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Abstract

In this investigation, we prove the existence uniqueness and continuous dependence results of mild so-
lution for nonlocal fractional differential equations with state dependent delay subject to not instantaneous
impulse. We illustrate the existence result by an example involving partial derivatives.
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1 Introduction

The generalization of the theory of ordinary differential equation is a differential equation with an arbitrary
non integer order. Fractional differential equations are widely used in modeling of several fields such as
Science, Physics, Engineering and Economy due to this reason differential equations with fractional order
have received increasing attentions in recent years, see [1, 2, 3, 4, 5, 6, 7]. Fractional equations with delay
properties arise in serval fields such as biological and physical with state dependent delay or non constant
delay. Presently, existence results of mild solutions for such problems became very attractive and several
researchers are working on it. Many number of papers have been written on the fractional order problems
with state dependent delay [13, 14, 17, 18, 22, 25, 27] and references therein.

Impulsive differential equations with fractional order have gained much attention, since it is much richer in
terms of its applications. Impulsive effect exist widely in many phenomena in which their states are changed
abruptly at certain time of moments. Recently, the results of existence and uniqueness of impulsive evolution
equations in infinite dimensional spaces have been investigated by several authors [8, 9, 10, 11, 12, 15, 19, 20,
21, 23, 24, 26, 29].

Araya et al. [6] study the following problem:

Dα
t u(t) = Au(t) + tn f (t, u(t), u′(t)), t ∈ R, n ∈ Z+, 1 ≤ α ≤ 2,

and introduce the concept of α-resolvent families and then proved the existence and uniqueness results of
almost automorphism mild solution. Mophou et al. [7] established the existence and uniqueness of mild
solution of the following Cauchy problem

Dα
t x(t) = Ax(t) + tn f (t, x(t), Bx(t)), t ∈ [0, T], n ∈ Z+, x(0) = x0 + g(x).

Recently, Hernndez et al. [9] have introduced a new class of abstract impulsive differential equations for
which the impulses are not instantaneous

u′(t) = Au(t) + f (t, u(t)), t ∈ (si, ti+1], i = 0, 1, · · · , N, (1.1)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N, u(0) = x0, (1.2)
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and established the existence and uniqueness results of mild and classical solutions by using classical fixed
point theorems. In the model equation (1.1)-(1.2), the impulses start abruptly at the points ti and their ac-
tion continue on a finite time interval [ti, si]. As pointed in [9], there are many different motivations for the
study of this type of problem. For example as in [9], we note the following simplified situation concerning the
hemodynamical equilibrium of a person. In the case of a decompensation (for example, high or low levels of
glucose) one can prescribe some intravenous drugs (insulin). Since the introduction of the drugs in the blood-
stream and the consequent absorbtion for the body are gradual and continuous processes, we can interpret
this situation as an impulsive action which starts abruptly and stays active on a finite time interval.

Further, Pierri et al. [10] have extended the results of [9] by using the theory of analytic semigroup and
fractional power of closed operators and established the existence results of solutions for a class of semi-linear
abstract impulsive differential equations with not instantaneous impulses. Further, Wang et al. [12] study the
problem (1.1)-(1.2) for the cases if α ∈ (0, 1] and α = 1 with A = 0 and with periodic boundary condition
u(0) = u(T).

Kumar et al. [11] have studied the the following fractional order problem with not instantaneous impulse

CDβ
t u(t) + Au(t) = f (t, u(t), g(u(t))), t ∈ (si, ti+1], i = 0, 1, · · · , N, (1.3)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N, u(0) = u0 ∈ H, (1.4)

by using the Banach fixed point theorem with condensing map established the existence and uniqueness
results.

Motivated by the above mention works [6, 7, 8, 9], we consider the following fractional differential equa-
tion with not instantaneous impulses of the form

Dα
t u(t) = Au(t) + tn f (t, uρ(t,ut)) +

∫ t
0 q(t− s)h(s, uρ(s,us))ds, t ∈ (si, ti+1], i = 0, 1, · · · , N, (1.5)

u(t) + l(u) = φ(t), t ∈ (−∞, 0], (1.6)

u(t) = gi(t, y(t)), t ∈ (ti, si], i = 1, 2, · · · , N, (1.7)

where Dα
t is Caputo’s fractional derivative of order α ∈ (0, 1], n ∈ Z+ and J = [0, T] is operational interval.

