Malaya Journal of Matematik		O:
	$\mathcal{M J M}$ an international journal of mathematical sciences with computer applícations...	Malayz ourmal of
www.malayajournal.org		ISSN : 2319-3786

Third Hankel determinant for a subclass of analytic univalent functions

T.V. Sudharsan ${ }^{a, *}$ S.P. Vijayalakshmi ${ }^{b}$ and B. Adolf Stephen ${ }^{c}$
${ }^{a}$ Department of Mathematics, SIVET College, Chennai-600 073, Tamil Nadu, India.
${ }^{b}$ Department of Mathematics, Ethiraj College, Chennai-600 008, Tamil Nadu, India.

${ }^{c}$ Department of Mathematics, Madras Christian College, Chennai - 600 059, Tamil Nadu, India.

Abstract

This paper focuses on attaining the upper bounds on $H_{3}(1)$ for a class $C_{\alpha}^{\beta}(0 \leq \beta<1, \alpha \geq 0)$ in the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$.

Keywords: Bounded turning, coefficient bounds, convex functions, Hankel determinant, starlike functions.
2010 MSC: 30C45, 30C50.
(C) 2012 MJM. All rights reserved.

1 Introduction

Let A be the class of functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots \tag{1.1}
\end{equation*}
$$

which are analytic in $\Delta=\{z \in \mathbb{C}:|z|<1\}$.
A function $f \in A$ is said to be of bounded turning, starlike and convex respectively if and only if for $z \in \Delta$, $\operatorname{Re} f^{\prime}(z)>0, \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0$ and $\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0$. By usual notations, we denote these classes of functions respectively by R, S^{*} and C. Let $n \geq 0$ and $q \geq 1$. The $q^{t h}$ Hankel determinant is defined as:

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & \cdots & & \cdots \\
\vdots & & \vdots & \\
a_{n+q-1} & \cdots & & a_{n+2(q-1)}
\end{array}\right|
$$

This determinant has been considered by several authors. For example, Noor in [11] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for functions f given by 1.1) with bounded boundary. In particular, sharp upper bounds on $\mathrm{H}_{2}(2)$ were obtained by authors of articles [5, 6, 7, 13, 14] for different classes of functions.

The class C_{α}^{β} is defined as follows.
Definition 1.1. Let f be given by 1.1. Then $f \in C_{\alpha}^{\beta}$ if and only if

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>\beta, \quad z \in \Delta, 0 \leq \beta<1,0 \leq \alpha \leq 1
$$

The choice of $\alpha=0, \beta=0$ yields $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, z \in \Delta$, the class of convex functions $C[12]$.
The choice of $\alpha=0$, yields $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta, z \in \Delta$, the class of convex functions of order β denoted by $C(\beta)[12]$.

In the present investigation, our focus is on the Hankel determinant, $H_{3}(1)$ for the class C_{α}^{β} in Δ. By definition, $H_{3}(1)$ is given by

$$
H_{3}(1)=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
a_{2} & a_{3} & a_{4} \\
a_{3} & a_{4} & a_{5}
\end{array}\right|
$$

for $f \in A, a_{1}=1$, so that

$$
H_{3}(1)=a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)
$$

and by triangle inequality, we have

$$
\begin{equation*}
\left|H_{3}(1)\right| \leq\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{4}\right|\left|a_{2} a_{3}-a_{4}\right|+\left|a_{5}\right|\left|a_{3}-a_{2}^{2}\right| \tag{1.2}
\end{equation*}
$$

In this paper, we find the sharp upper bound for the functional $\left|a_{2} a_{3}-a_{4}\right|,\left|a_{2} a_{4}-a_{3}^{2}\right|$ and $\left|a_{3}-a_{2}^{2}\right|$ respectively for the functions belonging to the class C_{α}^{β}. Our proofs are based on the techniques employed by [8, 9] which has been widely used by many authors (see for example [5, 6, 7, 14]).

2 Preliminary Results

Let P denote the class of functions

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \tag{2.3}
\end{equation*}
$$

which are regular in Δ and satisfy $\operatorname{Re} p(z)>0, z \in \Delta$. Throughout this paper, we assume that $p(z)$ is given by (2.3) and $f(z)$ is given by 1.1 . To prove the main results we shall require the following lemmas.

