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Abstract

Networks are one of the basic structures in many physical phenomena pertaining to engineering applications. As a

network can be represented by a graph which is isomorphic to its adjacency matrix, the study of analysis of networks

involving rate of change with respect to time reduces to the study of graph differential equations or equivalently matrix

differential equations. In this paper, we develop the basic infrastructure to study the IVP of a graph differential equation

and the corresponding matrix differential equation. Criteria are obtained to guarantee the existence of a solution and

an iterative technique for convergence to the solution of a matrix differential equation is developed.
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1 Introduction

A graph [1] represents a network of a natural or a man-made system, wherein interconnections between its
constituents play an important role. Graphs have been utilized to model organizational structures in social
sciences. It has been observed that the graphs which are static in nature limit the study in social phenomena
where changes with time are natural. Hence, it was thought that a dynamic graph will be more appropriate
in modeling such social behavior [2, 4]. The concept of a dynamic graph was introduced in [2] and a graph
differential equation was utilized to describe the famous prey predator model and its stability properties were
studied [2].

The importance of networks in engineering fields and the representation of a network by a graph led us to
consider a graph differential equation as an important topic of study. Thus we plan to study the existence of
solutions through monotone iterative technique [3] for the graph differential equation through its associated
matrix differential equations.

2 Preliminaries

In this section we introduce the notions and concepts that are necessary to develop graph differential equa-
tions and and the corresponding matrix differential equations. All the basic definitions and results are taken
from [2] and suitable changes are made to suit our set up. Consider a weighted directed simple graph (called
digraph) D = (V,E) an ordered pair, where V is a non-empty finite set of N vertices and E is the set of all
directed edges. To each directed edge (vi, vj) we assign a nonzero weight eij ∈ R if (vi, vj) ∈ E while eij = 0
if (vi, vj) /∈ E. Corresponding to a digraph D we associate an adjacency matrix E = (eij). This association is
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an isomorphism.

Graph linear space. Let v1, v2, . . . vN be N vertices, N fixed and DN be the set of all weighted directed
simple graphs ( called digraphs), D = (V,E). Then (DN ,+, .) is a linear space over the field of real numbers
with the following definition of the addition and scalar multiplication.
Let D1, D2 be two digraphs D1 = (V,E1) and D2 = (V,E2).
Then the sum D1 +D2 is defined as

D1 +D2 = (V,E1 + E2)

where E1 +E2 is the set of all edges (vi, vj) ∈ E1 ∪E2 where the weight of (vi, vj) is defined as the sum of the
weights of the edges (vi, vj) in the respective digraphs D1 and D2.

Let D = (V,E) be a graph then by αD = (V, αE) where αE is the set of all edges (vi, vj) whose weight is α
times the weight of (vi, vj). Observe that if α = 0 then αD = 0 ∈ DN is the graph consisting of N isolated
vertices. Hence the set of edges is empty. With the fore mentioned operations, (DN ,+, .) is a linear space.
This space is isomorphic to the linear space MN of all N ×N adjacency matrices with entries of the principal
diagonal being zero, defined over the field of real numbers, with the usual definition of matrix addition and
scalar multiplication.
Let γ be a matrix norm defined as

γ : MN → R+ satisfying

(i) γ(m) > 0 ∀ m ∈MN ,m 6= 0
(ii) γ(αm) = |α| γ(m), ∀ m ∈MN , α ∈ R
(iii) γ(m1 +m2) ≤ γ(m1) + γ(m2), ∀ m1,m2 ∈MN .

Once a matrix norm is chosen we can define an associated matrix norm on DN and induced metric η is
given by

η(m1,m2) = γ (m1 −m2), ∀ m1,m2 ∈MN .

In order to study graph functions that vary over time, we use an axiomatic definition of the abstract linear
space DN into itself.
Consider the space DN and a family of mappings Φ : R+ × DN → DN , where to any graph D ∈ DN and any
parameter (time) t ∈ R+ assigns a graph Φ (t,D) ∈ DN .