The map A : D(A) ⊂ X → X is the a closed linear sectorial type operator defined on a Banach space (X, ‖ · ‖).
Here f , h : J ×Bh → X, q : J → X, and ρ : J ×Bh → (−∞, T] are appropriate functions and satisfied some
axioms. The functions gi ∈ C((ti, si]× X; X) for all i = 1, 2, · · · , N, is stand for impulsive conditions and 0 =
t0 = s0 < t1 ≤ s1 ≤ t2 < · · · < tN ≤ sN ≤ tN+1 = T, are pre-fixed numbers. The nonlocal condition l : X → X,
defined as l(u) = ∑r

k=1 cku(tk), where ck, k = 1, · · · , r, are given constants and 0 < t1 < t2 < · · · < tr < T. The
history function ut : (−∞, 0] → X is element of Bh and defined by ut(θ) = u(t + θ), θ ∈ (−∞, 0] respectively.
The nonlocal condition [28], u(0) + l(u) to describe, for instance, the diffusion phenomenon of a small amount
of gas in a transparent tube can give better result than using the usual local condition u(0) = u0. The Problem
(1.5)-(1.7) appears in mathematical models of viscoelasticity and other fields of science which gives the better
result using nonlocal condition.

Equation (1.5) is very important due to its appearance in mathematical modeling of viscoelasticity and
other fields of science and engineering. This fact motivate us to study the existence results of the equation
(1.5) with not instantaneous impulses and nonlocal condition. To the best of our knowledge the existence
results for the considered problem (1.5)-(1.7) in the present paper are new. This paper has four sections,
in which second section provides some basic definitions, theorems, notations and lemma. Third section is
equipped with existence results of the mild solution of the considered problem and fourth section contained
an example to verify the results.

2 Preliminaries and Definitions

Let (X, ‖ · ‖X) be a complex Banach space of functions with the norm ‖u‖X = supt∈J{|u(t)| : u ∈ X} and
L(X) denotes the Banach space of bounded linear operators from X into X equipped with its natural topology.
Due to infinite delay, we use abstract phase space Bh as defined in [15] details are as follow:

Assume that h : (−∞, 0] → (0, ∞) is a continuous functions with l =
∫ 0
−∞ h(s)ds < ∞, t ∈ (−∞, 0]. For any

a > 0, we define

B = {ψ : [−a, 0] → X such that ψ(t) is bounded and measurable},
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equipped the space B with the norm ‖ψ‖[−a,0] = sups∈[−a,0] ‖ψ(s)‖X , ∀ ψ ∈ B. Let us define

Bh = {ψ : (−∞, 0] → X, s.t. for any a ≥ c > 0, ψ |[−c,0]∈ B &
∫ 0

−∞
h(s)‖ψ‖[s,0]ds < ∞}.

If Bh is endowed with the norm ‖ψ‖Bh =
∫ 0
−∞ h(s)‖ψ‖[s,0]ds, ∀ ψ ∈ Bh, then it is clear that (Bh, ‖ · ‖Bh ) is a

complete Banach space. We consider the space

B′
h := PC((−∞, T]; X), T < ∞,

be a Banach space of all such functions u : (−∞, T] → X, which are continuous every where except for a finite
number of points ti, i = 1, 2, . . . , N, at which u(t+i ) and u(t−i ) exists and endowed with the norm

‖u‖
B

′
h

= sup{‖u(s)‖X : s ∈ [0, T]}+ ‖φ‖Bh , u ∈ B
′
h,

where ‖ · ‖B′h
to be a semi-norm in B

′
h.

For a function u ∈ B′
h and i ∈ {0, 1, ..., N}, we introduce the function ūi ∈ C([ti, ti+1]; X) given by

ūi(t) =
{

u(t), for t ∈ (ti, ti+1],
u(t+i ), for t = ti.

If u : (−∞, T] → X s.t. u ∈ B′
h then for all t ∈ J, the following conditions hold:

(C1) ut ∈ Bh.

(C2) ‖u(t)‖X ≤ H‖ut‖Bh .

(C3) ‖ut‖Bh ≤ K(t) sup{‖u(s)‖X : 0 ≤ s ≤ t} + M(t)‖φ‖Bh , where H > 0 is constant; K, M : [0, ∞) →
[0, ∞), K(·) is continuous, M(·) is locally bounded and K, M are independent of u(t).

