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Third Hankel determinant for a subclass of analytic univalent functions
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Abstract

This paper focuses on attaining the upper bounds on H3(1) for a class Cβ
α (0 ≤ β < 1, α ≥ 0) in the unit

disk ∆ = {z ∈ C : |z| < 1}.
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1 Introduction

Let A be the class of functions
f (z) = z + a2z2 + . . . (1.1)

which are analytic in ∆ = {z ∈ C : |z| < 1}.
A function f ∈ A is said to be of bounded turning, starlike and convex respectively if and only if for z ∈ ∆,

Re f ′(z) > 0, Re z f ′(z)
f (z) > 0 and Re

(
1 + z f ′′(z)

f ′(z)

)
> 0. By usual notations, we denote these classes of functions

respectively by R, S∗ and C. Let n ≥ 0 and q ≥ 1. The qth Hankel determinant is defined as:

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 . . . . . .
...

...
an+q−1 . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣
.

This determinant has been considered by several authors. For example, Noor in [11] determined the rate
of growth of Hq(n) as n → ∞ for functions f given by (1.1) with bounded boundary. In particular, sharp upper
bounds on H2(2) were obtained by authors of articles [5, 6, 7, 13, 14] for different classes of functions.

The class Cβ
α is defined as follows.

Definition 1.1. Let f be given by (1.1). Then f ∈ Cβ
α if and only if

Re
{

(z f ′(z) + αz2 f ′′(z))′

f ′(z)

}
> β, z ∈ ∆, 0 ≤ β < 1, 0 ≤ α ≤ 1.

The choice of α = 0, β = 0 yields Re
{

1 + z f ′′(z)
f ′(z)

}
> 0, z ∈ ∆, the class of convex functions C [12].

The choice of α = 0, yields Re
{

1 + z f ′′(z)
f ′(z)

}
> β, z ∈ ∆, the class of convex functions of order β denoted by C(β) [12].
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In the present investigation, our focus is on the Hankel determinant, H3(1) for the class Cβ
α in ∆. By

definition, H3(1) is given by

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
for f ∈ A, a1 = 1, so that

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2)

and by triangle inequality, we have

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a2a3 − a4|+ |a5||a3 − a2

2|. (1.2)

In this paper, we find the sharp upper bound for the functional |a2a3 − a4|, |a2a4 − a2
3| and |a3 − a2

2| respec-
tively for the functions belonging to the class Cβ

α . Our proofs are based on the techniques employed by [8, 9]
which has been widely used by many authors (see for example [5, 6, 7, 14]).

2 Preliminary Results

Let P denote the class of functions

p(z) = 1 + c1z + c2z2 + · · · (2.3)

which are regular in ∆ and satisfy Re p(z) > 0, z ∈ ∆. Throughout this paper, we assume that p(z) is given by
(2.3) and f (z) is given by (1.1). To prove the main results we shall require the following lemmas.

Lemma 2.1. [3] Let p ∈ P. Then |ck| ≤ 2, k = 1, 2, . . . and the inequality is sharp.

Lemma 2.2. [8, 9] Let p ∈ P. Then
2c2 = c2

1 + x(4− c2
1) (2.4)

and
4c3 = c3

1 + 2xc1(4− c2
1)− x2c1(4− c2

1) + 2y(1− |x|2)(4− c2
1) (2.5)

for some x, y such that |x| ≤ 1 and |y| ≤ 1.

Lemma 2.3. [2] Let p ∈ P. Then

∣∣∣∣∣c2 − σ
c2

1
2

∣∣∣∣∣ =


2(1− σ) if σ ≤ 0,

2 if 0 ≤ σ ≤ 2,

2(σ − 1) if σ ≥ 2.

3 Main Results

Lemma 3.1. Let f ∈ Cβ
α . Then, we have the best possible bound for

|a2a3 − a4| ≤


4

9
√

3
α = 0, β = 0

(1−β)
MA2

√
A1
A2

[B1 + (4A2 − A1)(B2 + B3)] 0 < α ≤ 1, 0 < β < 1,

where,
A1 = 4(4 + 23α + 48α2 + 36α3 − β− 2αβ),
A2 = 3(4 + 20α + 64α2 + 48α3 + 2β + 20αβ− 2β2 − 12αβ2),
B1 = −3α + 3β + 22αβ− 2β2 − 12αβ2 + 16α2 + 12α3,
B2 = 3 + 16α + 32α2 + 24α3,
B3 = 1 + 7α + 16α2 + 12α3,
M = 48(1 + 2α)2(1 + 3α)(1 + 4α).
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Proof. For f ∈ Cβ
α , there exists a p ∈ P such that

f ′(z) + z f ′′(z) + αz2 f ′′′(z) + 2αz f ′′(z) = [(1− β)p(z) + β] f ′(z).