Dynamic graph. A dynamic graph D̂ = ΦD(t) is a one parameter mapping ΦD : R+ → DN with ΦD(t) =
Φ (t,D) ∈ DN satisfying the following axioms.
(i). Φ (t0, D0) = D0

(ii). Φ is continuous
(iii). Φ(t2,Φ (t1, D)) = Φ(t1 + t2, D), ∀ t1, t2 ∈ R+, ∀ D ∈ DN .

The first axiom establishes D(t0) = D0 as the initial graph. The second axiom requires continuity of
mapping Φ (t,D) with respect to t and D which includes continuity with respect to t0 and D0. The third axiom
establishes that dynamic graph D as a one parameter graph Φ (t,D) of transformations of the space DN into
itself. Corresponding to a dynamic graph the dynamic adjacency matrix is defined as follows.

Definition 2.1. A dynamic adjacency matrix Ê is a one-parameter mapping ψ : R+ × EN → EN of the space
EN into itself satisfying the following axioms.

(i) ψ(t0, E0) = E0.

(ii) ψ(t, E) is continuous.

(iii) ψ(t2, ψ(t1, E)) = ψ(t1 + t2, E), ∀ t1, t2 ∈ R+ and ∀ E ∈ EN .

Examples.
A dynamic graph can be defined by the corresponding adjacency matrix and a few examples are given

below.
(1) Let ψ(t, E) = E, ∀ t ∈ R+, ∀ E ∈ DN

Then ψ(t0, E0) = E0 and ψ(t, E) = E is continuous ∀ t and ∀ E and

ψ(t2, ψ(t1, E)) = ψ(t2, E) = E



J. Vasundhara Devi et al. / On graph differential... 3

= ψ(t1 + t2, E)

Therefore, the dynamic graph D̂ = D for all t ∈ R+.

(2) Let ψ(t, E) = E0 ∀ t ∈ R+, ∀ E ∈ EN . Then the dynamic graph D̂ = E0 for all t ∈ R+.

(3) Let ψ(t, E) = t E0 + E, ∀ t ∈ R+, ∀ E ∈ EN and E0 be any initial adjacency matrix.
Then ψ(0, E0) = E0

and ψ(tn, E) → ψ(t0, E) whenever tn → t0
and ψ(t, En) → ψ(t, E0) whenever En → E0

Further ψ(t2, ψ(t1, E)) = ψ(t2, t1E0 + E)

= t2E0 + (t1E0 + E)

= (t1 + t2)E0 + E

= ψ(t1 + t2, E).

Therefore, the dynamic graph D̂ = tE0 +D for all t ∈ R+.
Motion of the graph. The mapping Φ(t,D) = D̂ is called the motion of the graph. The mapping ψ(t, E) is
called as the motion of the adjacency matrix Ê. A graph De satisfying Φ(t,De) = De is called as the equilibrium
graph.

In order to define the time evolution of a graph one needs the concept of a derivative in the abstract space,
we can use the theory of abstract differential equations. Introducing the concept of Frechet derivative, if it
exists on the notion of a generalized derivative we consider the time-evolution of a dynamic graph abstractly
by the equation ∆D = G(t,D) where ∆D represents the tendency of the graph to change in time t.

In order to introduce the corresponding concept in the adjacency matrices we need the following notions.

(1) The adjacency matrix Ê = E(t) is said to be continuous if the entry eij(t) is continuous for all i, j =
1, 2, . . . N.

(2) The continuous adjacency matrix Ê = E(t) is said to be differentiable if each continuous entry eij(t) is
differentiable for all i, j = 1, 2, . . . N, and is denoted by E′ = (e′ij)N×N . With the above definitions in
place we can express the corresponding changes in an adjacency matrix that evolved in time ‘t’ for a
dynamic graph by the equation

dE

dt
= F (t, E).

With the concept of rate of change of a graph with respect to time t, one can consider the differentiable
equation in the abstract space DN . Using the theory of differential equations in abstract spaces one can
study the graph differential equations.

An alternative approach that is more useful for practical purposes would be to consider the corresponding
adjacency matrix differential equation or simply the matrix differential equation.

3 Linear Matrix differential equations

In this section, we study a graph differential equation that can be expressed as a linear matrix differential
equation. Now consider a matrix differential equation (MDE) given by

E′ = F (t, E).
where F (t, E) is a N ×N matrix in which each entry fij(t) is a function of t, eij where i, j = 1, 2, . . . , N and
satisfies certain smoothness conditions.