(C4φ
) The function t→ φt is well defined and continuous from the set

<(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ [0, T]×Bh}

into Bh and there exists a continuous and bounded function Jφ : <(ρ−) → (0, ∞) such that ‖φt‖Bh ≤
Jφ(t)‖φ‖Bh for every t ∈ <(ρ−).

Lemma 2.1. ([14])Let u : (−∞, T] → X be function such that u0 = φ, u |Jk∈ C(Jk, X) and if (C4φ
) hold, then

‖us‖Bh ≤ (Mb + Jφ)‖φ‖Bh + Kb sup{‖u(θ)‖X ; θ ∈ [0, max{0, s}]}, s ∈ <(ρ−) ∪ J,

where Jφ = supt∈<(ρ−) Jφ(t), Mb = sups∈[0,T] M(s) and Kb = sups∈[0,T] K(s).

Example 2.1. [27] Let g : (−∞, 0) → R be a positive Lebesgue integrable function and assume that there exists a non-
negative and locally bounded function γ on (−∞, 0] such that g(ξ, θ) ≤ γ(ξ)g(θ) for all ξ ≤ 0 and θ ∈ (−∞, 0) \ Nξ

where Nξ ⊆ (−∞, 0) is a set with Lebesgue measure zero. The space Bh = C0 × L(g; X) consists of all classes of
functions ϕ : (−∞, 0] → X such that ϕ is continuous at zero, Lebesgue measurable and g‖ϕ‖ is Lebesgue integrable on
(−∞, 0). The seminorm in C0 × L(g; X) is defined by

‖ϕ‖Bh =
∫ 0

−∞
g(θ)‖ϕ(θ)‖dθ.

It is clear that C0 × L(g; X) is complete Banach space.

Definition 2.1 ([5]). Caputo’s derivative of order α > 0 with lower limit a, for a function f : [0, ∞) → R such
that f ∈ Cn(R+, X) is defined as

aDα
t f (t) =

1
Γ(n− α)

∫ t

a
(t− s)n−α−1 f (n)(s)ds =a Jn−α

t f (n)(t),

where a ≥ 0, n ∈ N. The Laplace transform of the Caputo derivative of order α > 0 is given as

L{0Dα
t f (t); λ} = λα f̂ (λ)−

n−1

∑
k=0

λα−k−1 f k(0); n− 1 < α ≤ n.
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Definition 2.2 ([5]). The Riemann-Liouville fractional integral operator of order α > 0 with lower limit a, for
a function f ∈ L1

loc(R+, X) is defined by

a J0
t f (t) = f (t), a Jα

t f (t) =
1

Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, α > 0, t > 0,

where a ≥ 0, n ∈ N and Γ(·) is the Euler gamma function.

Definition 2.3. A two parameter function of the Mittag-Lefller type is defined by the series expansion

Eα,β(y) =
∞

∑
k=0

yk

Γ(αk + β)
=

1
2πι

∫
c

µα−βeµ

µα − y
dµ, α, β > 0, y ∈ C,

where c is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |y| 1
α counter clockwise. The

Laplace integral of this function given by∫ ∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα −ω
, Reλ > ω

1
α , ω > 0.

For more details on the above definition one can see the monographs of I. Podlubny [5].

Definition 2.4. ([16]) A closed and linear operator A is said to be sectorial if there are constants ω ∈ R, θ ∈
[ π

2 , π], M > 0, such that the following two conditions are satisfied:

(1) ∑(θ,ω) = {λ ∈ C : λ 6= ω, |arg(λ−ω)| < θ} ⊂ ρ(A),

(2) ‖R(λ, A)‖L(X) ≤ M
|λ−ω| , λ ∈ ∑(θ,ω),

where X is the complex Banach space with norm denoted ‖.‖L(X).

Definition 2.5. ([6]) Let A be a closed and linear operator with domain D(A) defined on a Banach space X. Let
ρ(A) be the resolvent set of A, we call A is the generator of an α-resolvent family if there exists ω ≥ 0 and a
strongly continuous function Tα : R+ → L(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

(λα I − A)−1x =
∫ ∞

0
e−λtTα(t)xdt, Reλ > ω, x ∈ X.

In this case, Tα(t) is called α-resolvent family generated by A.

