1) = 0 (10.72)

the time function T(t) is the exponential solution of equation (10.5) is

Ti(t) = e−λit. (10.73)

The solution of spatial function R(r) is obtained by power series method used for bessel equation

Ri(r) =
∞

∑
n=0

(−1)n(r
√

λi)2n

22n−γn!.Γ(ν− γ + 1).λ
γ
2
i

with γ =
1− q

2
= −Pe

2
, (10.74)

given solution can be represented using a negative γ -order Bessel function J−γ of the first kind. The separation
constant λi of a specific problem is a scaled version of the general Bessel function roots to accommodate the
boundary condition at r=1

Ri(r) = rγ.J−γ(r
√

λi)r=1 = 0,
√

λi = si, (10.75)
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combining the spatial and time function solution we get desired solution as an infinite sum of eigenfunctions
as

C(r, t) = Σ∞
t=0[Airγ.J−γ(r

√
λi)e−λit]. (10.76)

According to the Sturm-Liouville theory orthogonal base functions correspond to the weights rq. The coeffi-
cient Ai can be adjusted using a Fourier-Bessel decomposition

Ai =

∫ 1
0 J(sir).rγ+qdr∫ 1

0 [J(sir)]2.r2γ+qdr
. (10.77)

11 Zero-sink Model with Pe << 1

The equation (10.1) is reduced to the form as,

∂c
∂t

=
1
r

∂

∂r
(r

∂c
∂r

). (11.78)

c = 0 at r = 1 and c → 1 as r → ∞, (11.79)

c = 1 at t = 0 as 1 < r < ∞.
Separating the variables solution for time-variable function is given by e−β2t and space variable function
U(β, r) is the solution of the following problem

d2U
dr2 +

1
r

dU
dr

+ β2U = 0 f or 1 < r < ∞, (11.80)

c = 0 at r = 1. (11.81)

Then the complete solution for c(r, t) is constructed as

c(r, t) =
∫ ∞

β=0
C(β)e−β2tR(β, r)dβ, (11.82)

with the application of initial condition we get

1 =
∫ ∞

β=0
c(β)U(β, r)dβ in 1 < r < ∞, (11.83)

using the orthogonality of eigenvalue functions we have

C(β) ≡ 1
N(β)

β

∫ ∞

r′=1
r′R(β, r′)dr′. (11.84)

Substituting equation (10.7) into equation (10.5) gives

c(r, t) =
∫ ∞

β=0

β

N(β)
e−β2tU(β, r)dβ

∫ ∞

r′=1
r′R(β, r′)dr′. (11.85)

Where
U(β, r) = J0(βr)Y0(β)−Y0(βr)J0(β), (11.86)

and
N(β) = [J2

0 (β) + Y2
0 (β)]. (11.87)

Then complete integral is given by

c(r, t) =
∫ ∞

β=0

β

J2
0 (β) + Y2

0 (β)
e−β2t[Y0(βr)J0(β)]dβ− J0(βr)Y0(β)

.
∫ ∞

r′=1
r′[J0(βr′)Yo(β)−Y0(βr′)J0(β)]dr′. (11.88)
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12 Conclusion

We solved radial advection diffusion by re-scaling and reduced it by separation of variables into Bessel’s
equation rather than Laplace method used in [9], in which whenever Laplace method is used for solving
advection diffusion, we have to choose always Pe << 1. The method used in this article is one of the best
alternative to Laplace method used in [9] and not always necessary to choose Pe << 1 due to which it reducing
the advection diffusion equation into diffusion form.
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