In order to analyze the graph differential equation through the Matrix differential equation (MDE) we
first consider those equations that can be transformed to a linear system.

Consider the IVP of a MDE, corresponding to some graph differential equation, given by

E′ = F (t, E)
E(t0) = E0 = (kij)N×N

}
(3.1)
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where F : I × EN → EN is continuous, I = [t0, T ]. This means that
F (t, E) = (fij (t, e11, e12, . . . , e1N , e21, e22, . . . , e2N , . . . , eN1, eN2, . . . , eNN ))N×N and fij is a continuous, real
valued function. Suppose that fij(t) are linear combinations of the functions eij(t). Then the system (3.1) can
be written as a linear system

X ′ = AX

X(t0) = X0

}
(3.2)

where X is the vector given by

XT = [e11, e12, . . . , e1N , e21, e22, . . . , e2N , . . . , eN1, eN2, . . . , eNN ],

A is N2 ×N2 coefficient matrix and

XT
0 = [k11, k12, . . . , k1N , k21, k22, . . . , k2N , . . . , kN1, kN2, . . . , kNN ].

As the qualitative theory of the system (3.2) is well established, using it one can easily analyze the linear system
(3.2) and the corresponding graph differential equation.
Next suppose that MDE(3.2) along with its initial condition is of the form

E′ = AE

E(t0) = E0 = (kij)N×N

}
(3.3)

where A is the coefficient matrix of order N ×N . The system (3.2) can be considered as N subsystems given
by

X ′
j = AXj , Xj(t0) = kj , j = 1, 2, . . . , N (3.4)

where Xj =


e1j

e2j

...
eNj

 and Kj =


k1j

k2j

...
kNj

.

The N subsystems given by (3.4) can be completely understood through the theory of ordinary differential
systems and the corresponding graph differential equation can be analyzed.

4 Nonlinear matrix differential equation

We proceed to introduce an initial value problem of the nonlinear matrix differential equation in this section.
Further we prove some basic inequality theorems.
Consider the Matrix differential equation (MDE) given by,

E′ = F (t, E)
E(t0) = E0,

}
(4.1)

where E′ = (e′ij)N×N and F (t, E) is the matrix given by F (t, E) = (fij(t, ers)) i, j = 1, 2, . . . , N and r, s =
1, 2, . . . , N and fij are real valued functions which are nonlinear in terms of the entries ers. In order to study
the MDE (4.1) we need to devlop new notions that would help us to develop basic Matrix differential inequality
results. We begin with a Partial Order ≤.

Definition 4.1. Consider two matrices A and B of order N . We say that A ≤ B if and only if aij ≤ bij for
all i, j = 1, 2, . . . , N .

Definition 4.2. A matrix function E : I → EN defined by E(t) = (eij(t)) is said to be continuous if and only
if eij : I → R is continuous for all i, j = 1, 2, . . . , N .

Definition 4.3. A matrix function E : I → EN is said to be continuous and differentiable if and only if
eij : I → R is continuous and differentiable for all i, j = 1, 2, . . . , N .

Definition 4.4. By a solution of the IVP(4.1) we mean a matrix function E : I → EN which is continuous,
differentiable and satisfies the equation(4.1) along with the initial condition.
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In order to state the basic differential inequality theorem we introduce the following notions.

Definition 4.5. By a lower solution of the MDE(4.1) we mean a continuous differentiable matrix function
V (t) satisfying the inequalities

V ′ ≤ F (t, V ), V (t0) ≤ E0 (4.2)

Definition 4.6. By a upper solution of the MDE(4.1) we mean a continuous differentiable matrix function
W (t) satisfying the inequalities

W ′ ≥ F (t,W ), W (t0) ≥ E0 (4.3)

Definition 4.7. A function F (t, U) ∈ C[I×EN , EN ] is said to be quasi monotone nondecreasing in U for each t,
if and only if V ≤W and vmn = wmn for some m,n implies fij(t, V (t)) ≤ fij(t,W (t)) for all i, j = 1, 2, . . . , N .