Lemma 2.1. [3] Let $p \in P$. Then $\left|c_{k}\right| \leq 2, k=1,2, \ldots$ and the inequality is sharp.
Lemma 2.2. [8, 9] Let $p \in P$. Then

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2 x c_{1}\left(4-c_{1}^{2}\right)-x^{2} c_{1}\left(4-c_{1}^{2}\right)+2 y\left(1-|x|^{2}\right)\left(4-c_{1}^{2}\right) \tag{2.5}
\end{equation*}
$$

for some x, y such that $|x| \leq 1$ and $|y| \leq 1$.
Lemma 2.3. [2] Let $p \in P$. Then

$$
\left|c_{2}-\sigma \frac{c_{1}^{2}}{2}\right|= \begin{cases}2(1-\sigma) & \text { if } \sigma \leq 0 \\ 2 & \text { if } 0 \leq \sigma \leq 2 \\ 2(\sigma-1) & \text { if } \sigma \geq 2\end{cases}
$$

3 Main Results

Lemma 3.1. Let $f \in C_{\alpha}^{\beta}$. Then, we have the best possible bound for

$$
\left|a_{2} a_{3}-a_{4}\right| \leq \begin{cases}\frac{4}{9 \sqrt{3}} & \alpha=0, \beta=0 \\ \frac{(1-\beta)}{M A_{2}} \sqrt{\frac{A_{1}}{A_{2}}}\left[B_{1}+\left(4 A_{2}-A_{1}\right)\left(B_{2}+B_{3}\right)\right] & 0<\alpha \leq 1,0<\beta<1\end{cases}
$$

where,
$A_{1}=4\left(4+23 \alpha+48 \alpha^{2}+36 \alpha^{3}-\beta-2 \alpha \beta\right)$,
$A_{2}=3\left(4+20 \alpha+64 \alpha^{2}+48 \alpha^{3}+2 \beta+20 \alpha \beta-2 \beta^{2}-12 \alpha \beta^{2}\right)$,
$B_{1}=-3 \alpha+3 \beta+22 \alpha \beta-2 \beta^{2}-12 \alpha \beta^{2}+16 \alpha^{2}+12 \alpha^{3}$,
$B_{2}=3+16 \alpha+32 \alpha^{2}+24 \alpha^{3}$,
$B_{3}=1+7 \alpha+16 \alpha^{2}+12 \alpha^{3}$,
$M=48(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)$.

Proof. For $f \in C_{\alpha}^{\beta}$, there exists a $p \in P$ such that

$$
f^{\prime}(z)+z f^{\prime \prime}(z)+\alpha z^{2} f^{\prime \prime \prime}(z)+2 \alpha z f^{\prime \prime}(z)=[(1-\beta) p(z)+\beta] f^{\prime}(z) .
$$

Equating the coefficients,

$$
\begin{aligned}
a_{2} & =\frac{c_{1}(1-\beta)}{2(1+2 \alpha)}, \quad a_{3}=\frac{c_{2}(1-\beta)}{6(1+3 \alpha)}+\frac{c_{1}^{2}(1-\beta)^{2}}{6(1+2 \alpha)(1+3 \alpha)}, \\
a_{4} & =\frac{c_{3}(1-\beta)}{12(1+4 \alpha)}+\frac{c_{1} c_{2}(3+8 \alpha)(1-\beta)^{2}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{1}^{3}(1-\beta)^{3}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)^{3}}, \\
a_{5} & =\frac{1}{20(1+5 \alpha)}\left\{\frac{c_{1} c_{3}(1-\beta)^{2}(4+4 \alpha)}{3(1+2 \alpha)(1+4 \alpha)}+\frac{c_{1}^{4}(1-\beta)^{4}}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{2}^{2}(1-\beta)^{2}}{2(1+3 \alpha)}\right. \\
& \left.+\frac{c_{1}^{2} c_{2}(1-\beta)^{3}(6+20 \alpha)}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+c_{4}(1-\beta)\right\} .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
\left|a_{2} a_{3}-a_{4}\right|= & \left\lvert\, \frac{c_{1} c_{2}(1-\beta)^{2}(-1)}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{1}^{3}(1-\beta)^{3}(1+6 \alpha)}{24(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)}\right. \\
& \left.-\frac{c_{3}(1-\beta)}{12(1+4 \alpha)} \right\rvert\, \tag{3.6}
\end{align*}
$$

Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, using the Lemma 2.1. we may assume without restriction $c \in[0,2]$. Substituting for c_{2} and c_{3}, from Lemma 2.2 and applying the triangle inequality with $\rho=|x|$, we obtain

$$
\begin{aligned}
\left|a_{2} a_{3}-a_{4}\right| \leq & \frac{c^{3}(1-\beta)\left[-3 \alpha+3 \beta+22 \alpha \beta-2 \beta^{2}-12 \alpha \beta^{2}+16 \alpha^{2}+12 \alpha^{3}\right]}{48(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)} \\
& +\frac{\rho c(1-\beta)\left(4-c^{2}\right)\left(3+10 \alpha+12 \alpha^{2}-\beta\right)}{48(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)} \\
& +\frac{\rho^{2}\left(4-c^{2}\right)(1-\beta)(c-2)}{48(1+4 \alpha)}+\frac{2(1-\beta)\left(4-c^{2}\right)}{48(1+4 \alpha)} \\
= & F(\rho) .
\end{aligned}
$$

Differentiating $F(\rho)$, we get

$$
F^{\prime}(\rho)=\frac{c(1-\beta)\left(4-c^{2}\right)\left(3+10 \alpha+12 \alpha^{2}-\beta\right)}{48(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{\rho\left(4-c^{2}\right)(1-\beta)(c-2)}{24(1+4 \alpha)} .
$$

Note also that $F^{\prime}(\rho) \geq F^{\prime}(1) \geq 0$. Then there exist a $c^{*} \in[0,2]$ such that $F^{\prime}(\rho)>0$ for $c \in\left(c^{*}, 2\right]$ and $F^{\prime}(\rho) \leq 0$ otherwise.
Then, for a $c \in\left(c^{*}, 2\right], F(\rho) \leq F(1)$, that is:

$$
\begin{aligned}
\left|a_{2} a_{3}-a_{4}\right| \leq & \frac{c^{3}(1-\beta)\left[-3 \alpha+3 \beta+22 \alpha \beta-2 \beta^{2}-12 \alpha \beta^{2}+16 \alpha^{2}+12 \alpha^{3}\right]}{48(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)} \\
& +\frac{c(1-\beta)\left(4-c^{2}\right)\left(3+10 \alpha+12 \alpha^{2}-\beta\right)}{48(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)} \\
& +\frac{\left(4-c^{2}\right)(1-\beta)(c-2)}{48(1+4 \alpha)}+\frac{2(1-\beta)\left(4-c^{2}\right)}{48(1+4 \alpha)} \\
= & G(c) .
\end{aligned}
$$

If $\alpha=0, \beta=0$, we have $G(c)=\frac{c\left(4-c^{2}\right)}{12}$. By elementary calculus, we have $G^{\prime}(c)=\frac{4-3 c^{2}}{12}, G^{\prime \prime}(c)=-\frac{c}{2}<0$. Since $c \in[0,2]$ by our assumption, it follows that $G(c)$ is maximum at $c=2 / \sqrt{3}$. Otherwise, again by elementary calculus $G(c)$ is maximum at $c=\sqrt{\frac{A_{1}}{A_{2}}}$ and is given by

$$
G(c) \leq \frac{(1-\beta)}{M A_{2}} \sqrt{\frac{A_{1}}{A_{2}}}\left[B_{1}+\left(4 A_{2}-A_{1}\right)\left(B_{2}+B_{3}\right)\right]
$$

Now suppose $c \in\left[0, c^{*}\right]$, then $F(\rho) \leq F(0)$, that is:

$$
\begin{aligned}
F(\rho) & \leq \frac{c^{3}(1-\beta)\left[-3 \alpha+3 \beta+22 \alpha \beta-2 \beta^{2}-12 \alpha \beta^{2}+16 \alpha^{2}+12 \alpha^{3}\right]}{48(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)}+\frac{2(1-\beta)\left(4-c^{2}\right)}{48(1+4 \alpha)} \\
& =G(c)
\end{aligned}
$$