Equating the coefficients,

a2 =
c1(1− β)
2(1 + 2α)

, a3 =
c2(1− β)
6(1 + 3α)

+
c2

1(1− β)2

6(1 + 2α)(1 + 3α)
,

a4 =
c3(1− β)

12(1 + 4α)
+

c1c2(3 + 8α)(1− β)2

24(1 + 2α)(1 + 3α)(1 + 4α)
+

c3
1(1− β)3

24(1 + 2α)(1 + 3α)(1 + 4α)
,

a5 =
1

20(1 + 5α)

{
c1c3(1− β)2(4 + 4α)

3(1 + 2α)(1 + 4α)
+

c4
1(1− β)4

6(1 + 2α)(1 + 3α)(1 + 4α)
+

c2
2(1− β)2

2(1 + 3α)

+
c2

1c2(1− β)3(6 + 20α)
6(1 + 2α)(1 + 3α)(1 + 4α)

+ c4(1− β)

}
.

Thus, we have

|a2a3 − a4| =

∣∣∣∣∣ c1c2(1− β)2(−1)
24(1 + 2α)(1 + 3α)(1 + 4α)

+
c3

1(1− β)3(1 + 6α)
24(1 + 2α)2(1 + 3α)(1 + 4α)

− c3(1− β)
12(1 + 4α)

∣∣∣∣ (3.6)

Suppose now that c1 = c. Since |c| = |c1| ≤ 2 ,using the Lemma 2.1, we may assume without restriction
c ∈ [0, 2]. Substituting for c2 and c3, from Lemma 2.2 and applying the triangle inequality with ρ = |x|, we
obtain

|a2a3 − a4| ≤
c3(1− β)[−3α + 3β + 22αβ− 2β2 − 12αβ2 + 16α2 + 12α3]

48(1 + 2α)2(1 + 3α)(1 + 4α)

+
ρc(1− β)(4− c2)(3 + 10α + 12α2 − β)

48(1 + 2α)(1 + 3α)(1 + 4α)

+
ρ2(4− c2)(1− β)(c− 2)

48(1 + 4α)
+

2(1− β)(4− c2)
48(1 + 4α)

= F(ρ).

Differentiating F(ρ), we get

F′(ρ) =
c(1− β)(4− c2)(3 + 10α + 12α2 − β)

48(1 + 2α)(1 + 3α)(1 + 4α)
+

ρ(4− c2)(1− β)(c− 2)
24(1 + 4α)

.

Note also that F′(ρ) ≥ F′(1) ≥ 0. Then there exist a c∗ ∈ [0, 2] such that F′(ρ) > 0 for c ∈ (c∗, 2] and F′(ρ) ≤ 0
otherwise.
Then, for a c ∈ (c∗, 2], F(ρ) ≤ F(1), that is:

|a2a3 − a4| ≤
c3(1− β)[−3α + 3β + 22αβ− 2β2 − 12αβ2 + 16α2 + 12α3]

48(1 + 2α)2(1 + 3α)(1 + 4α)

+
c(1− β)(4− c2)(3 + 10α + 12α2 − β)

48(1 + 2α)(1 + 3α)(1 + 4α)

+
(4− c2)(1− β)(c− 2)

48(1 + 4α)
+

2(1− β)(4− c2)
48(1 + 4α)

= G(c).

If α = 0, β = 0, we have G(c) = c(4−c2)
12 . By elementary calculus, we have G′(c) = 4−3c2

12 , G′′(c) = − c
2 < 0. Since

c ∈ [0, 2] by our assumption, it follows that G(c) is maximum at c = 2/
√

3. Otherwise, again by elementary

calculus G(c) is maximum at c =
√

A1
A2

and is given by

G(c) ≤ (1− β)
MA2

√
A1

A2
[B1 + (4A2 − A1)(B2 + B3)]
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Now suppose c ∈ [0, c∗], then F(ρ) ≤ F(0), that is:

F(ρ) ≤ c3(1− β)[−3α + 3β + 22αβ− 2β2 − 12αβ2 + 16α2 + 12α3]
48(1 + 2α)2(1 + 3α)(1 + 4α)

+
2(1− β)(4− c2)

48(1 + 4α)

= G(c),

which implies that G(c) turns at c = 0 and c = 4(1+2α)2(1+3α)
[−3α+3β+22αβ−2β2−12αβ2+16α2+12α3]

with its maximum at c = 0. That is G(c) ≤ (1−β)
6(1+4α) .