The basic matrix differential inequlity results is given below.

Theorem 4.1. Assume that
V ′ ≤ F (t, V ) (4.4)

W ′ ≥ F (t,W ) (4.5)

where V,W ∈ C1[I, EN ] and F ∈ C[I × EN , EN ] and F (t, U) be quasi monotone nondecreasing in U for each t.
Further assume that V0 < W0 where V (t0) = V0 ∈ EN and W (t0) = W0 ∈ EN . Then V (t) < W (t), t ∈ I,where
I = [t0, T ] provided one of the inequalities in (4.4) and (4.5) is strict.

Proof. Assume that V ′ ≤ F (t, V ), W ′ > F (t,W ). Suppose that the conclusion does not hold. Then there
exists an element t1 ∈ I such that V (t) < W (t) for t0 < t < t1 and there exists a pair of indices k and l such
that vkl(t1) = wkl(t1). Now since F (t, U) is quasi monotone nondecreasing in U , this implies that

fij(t, V (t)) ≤ fij(t,W (t)), t ∈ I (4.6)

for i, j = 1, 2, . . . , N. Further vkl(t) < wkl(t), t0 < t < t1 and vkl(t1) = wkl(t1) implies for small h < 0, vkl(t1 +
h)− vkl(t1) < wkl(t1 + h)− wkl(t1), which further implies that

vkl(t1 + h)− vkl(t1)
h

>
wkl(t1 + h)− wkl(t1)

h

taking limit as h→ 0, we get
v′kl (t1) ≥ w′kl (t1) (4.7)

Using the inequalities (4.4), (4.5) and (4.7), yield
fkl (t1, V (t1)) ≥ v′kl (t1) ≥ w′kl (t1) > fkl (t1,W (t1)) = fkl (t1, V (t1)), which is a contradiction. Hence the
conclusion holds and the proof is complete.

Next we state and prove a theorem involving non strict inequalities in this set up.

Theorem 4.2. Suppose (4.4) and (4.5) holds and that F (t, U) is quasi monotone nondecreasing in U for each
t. Further, suppose that F satisfies,

F (t,W )− F (t, V ) ≤ L (W − V ) for W ≥ V , where L > 0 is a N ×N matrix.

Then V0 ≤W0 implies that V (t) ≤W (t), t ∈ I.

Proof. Let us define

Wε(t) = W (t) + ε e2Lt, where ε > 0 is sufficiently small.

Then W ′
ε (t) = W ′(t) + 2L ε e2 Lt

≥ F (t,W (t)) + 2L ε e2Lt

≥ F (t,W (t))− F (t,Wε(t)) + F (t,Wε(t)) + 2L ε e2Lt
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≥ −L(Wε(t)−W (t)) + F (t,Wε(t)) + 2L ε e2Lt

= F (t,Wε(t)) + L ε e2Lt

> F (t,Wε(t)).

Further, Wε(t0) = W (t0) + ε e2Lt0

> W0

≥ V0

Hence we are in a position to apply the result for strict differential inequalities which yields V (t) < Wε(t), t ∈ I
which implies as ε→ 0,

V (t) ≤W (t) and the proof is complete.

The study of existence of a solution in a sector is essential to develop the monotone iterative technique.
The following theorem deals with the existence of a solution in a sector.

Theorem 4.3. Let V,W ∈ C1 [I, EN ] be lower and upper solutions of the Matrix differential equation

E′ = F (t, E)
E(t0) = E0

}
(4.8)

such that V (t) ≤W (t) on I and F ∈ C[Ω, EN ], where
Ω = {(t, E) : V (t) ≤ E ≤W (t), t ∈ I} . Then there exists a solution E(t) of (4.8) such that

V (t) ≤ E(t) ≤W (t) on I.

Proof. Let P : I × EN → EN be defined by P (t, E) = (pij(t))N×N where
pij(t) = Max{vij(t),Min{eij , wij(t)}}

Then F (t, P ) = (fij (t, P (t, E)) defines a continuous extension of F to I × EN and is also bounded since
F is bounded on Ω, which implies that E′ is bounded on Ω. Hence the system
E′ = F (t, P (t, E)), E(t0) = E0 has a solution E(t) on I.