which implies that $G(c)$ turns at $c=0$ and $c=\frac{4(1+2 \alpha)^{2}(1+3 \alpha)}{\left[-3 \alpha+3 \beta+22 \alpha \beta-2 \beta^{2}-12 \alpha \beta^{2}+16 \alpha^{2}+12 \alpha^{3}\right]}$
with its maximum at $c=0$. That is $G(c) \leq \frac{(1-\beta)}{6(1+4 \alpha)}$.
Thus for all admissible $c \in[0,2]$, the maximum of the functional $\left|a_{2} a_{3}-a_{4}\right|$ are given by the inequalities of the theorem.
If $p(z) \in P$, with $c_{1}=2 / \sqrt{3}, c_{2}=-2 / 3$ and $c_{3}=-10 / 3 \sqrt{3}$, then we obtain $p(z)=1+\frac{2}{\sqrt{3}} z-\frac{2}{3} z^{2}-\frac{10}{3 \sqrt{3}} z^{3}+$ $\cdots \in P$ which shows that the result is sharp.
Lemma 3.2. Let $f \in C_{\alpha}^{\beta}$. Then, we have the best possible bound for

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \begin{cases}\frac{1}{8} & \alpha=0, \beta=0 \\ \frac{(1-\beta)^{2}}{N}\left[M_{1} V_{1} V_{2}+\left(4 V_{2}-V_{1}\right)\left\{M_{2} V_{1}+V_{1} P_{1}+P_{2}\right\}\right] & 0<\alpha \leq 1,0<\beta \leq 1\end{cases}
$$

where,
$M_{1}=\left[22 \alpha^{3}+31 \alpha^{2}+11 \alpha-2 \beta^{2}-5 \beta-3 \alpha \beta-8 \alpha^{2} \beta\right]$,
$M_{2}=3+118 \alpha^{2}-45 \alpha+44 \alpha^{3}-\beta-3 \alpha \beta-8 \alpha^{2} \beta$,
$P_{1}=\left(1+27 \alpha^{2}-10 \alpha\right)(1+2 \alpha)$,
$P_{2}=\left(8+48 \alpha+64 \alpha^{2}\right)(1+2 \alpha)$,
$V_{1}=2 M_{1}+8 M_{2}+8 P_{1}-2 P_{2}$,
$V_{2}=4 M_{2}+4 P_{1}$,
$N=288(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)$.
Proof. Let $f \in C_{\alpha}^{\beta}$. Then proceeding as in Lemma 3.1. we have

$$
\begin{align*}
& \left|a_{2} a_{4}-a_{3}^{2}\right|= \\
& \left\lvert\, \frac{c_{1} c_{3}(1-\beta)^{2}}{24(1+2 \alpha)(1+4 \alpha)}+\frac{c_{1}^{2} c_{2}(3+8 \alpha)(1-\beta)^{3}}{48(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)}+\frac{c_{1}^{4}(1-\beta)^{4}}{48(1+2 \alpha)^{2}(1+3 \alpha)(1+4 \alpha)}\right. \\
& \left.-\frac{c_{2}^{2}(1-\beta)^{2}}{36(1+3 \alpha)^{2}}-\frac{c_{1}^{4}(1-\beta)^{4}}{36(1+2 \alpha)^{2}(1+3 \alpha)^{2}}-\frac{2 c_{1}^{2} c_{2}(1-\beta)^{3}}{36(1+2 \alpha)(1+3 \alpha)^{2}} \right\rvert\, . \tag{3.7}
\end{align*}
$$

Suppose now that $c_{1}=c$. Since $|c|=\left|c_{1}\right| \leq 2$, Using Lemma 2.1. we may assume without restriction $c \in(0,2]$. Substituting for c_{2} and c_{3}, from Lemma 2.2 and applying triangle inequality with $\rho=|x|$, we obtain

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{144}\left\{\frac{(1-\beta)^{2} c^{4}\left[22 \alpha^{3}+23 \alpha^{2}+8 \alpha^{2}+11 \alpha-2 \beta^{2}-5 \beta-3 \alpha \beta-8 \alpha^{2} \beta\right.}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)}\right. \\
& +\frac{\rho c^{2}\left(4-c^{2}\right)(1-\beta)^{2}\left[3+118 \alpha^{2}-45 \alpha+44 \alpha^{3}-\beta-3 \alpha \beta-8 \alpha^{2} \beta\right]}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)} \\
& +\frac{\rho^{2}\left(4-c^{2}\right)(1-\beta)^{2}\left[8+c^{2}+48 \alpha+64 \alpha^{2}+27 c^{2} \alpha^{2}-10 c^{2} \alpha\right]}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)} \\
& \left.+\frac{3\left(4-c^{2}\right)(1-\rho)(1-\beta)^{2}}{(1+2 \alpha)(1+4 \alpha)}\right\} \\
& =F(\rho)
\end{aligned}
$$