Definition 2.6. ([13]) Let A be a closed and linear operator with domain D(A) defined on a Banach space X
and α > 0. We say that A is the generator of a solution operator if there exists ω ≥ 0 and a strongly continuous
function Sα : R+ → L(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λα I − A)−1u =
∫ ∞

0
e−λtSα(t)udt, Reλ > ω, u ∈ X.

In this case, Sα(t) is called the solution operator generated by A.

Lemma 2.2. Consider the following Cauchy problem of order 0 < α ≤ 1

aDα
t u(t) = Au(t) + f (t), t ∈ J = [a, T], a ≥ 0, u(a) = u0, (2.8)

then a function u(t) ∈ C([a, T], R) is called the solution of the equation (2.8) if f satisfies the uniform Holder
condition with exponent β ∈ (0, 1] and A is a sectorial operator and also satisfy the following integral equation

u(t) = Sα(t− a)u0 +
∫ t

a
Tα(t− s) f (s)ds, (2.9)

where Sα(t), Tα(t) are analytic solution operator and α-resolvent family generated by A and defined as

Sα(t) =
1

2πi

∫
Γ

eλtλα−1(λα I − A)−1dλ,

Tα(t) =
1

2πi

∫
Γ

eλt(λα I − A)−1dλ,

where Γ is a suitable path lying on ∑θ,ω .
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Proof. Let t = w + a, then the problem (2.8) translated into the form

0Dα
wũ(w) = Aũ(w) + f̃ (w), ũ(0) = u0.

Now, applying the Laplace transform, we have

λαL{ũ(w)} − λα−1ũ(0) = AL{ũ(w)}+ L{ f̃ (w)}
L{ũ(w)}[λα − A] = λα−1ũ(0) + L{ f̃ (w)}. (2.10)

Since (λα I − A)−1 exists, that is λα ∈ ρ(A), from (2.10), we obtain

L{ũ(w)} = λα−1(λα I − A)−1ũ(0) + (λα I − A)−1L{ f̃ (w)}.

Therefore, by taking the inverse Laplace transformation, we have

ũ(w) = Eα,1(Awα)ũ(0) +
∫ w

0
Eα,α(A(w− τ)α) f̃ (τ)dτ. (2.11)

Putting w = t− a, in equation (2.11) then we obtain

u(t) = Eα,1(A(t− a)α)u0 +
∫ t−a

0
(t− a− τ)α−1Eα,α(A(t− a− τ)α) f (τ)dτ.

This is the same as

u(t) = Eα,1(A(t− a)α)u0 +
∫ t

a
(t− s)α−1Eα,α(A(t− s)α) f (s)ds. (2.12)

Let Sα(t) = Eα,1(Atα), and Tα(t) = tα−1Eα,α(Atα), then equation (2.12) we have

u(t) = Sα(t− a)u0 +
∫ t

a
Tα(t− s) f (s)ds.

This completes the proof of the lemma.

Now, we state the definition of mild solution based on definition 2.1 in [9].

Definition 2.7. A function u : (−∞, T] → X such that u ∈ B′
h is called a mild solution of the problem (1.5)-

(1.7) if u(0) = φ(0), u(t) = gj(t, u(t)) for t ∈ (tj, sj] and each j = 1, 2, · · · , N, satisfies the following integral
equation

u(t) =


Sα(t)(φ(0)− l(u)) +

∫ t
0 Tα(t− s)sn f (s, uρ(s,us))ds

+
∫ t

0 Tα(t− s)
∫ s

0 q(s− ξ)h(ξ, uρ(ξ,uξ))dξds, for all t ∈ [0, t1],
Sα(t− si)gi(si, u(si)) +

∫ t
si

Tα(t− s)sn f (s, uρ(s,us))ds
+

∫ t
si

Tα(t− s)
∫ s

0 q(s− ξ)h(ξ, uρ(ξ,uξ))dξds, for all t ∈ [si, ti+1],

for every i = 1, 2, · · · , N. It can be verified easily from the lemma (2.2).

3 Existence and Uniqueness Result

In this section, we prove the existence results of mild solutions for the impulsive system (1.5)-(1.7). If
A ∈ Aα(θ0, ω0), then Sα(t) ≤ Meωt and Tα(t) ≤ Ceωt(1 + tα−1). Let M̃S := sup0≤t≤T ‖Sα(t)‖L(X), M̃T :=
sup0≤t≤T Ceωt(1 + t1−α). So we have ‖Sα(t)‖L(X) ≤ M̃S, ‖Tα(t)‖L(X) ≤ tα−1M̃T .