For ε > 0, consider
wεij

(t) = wij (t) + ε(1 + t) and vεij
(t) = vij (t)− ε(1 + t) for i, j = 1, 2, . . . , N.

We claim that Vε(t) < E(t) < Wε(t). Since vεij (0) < eij(0) < wεij (0) for any i and j we have Vε(0) <

E(0) < Wε(0). Suppose that there exists an element t1 ∈ (t0, T ] and a pair of indices k and l such that
vεkl

(t) < ekl(t) < wεkl
(t) on [t0, t1) and ekl(t1) = wεkl

(t1).
Then ekl(t1) > wkl(t1) and hence pkl(t1) = wkl(t1).
Also we have V (t1) ≤ P (t1, E(t1)) ≤W (t1).
Since F is quasi monotone nondecreasing, we have

F (t1, P (t1, E(t1))) ≤ F (t1,W (t1))

Then w′kl (t1) ≥ fkl (t1,W (t1))

≥ fkl (t1, P (t1, E(t1))

= e′kl (t1)

Since w′εkl
(t1) > w′kl (t1), we have w′εkl

(t1) > e′kl (t1), which is a contradiction to the fact that ekl (t) < wεkl
(t)

for t ∈ [t0, t1) and ekl(t1) = wεkl
(t1).

Therefore Vε(t) < E(t) < Wε(t) on I.
Now as ε→ 0, we obtain that V (t) ≤ E(t) ≤W (t) and the proof is complete.

5 Monotone iterative technique

In this section we shall construct monotone sequences that converges to the solutions of

E′ = F (t, E)
E(t0) = E0

}
(5.1)
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Theorem 5.1. Assume that V0,W0 ∈ C1[I, EN ], I = [t0, T ] are lower and upper solutions of the IVP (5.1)
such that V0 ≤ W0 on I. Let F ∈ C[I × EN , EN ]. Suppose further that F (t,X) − F (t, Y ) ≥ −M(X − Y ), for
V0 ≤ Y ≤ X ≤ W0, M ∈ RN×N ,M ≥ 0. Then there exists monotone sequences {Vn}, {Wn} such that {Vn}
converges to ρ and {Wn} converges to R as n → ∞ uniformly and monotonically on I and that ρ and R are
the minimal and maximal solutions of IVP (5.1) respectively.

Proof. For any Y ∈ C1[I, EN ] such that V0 ≤ Y ≤W0, we consider the linear Matrix differential equation

X ′ = F (t, Y )−M(X − Y ), X(t0) = X0. (5.2)

Then there exists a unique solution of (5.2) given by

X(t) = eM(t−t0)X0 +
∫ t

t0

eM(t−s)[F (s, Y (s)) +MY (s)]ds

Define a sequence {Vn} by

V ′
n = F (t, Vn−1)−M (Vn − Vn−1) , Vn(t0) = X0, n = 1, 2, . . . , (5.3)

Let V1 be the solution of (5.3) for n = 1.

Consider P = V0 − V1

Then P ′ = V ′
0 − V ′

1

≤ F (t, V0)− F (t, V0) +M (V1 − V0) ,

≤ −MP.

and P (t0) ≤ 0 which implies that P ≤ 0 on I, and thus V0 ≤ V1 on I.
Similarly, we consider a sequence {Wn} by

W ′
n = F (t,Wn−1)−M (Wn −Wn−1) ,Wn(t0) = X0 (5.4)

Let W1 be the solution of (5.4) for n = 1.

Consider Q = W1 −W0

Then Q′ = W ′
1 −W ′

0

≤ F (t,W0)−M (W1 −W0)− F (t,W0)

= −M Q

and Q (t0) ≤ 0 which implies that Q(t) ≤ 0. Hence W1 ≤W0 on I.
Now we proceed to show that V1 ≤W1 on I.