Differentiating $F(\rho)$, we get,

$$
\begin{aligned}
F^{\prime}(\rho) & =\frac{1}{144}\left\{\frac{c^{2}\left(4-c^{2}\right)(1-\beta)^{2}\left[3+118 \alpha^{2}-45 \alpha+44 \alpha^{2}-\beta-3 \alpha \beta-8 \alpha^{2} \beta\right]}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)}\right. \\
& +\frac{2 \rho\left(4-c^{2}\right)(1-\beta)^{2}\left[8+c^{2}+48 \alpha+64 \alpha^{2}+27 c^{2} \alpha-10 c^{2} \alpha\right]}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)} \\
& \left.+\frac{3 \rho\left(4-c^{2}\right)(1-\beta)^{2}}{(1+2 \alpha)(1+4 \alpha)}\right\} .
\end{aligned}
$$

Note also that $F^{\prime}(\rho) \geq F^{\prime}(1) \geq 0$. Then there exist a $c^{*} \in[0,2]$ such that $F^{\prime}(\rho)>0$ for $c \in\left(c^{*}, 2\right]$ and $F^{\prime}(\rho) \leq 0$ otherwise.
Then for a $c \in\left(c^{*}, 2\right], F(\rho) \leq F(1)$, that is:

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq & \frac{1}{144}\left\{\frac{(1-\beta)^{2}\left[22 \alpha^{3}+31 \alpha^{2}+11 \alpha-2 \beta^{2}-5 \beta-3 \alpha \beta-8 \alpha^{2} \beta\right] c^{4}}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)}\right. \\
& +\frac{(1-\beta)^{2}\left[3+118 \alpha^{2}-45 \alpha+44 \alpha^{3}-\beta-3 \alpha \beta-8 \alpha^{2} \beta\right] c^{2}\left(4-c^{2}\right)}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)} \\
& \left.+\frac{(1-\beta)^{2}\left(4-c^{2}\right)\left(8+c^{2}+48 \alpha+64 \alpha^{2}+27 c^{2} \alpha^{2}-10 c^{2} \alpha\right)}{2(1+2 \alpha)(1+3 \alpha)^{2}(1+4 \alpha)}\right\} \\
= & G(c)
\end{aligned}
$$

If $\alpha=0, \beta=0$, we have $G(c)=\frac{3 c^{2}\left(4-c^{2}\right)}{2}+\frac{\left(4-c^{2}\right)\left(c^{2}+8\right)}{2}$. By elementary calculus we have, $G^{\prime}(c)=8 c-8 c^{3}$, $G^{\prime \prime}(c)=8-24 c^{2}<0$. Since $c \in(0,2]$, by our assumption it follows that $G(c)$ is maximum at $c=1$. Otherwise, again by elementary calculus $G(c)$ is maximum at $c=\sqrt{\frac{V_{1}}{V_{2}}}$ and is given by

$$
G(c) \leq \frac{(1-\beta)^{2}}{N}\left[M_{1} V_{1} V_{2}+\left(4 V_{2}-V_{1}\right)\left\{M_{2} V_{1}+V_{1} P_{1}+P_{2}\right\}\right]
$$

Now suppose $c \in\left[0, c^{*}\right]$, then $F(\rho) \leq F(0)$, that is:

$$
\begin{aligned}
F(\rho) \leq & \frac{1}{144}\left\{\frac{(1-\beta)^{2}\left[22 \alpha^{3}+31 \alpha^{2}+11 \alpha-2 \beta^{2}-5 \beta-3 \alpha \beta-8 \alpha^{2} \beta\right]}{2(1+2 \alpha)^{2}(1+3 \alpha)^{2}(1+4 \alpha)}\right. \\
& \left.+\frac{3\left(4-c^{2}\right)(1-\beta)^{2}}{(1+2 \alpha)(1+4 \alpha)}\right\} \\
= & G(c)
\end{aligned}
$$