To prove our results we shall assume the function ρ : [0, T] ×Bh → (−∞, T] is continuous and φ ∈ Bh.
If y ∈ Bh we defined ȳ : (−∞, T) → X as the extension of y to (−∞, T] such that ¯y(t) = φ. We defined ỹ :
(−∞, T) → X such that ỹ = y + x where x : (−∞, T) → X is the extension of φ ∈ Bh such that x(t) = Sα(t)φ(0)
for t ∈ J. In the sequel we introduce the following axioms:
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(H1) There exists positive constants L f , Lh, Lgi , Ll such that

‖ f (t, ϕ)− f (t, ψ)‖X ≤ L f ‖ϕ− ψ‖Bh , ‖h(t, ϕ)− h(t, ψ)‖X ≤ Lh‖ϕ− ψ‖Bh ,

‖gi(t, u)− gi(t, v)‖X ≤ Lgi‖u− v‖X , ‖l(u)− l(v)‖X ≤ Ll‖u− v‖X ,

t ∈ J, u, v ∈ X, ϕ, ψ ∈ Bh and each i = 1, 2, · · · , N.

Theorem 3.1. Let the assumption (H1) hold and the constant

∆ = c∗ +
Γ(α)n!

Γ(α + n + 1)
Tα+n M̃T L f Kb +

Tα

α
M̃Tq∗LhKb < 1,

where c∗ = max{M̃SLgi , M̃SLl} and for i = 1, 2, · · · , N. Then there exists a unique mild solution u(t) on J for
the system (1.5)-(1.7).

Proof. Let φ̄ : (−∞, T) → X be the extension of φ to (−∞, T] such that ¯φ(t) = φ(0) on J. Consider the space
B′′

h = {y ∈ B′
h : y(0) = φ(0)} and y(t) = φ(t), for t ∈ (−∞, 0] endowed with the uniform convergence

topology. Let us consider a operator P : B′′
h → B′′

h defined as Pu(0) = φ(0), Pu(t) = gi(t, ū(t)) for t ∈ (ti, si]
and

Pu(t) =


Sα(t)(φ(0)− l(ū)) +

∫ t
0 Tα(t− s)sn f (s, ūρ(s,ūs))ds

+
∫ t

0 Tα(t− s)
∫ s

0 q(s− ξ)h(ξ, ūρ(ξ,ūξ))dξds, for all t ∈ [0, t1],
Sα(t− si)gi(si, ū(si)) +

∫ t
si

Tα(t− s)sn f (s, ūρ(s,ūs))ds
+

∫ t
si

Tα(t− s)
∫ s

0 q(s− ξ)h(ξ, ūρ(ξ,ūξ))dξds, for all t ∈ [si, ti+1],

where ū : (−∞, T] → X is such that ū(0) = φ and ū = u on J. It is obvious that P is well defined. We will show
that the operator P : B′′

h → B′′
h has a fixed point. So let u(t), u∗(t) ∈ B′′

h and t ∈ [0, t1], we get

‖Pu(t)− Pu∗(t)‖X ≤ ‖Sα(t)‖L(X)‖l(ū))− l(ū∗))‖X +
∫ t

0
‖Tα(t− s)‖L(X)

×sn‖ f (s, ūρ(s,ūs))− f (s, ū∗ρ(s,ū∗s ))‖Xds +
∫ t

0
‖Tα(t− s)‖L(X)

×
∫ s

0
q(s− ξ)‖h(ξ, ūρ(ξ,ūξ))− h(ξ, ū∗ρ(ξ,ū∗ξ ))‖Xdξds

≤ M̃SLl‖u− u∗‖B′′
h
+

Γ(α)n!
Γ(α + n + 1)

Tα+n M̃T L f Kb‖u− u∗‖B′′
h

+
Tα

α
M̃Tq∗LhKb‖u− u∗‖B′′

h
.