Set R = V1 −W1

Then R′ = V ′
1 −W ′

1

= F (t, V0)−M(V1 − V0)− F (t,W0) +M(W1 −W0)

≤ M (W0 − V0)−M (V1 − V0 −W1 +W0)

= −MR

and R (t0) = 0, which implies that R ≤ 0 on I and thus V1 ≤W1 on I.
Hence we have shown that V0 ≤ V1 ≤W1 ≤W0 on I.
Now suppose that for some n = k, the result Vk−1 ≤ Vk ≤Wk ≤Wk−1 holds on I. We claim that Vk ≤ Vk+1 ≤
Wk+1 ≤Wk on I. To prove this we first set n = k in (5.3) and (5.4). Then clearly there exists unique solutions
Vk+1(t) and Wk+1(t) satisfying (5.3) and (5.4) respectively on I.

Consider S = Vk − Vk+1

Then S′ = V ′
k − V ′

k+1

= F (t, Vk−1)−M(Vk − Vk−1)− F (t, Vk) +M (Vk+1 − Vk) ,
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≤ M(Vk − Vk−1) +M (Vk+1 − Vk − Vk + Vk−1) ,

≤ −MS.

and S(t0) = 0 which implies that S ≤ 0 on I and thus Vk ≤ Vk+1 on I.
Similarly we can show that Wk+1 ≤Wk on I.

Set T = Vk+1 −Wk+1

Then T ′ = V ′
k+1 −W ′

k+1

= F (t, Vk)−M(Vk+1 − Vk)− F (t,Wk) +M (Wk+1 −Wk) ,

≤ M(Wk − Vk) +M (Wk+1 −Wk − Vk+1 + Vk) ,

≤ −MT.

and T (t0) = 0, which implies that T ≤ 0 on I and thus Vk+1 ≤Wk+1 on I.
We have shown that Vk ≤ Vk+1 ≤Wk+1 ≤Wk on I.
Therefore we have

V0 ≤ V1 ≤ · · · ≤ Vn ≤Wn ≤ · · · ≤W1 ≤W0 on [t0, T ]. (5.5)

The sequences {Vn}, {Wn} are uniformly bounded on [t0, T ] and by (5.3) and (5.4) it follows that {|V ′
n|}, {|W ′

n|}
are also uniformly bounded. As a result, the sequences {Vn} and {Wn} are equicontinuous on [t0, T ] and conse-
quently by Ascoli-Arzela’s Theorem there exists subsequences {Vnk

}, {Wnk
} that converge uniformly on [t0, T ].

In view of (5.5) it also follows that the entire sequences {Vn}, {Wn} converge uniformly and monotonically to
ρ and R respectively as n→∞. By considering the integral equations corresponding to the IVP of MDE (5.3)
and (5.4) respectively, we can show that ρ and R are solutions of IVP(5.1). The proof uses the concepts of
uniform convergence and uniform continuity and is well established.
To prove that ρ,R are respectively the minimal and maximal solutions of (5.1) we have to show that if X is
any solution of (5.1) such that V0 ≤ X ≤W0 on I, then V0 ≤ ρ ≤ X ≤ R ≤W0 on I. To do this, suppose that
for some n, Vn ≤ X ≤Wn on I and set φ = X − Vn+1 so that

φ′ = F (t,X)− F (t, Vn) +M(Vn+1 − Vn)
≥ −M(X − Vn) +M(Vn+1 − Vn) = −Mφ;

and φ(t0) = 0.
Hence, it follows that Vn+1 ≤ X on I. Similarly X ≤Wn+1 on I.
Hence Vn+1 ≤ X ≤Wn+1 on I.
Since V0 ≤ X ≤ W0 on I, this proves by induction that Vn ≤ X ≤ Wn on I for all n. Taking the limit as
n→∞, we conclude that ρ ≤ X ≤ R on I and the proof is complete.

Corollary 5.1. If in addition to the assumption Theorem 5.1, if F satisfies the following condition

F (t,X)− F (t, Y ) ≤M(X − Y ), X ≥ Y

then the solution is unique.

Proof. We have ρ ≤ R on I.

Consider φ(t) = R(t)− ρ(t)

Then φ′ = R′(t)− ρ′(t)

= F (t, R)− F (t, ρ)

≤ M(R− ρ)

≤ Mφ.

and φ(t0) = 0 which implies that φ(t) ≤ 0 on I and thus R(t) ≤ ρ(t) on I. Hence ρ(t) = X(t) = R(t) on I,
and the proof is complete.
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