which implies that $G(c)$ turns at $c=0$ and $c=\sqrt{\frac{\left(22 \alpha^{3}+31 \alpha^{2}+11 \alpha-2 \beta^{2}-5 \beta-3 \alpha \beta-8 \alpha^{2} \beta\right)}{3(1+2 \alpha)(1+3 \alpha)^{2}}}$, with its maximum at $c=0$. That is, $G(c) \leq \frac{12(1-\beta)^{2}}{(1+2 \alpha)(1+4 \alpha)}$.
Thus for all admissible $c \in[0,2]$, the maximum of the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ are given by the inequalities of the theorem.
If $p(z) \in P$, with $c_{1}=1, c_{2}=-1, c_{3}=-2$, then $p(z)=\frac{1-z^{2}}{1-z+z^{2}}=1+z-z^{2}-2 z^{3}+\cdots \in P$ which shows that the result is sharp.

Lemma 3.3. Let $f \in C_{\alpha}^{\beta}$. Then we have the best possible bound for

$$
\left|a_{3}-a_{2}^{2}\right| \leq \begin{cases}\frac{1}{3} & \alpha=0, \beta=0 \\ \frac{1-\beta}{3(1+3 \alpha)} & 0<\alpha \leq 1,0<\beta \leq 1\end{cases}
$$

Proof. Let $f \in C_{\alpha}^{\beta}$. Then proceeding as in Lemma 3.1. we have

$$
\begin{equation*}
\left|a_{3}-a_{2}^{2}\right|=\left|\frac{c_{2}(1-\beta)}{6(1+3 \alpha)}-\frac{c_{1}^{2}(1-\beta)^{2}(1+5 \alpha)}{12(1+2 \alpha)^{2}(1+3 \alpha)}\right| \tag{3.8}
\end{equation*}
$$

and

$$
\left|a_{3}-a_{2}^{2}\right|=\frac{(1-\beta)}{6(1+3 \alpha)}\left|c_{2}-\frac{c_{1}^{2}(1-\beta)(1+5 \alpha)}{2(1+2 \alpha)^{2}}\right|
$$

Setting $\sigma=\frac{(1-\beta)(1+5 \alpha)}{(1+2 \alpha)^{2}}$, using Lemma 2.3. we have $\left|a_{3}-a_{2}^{2}\right| \leq \frac{(1-\beta)}{3(1+3 \alpha)}$.
If $p(z) \in P$ with $c_{1}=0, c_{2}=2$, then $p(z)=\frac{1+z^{2}}{1-z^{2}}=1+2 z^{2}+2 z^{4}+\cdots \in P$, which shows that the result is sharp.

Remark 3.1. Let $f \in C_{\alpha}^{\beta}$. By Lemma 2.1. we have

$$
\begin{aligned}
\left|a_{3}\right| & =\left|\frac{c_{2}(1-\beta)}{6(1+3 \alpha)}+\frac{c_{1}^{2}(1-\beta)^{2}}{6(1+2 \alpha)(1+3 \alpha)}\right| \\
& \leq \frac{(1-\beta)(3+2 \alpha-2 \beta)}{3(1+2 \alpha)(1+3 \alpha)}, \\
\left|a_{4}\right| & =\left|\frac{c_{3}(1-\beta)}{12(1+4 \alpha)}+\frac{c_{1} c_{2}(3+8 \alpha)(1-\beta)^{2}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{1}^{3}(1-\beta)^{3}}{24(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}\right| \\
& \leq \frac{(1-\beta)\left(6+6 \alpha^{2}+2 \beta^{2}+13 \alpha-7 \beta-8 \alpha \beta\right)}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}, \\
\left|a_{5}\right| & =\left\lvert\, \frac{1}{20(1+5 \alpha)}\left\{\frac{c_{1} c_{3}(1-\beta)^{2}(4+4 \alpha)}{3(1+2 \alpha)(1+4 \alpha)}+\frac{c_{1}^{4}(1-\beta)^{4}}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+\frac{c_{2}^{2}(1-\beta)^{2}}{2(1+3 \alpha)}\right.\right. \\
& \left.\quad+\frac{c_{1}^{2} c_{2}(1-\beta)^{3}(6+20 \alpha)}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)}+c_{4}(1-\beta)\right\} \mid \\
& \frac{(1-\beta)\left(120+408 \alpha^{2}+500 \alpha-576 \alpha \beta-432 \alpha^{2} \beta+160 \alpha \beta^{2}+188 \beta+96 \beta^{2}\right)}{120(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)}
\end{aligned}
$$