For t ∈ [si, ti+1], we have

‖Pu(t)− u∗(t)‖X ≤ ‖Sα(t− si)‖L(X‖gi(si, ū(si))− gi(si, ū∗(si))‖X

+
∫ t

si

‖Tα(t− s)‖L(X)s
n‖ f (s, ūρ(s,ūs))− gi(si, ū∗(si))‖Xds

+
∫ t

si

‖Tα(t− s)‖L(X)

∫ s

0
q(s− ξ)‖h(ξ, ūρ(ξ,ūξ))− h(ξ, ū∗ρ(ξ,ū∗ξ))‖Xdξds

≤ M̃SLgi‖u− u∗‖B′′
h
+

Γ(α)n!
Γ(α + n + 1)

Tα+n M̃T L f Kb‖u− u∗‖B′′
h

+
Tα

α
M̃Tq∗LhKb‖u− u∗‖B′′

h
.

For t ∈ (tj, sj], we get ‖Pu(t)− u∗(t)‖X ≤ Lgj‖u− u∗‖B′′
h
, j = 1, 2, · · · , N, gathering above results, we obtain

‖Pu(t)− u∗(t)‖X ≤ ∆‖u− u∗‖B′′
h
.

Since ∆ < 1, which implies that P is a contraction map and there exists a unique fixed point which is the mild
solution of problem (1.5)-(1.7). This completes the proof of the theorem.
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4 Continuous Dependence of Mild Solutions

Theorem 4.2. Suppose that the assumptions (H1) are satisfied and the following inequalities hold:

M̃SLgi + C′Kb < 1.

Then for each φ, φ∗, let u, u∗ be the corresponding mild solutions of the system (1.5)-(1.7), then the following inequalities
hold:

‖u− u∗‖X ≤ M̃S + C′(Mb + Jφ)

1− [M̃SLl + C′Kb]
‖φ− φ∗‖, t ∈ [0, t1],

‖u− u∗‖X ≤ C′(Mb + Jφ)

1− [M̃SLgi + C′Kb]
‖φ− φ∗‖, t ∈ [si, ti+1],

for i = 1, 2, · · · , N.

Proof. Estimating for t ∈ [0, t1], we have

‖u− u∗‖X ≤ ‖Sα(t)‖L(X)(‖φ(0)− φ∗(0)‖Bh + ‖l(ū)− l(ū∗)‖X)

+
∫ t

0
‖Tα(t− s)‖L(X)s

n‖ f (s, ūρ(s,ūs))− f (s, ū∗ρ(s,ū∗s ))‖Xds

+
∫ t

0
‖Tα(t− s)‖L(X)

∫ s

0
q(s− ξ)‖h(ξ, ūρ(ξ,ūξ))− h(ξ, ū∗ρ(ξ,ū∗ξ ))‖Xdξds

≤ M̃S(‖φ− φ∗‖+ Ll‖u− u∗‖X) + (
Γ(α)n!

Γ(α + n + 1)
Tα+n M̃T L f

+
Tα

α
M̃Tq∗Lh)× ((Mb + Jφ)‖φ− φ∗‖Bh + Kb‖u− u∗‖),

‖u− u∗‖X ≤ M̃S + C′(Mb + Jφ)

1− [M̃SLl + C′Kb]
‖φ− φ∗‖,

where

C′ =
Γ(α)n!

Γ(α + n + 1)
Tα+n M̃T L f +

Tα

α
M̃Tq∗Lh. (4.13)

Similar way, when t ∈ [si, ti+1], we have

‖u− u∗‖X ≤ ‖Sα(t− si)‖L(X‖gi(si, ū(si))− gi(si, ū∗(si))‖X

+
∫ t

si

‖Tα(t− s)‖L(X)s
n‖ f (s, ūρ(s,ūs))− gi(si, ū∗(si))‖Xds

+
∫ t

si

‖Tα(t− s)‖L(X)

∫ s

0
q(s− ξ)‖h(ξ, ūρ(ξ,ūξ))− h(ξ, ū∗ρ(ξ,ū∗ξ))‖Xdξds

≤ M̃SLgi‖u− u∗‖X + (
Γ(α)n!