This leads to the next theorem which gives a sharp result by using Lemmas 3.13.2 and 3.3 and Remark 3.1
Theorem 3.1. Let $f \in C_{\alpha}^{\beta}$. Then

$$
\begin{aligned}
\left|H_{3}(1)\right| \leq & \frac{(1-\beta)^{2}(3+2 \alpha-2 \beta)}{3(1+2 \alpha)(1+3 \alpha)} \\
& \quad\left\{\frac{(1-\beta)^{2}}{N}\left[M_{1} V_{1} V_{2}+\left(4 V_{2}-V_{1}\right)\left\{M_{2} V_{1}+V_{1} P_{1}+P_{2}\right\}\right]\right\} \\
+ & \frac{(1-\beta)\left(6+6 \alpha^{2}+2 \beta^{3}+13 \alpha-7 \beta-8 \alpha \beta\right)}{6(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)} \\
& \quad\left\{\frac{(1-\beta)}{M A_{2}} \sqrt{\left.\frac{A_{1}}{A_{2}}\left[B_{1}+\left(4 A_{2}-A_{1}\right)\left(B_{2}+B_{3}\right)\right]\right\}}\right. \\
+ & \frac{(1-\beta)\left(120+408 \alpha^{2}+500 \alpha-576 \alpha \beta-432 \alpha^{2} \beta+160 \alpha \beta^{2}+188 \beta+96 \beta^{2}\right)}{120(1+2 \alpha)(1+3 \alpha)(1+4 \alpha)(1+5 \alpha)} \\
& \quad \times \frac{(1-\beta)}{3(1+3 \alpha)} .
\end{aligned}
$$

When $\alpha=0, \beta=0$, we have the following corollary due to [1].
Corollary 3.1. If $\alpha=0, \beta=0$, then

$$
\left|H_{3}(1)\right| \leq \frac{32+33 \sqrt{3}}{72 \sqrt{3}}=0.714933452973167
$$

4 Acknowledgement

The authors thank the referees for their valuable comments and suggestions to improve the presentation of the paper.

References

[1] K.O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, S.S. Dragomir and J.Y. Cho, Editors, Nova Science Publishers, 6(2010), 1-7.
[2] K.O. Babalola and T.O. Opoola, On the coefficients of certain analytic and univalent functions, Advances in Inequalities for Series, (Edited by S.S. Dragomir and A. Sofo), Nova Science Publishers, (2006), 5-17.
[3] P.L. Duren, Univalent Functions, Springer Verlag, New York Inc, 1983.
[4] R.M. Goel and B.S. Mehrok, A class of univalent functions, J. Austral. Math. Soc., (Series A), 35(1983), 1-17.
[5] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. Journal of Math. Analysis, 4(52)(2010), 2473-2585.
[6] A. Janteng, S.A. Halim and M. Darus, Estimate on the second Hankel functional for functions whose derivative has a positive real part, Journal of Quality Measurement and Analysis, 4(1)(2008), 189-195.
[7] N. Kharudin, A. Akbarally, D. Mohamad and S.C. Soh, The second Hankel determinant for the class of close to convex functions, European Journal of Scientific Research, 66(3)(2011), 421-427.
[8] R.J. Libera and E.J. Zlotkiewiez, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.
[9] R.J. Libera and E.J. Zlotkiewiez, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251-257.
[10] T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532-537.
[11] K.I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(c)(1983), 731-739.
[12] M.S. Robertson, On the theory of univalent functions, Annals of Math., 37(1936), 374-408.
[13] C. Selvaraj and N. Vasanthi, Coefficient bounds for certain subclasses of close-to-convex functions, Int. Journal of Math. Analysis, 4(37)(2010), 1807-1814.
[14] G. Shanmugam, B. Adolf Stephen and K.G. Subramanian, Second Hankel determinant for certain classes of analytic functions, Bonfring International Journal of Data Mining, 2(2) (2012), 57-60.

Received: March 05, 2014; Accepted: July 05, 2014

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