Γ(α + n + 1)
Tα+n M̃T L f

+
Tα

α
M̃Tq∗Lh)× ((Mb + Jφ)‖φ− φ∗‖Bh + Kb‖u− u∗‖),

‖u− u∗‖X ≤ C′(Mb + Jφ)

1− [M̃SLgi + C′Kb]
‖φ− φ∗‖,

where C′ is given in equation (4.13). This completes the proof of the theorem.
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5 Example

Consider the following nonlocal impulsive fractional partial differential equation:

∂α

∂tα
u(t, x) =

∂2

∂y2 u(t, x) +
t
9

∫ t

−∞
e2(s−t) u(s− σ1(s)σ2(‖u‖), x)

16
ds

+
∫ t

0
sin(t− s)

∫ ξ

−∞
e2(ν−ξ) u(ν− σ1(ν)σ2(‖u‖), x)

25
dνds,

(t, y) ∈ ∪N
i=1[si, ti+1]× [0, π], (5.14)

u(t, 0) = u(t, π) = 0, t ≥ 0, (5.15)

u(t, x) +
r

∑
k=1

cku(sk, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π], (5.16)

u(t, x) = Gi(t, u(t, x)), x ∈ [0, π], t ∈ (ti, si], (5.17)

where ∂α

∂tα is Caputo’s fractional derivative of order α ∈ (0, 1], 0 = t0 = s0 < t1 ≤ s1 < · · · < tN ≤ sN < tN+1 =
1 are fixed real numbers, φ ∈ Bh, and r is a positive integer, 0 < t0 < t1, · · · , < tr < 1. Let X = L2[0, π] and
define the operator A : D(A) ⊂ X → X by Aw = w′′ with the domain D(A) := {w ∈ X : w, w′ are absolutely
continuous, w′′ ∈ X, w(0) = 0 = w(π)}. Then

Aw =
∞

∑
n=1

n2(w, wn)wn, w ∈ D(A),

where wn(x) =
√

2
π sin(nx), n ∈ N is the orthogonal set of eigenvectors of A. It is well known that A is the

infinitesimal generator of an analytic semigroup (T(t))t≥0 in X and is given by

T(t)ω =
∞

∑
n=1

e−n2t(ω, ωn)ωn, for all ω ∈ X, and every t > 0.

The subordination principle of solution operator implies that A is the infinitesimal generator of a solution
operator {Sα(t)}t≥0, s.t. ‖Sα(t)‖L(X) ≤ M̃S for t ∈ [0, 1].

Let h(s) = e2s, s < 0 then l =
∫ 0
−∞ h(s)ds = 1

2 < ∞, for t ∈ (−∞, 0] and define

‖φ‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖φ(θ)‖L2 ds.

Hence for (t, φ) ∈ [0, 1]×Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π].

Set u(t)(x) = u(t, x), and ρ(t, φ) = ρ1(t)ρ2(‖φ(0)‖), we have

f (t, φ)(x) =
1
9

∫ 0

−∞
e2(s) φ

16
ds; g(t, φ)(x) =

∫ 0

−∞
e2(s) φ

25
ds,

gi(t, u)(x) = Gi(t, u(t, x)), l(u) =
r

∑
k=1

cku(sk, x),

then with these settings the equations (5.14)-(5.17) can be written in the abstract form of equations (1.5)-
(1.7). We assume that ρi : [0, ∞) → [0, ∞), i = 1, 2, are continuous functions. Now, we can see that for
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(t, φ), (t, ψ) ∈ J ×Bh, we have

‖ f (t, φ)− f (t, ψ)‖L2

=

∫ π

0

{
‖1

9

∫ 0

−∞
e2(s) φ

16
ds− 1

9

∫ 0

−∞
e2(s) ψ

16
ds‖

}2

dy

1/2

≤

∫ π

0

{
1
9

∫ 0

−∞
e2(s)‖ φ

16
− ψ

16
‖ds

}2

dy

1/2

≤

∫ π

0

{
1

144

∫ 0

−∞
e2(s) sup ‖φ− ψ‖ds

}2

dy

1/2

≤
√

π

144
‖φ− ψ‖Bh .

Similarly, ‖h(t, φ)− h(t, ψ)‖L2 ≤
√

π

25
‖φ− ψ‖Bh ,

‖l(u)− l(v)‖L2 ≤
r

∑
k=1

ck‖u− v‖L2 ,

‖gi(t, u)− gi(t, v)‖L2 ≤ LGi‖u− v‖L2 .

Hence all the function f , gi, h and l satisfy assumptions of (H1). We deduced that the system (5.14)-(5.17) has
a unique mild solution on [0, 1].
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