Thus for all admissible c ∈ [0, 2], the maximum of the functional |a2a3 − a4| are given by the inequalities of the
theorem.
If p(z) ∈ P, with c1 = 2/

√
3, c2 = −2/3 and c3 = −10/3

√
3, then we obtain p(z) = 1 + 2√

3
z − 2

3 z2 − 10
3
√

3
z3 +

· · · ∈ P which shows that the result is sharp.

Lemma 3.2. Let f ∈ Cβ
α . Then ,we have the best possible bound for

|a2a4 − a2
3| ≤


1
8 α = 0, β = 0

(1−β)2

N [M1V1V2 + (4V2 −V1){M2V1 + V1P1 + P2}] 0 < α ≤ 1, 0 < β ≤ 1,

where,
M1 = [22α3 + 31α2 + 11α− 2β2 − 5β− 3αβ− 8α2β],
M2 = 3 + 118α2 − 45α + 44α3 − β− 3αβ− 8α2β,
P1 = (1 + 27α2 − 10α)(1 + 2α),
P2 = (8 + 48α + 64α2)(1 + 2α),
V1 = 2M1 + 8M2 + 8P1 − 2P2,
V2 = 4M2 + 4P1,
N = 288(1 + 2α)2(1 + 3α)2(1 + 4α).

Proof. Let f ∈ Cβ
α . Then proceeding as in Lemma 3.1, we have

|a2a4 − a2
3| =∣∣∣∣∣ c1c3(1− β)2

24(1 + 2α)(1 + 4α)
+

c2
1c2(3 + 8α)(1− β)3

48(1 + 2α)2(1 + 3α)(1 + 4α)
+

c4
1(1− β)4

48(1 + 2α)2(1 + 3α)(1 + 4α)

−
c2

2(1− β)2

36(1 + 3α)2 −
c4

1(1− β)4

36(1 + 2α)2(1 + 3α)2 −
2c2

1c2(1− β)3

36(1 + 2α)(1 + 3α)2

∣∣∣∣∣ . (3.7)

Suppose now that c1 = c. Since |c| = |c1| ≤ 2, Using Lemma 2.1, we may assume without restriction c ∈ (0, 2].
Substituting for c2 and c3, from Lemma 2.2 and applying triangle inequality with ρ = |x|, we obtain

|a2a4 − a2
3| ≤

1
144

{
(1− β)2c4[22α3 + 23α2 + 8α2 + 11α− 2β2 − 5β− 3αβ− 8α2β

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
ρc2(4− c2)(1− β)2[3 + 118α2 − 45α + 44α3 − β− 3αβ− 8α2β]

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
ρ2(4− c2)(1− β)2[8 + c2 + 48α + 64α2 + 27c2α2 − 10c2α]

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
3(4− c2)(1− ρ)(1− β)2

(1 + 2α)(1 + 4α)

}
= F(ρ).

Differentiating F(ρ), we get,

F′(ρ) =
1

144

{
c2(4− c2)(1− β)2[3 + 118α2 − 45α + 44α2 − β− 3αβ− 8α2β]

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
2ρ(4− c2)(1− β)2[8 + c2 + 48α + 64α2 + 27c2α− 10c2α]

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
3ρ(4− c2)(1− β)2

(1 + 2α)(1 + 4α)

}
.
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Note also that F′(ρ) ≥ F′(1) ≥ 0. Then there exist a c∗ ∈ [0, 2] such that F′(ρ) > 0 for c ∈ (c∗, 2] and F′(ρ) ≤ 0
otherwise.
Then for a c ∈ (c∗, 2], F(ρ) ≤ F(1), that is:

|a2a4 − a2
3| ≤

1
144

{
(1− β)2[22α3 + 31α2 + 11α− 2β2 − 5β− 3αβ− 8α2β]c4

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
(1− β)2[3 + 118α2 − 45α + 44α3 − β− 3αβ− 8α2β]c2(4− c2)

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
(1− β)2(4− c2)(8 + c2 + 48α + 64α2 + 27c2α2 − 10c2α)

2(1 + 2α)(1 + 3α)2(1 + 4α)

}
= G(c).

If α = 0, β = 0, we have G(c) = 3c2(4−c2)
2 + (4−c2)(c2+8)

2 . By elementary calculus we have, G′(c) = 8c − 8c3,
G′′(c) = 8− 24c2 < 0. Since c ∈ (0, 2], by our assumption it follows that G(c) is maximum at c = 1. Otherwise,

again by elementary calculus G(c) is maximum at c =
√

V1
V2

and is given by

G(c) ≤ (1− β)2

N
[M1V1V2 + (4V2 −V1){M2V1 + V1P1 + P2}].

Now suppose c ∈ [0, c∗], then F(ρ) ≤ F(0), that is:

F(ρ) ≤ 1
144

{
(1− β)2[22α3 + 31α2 + 11α− 2β2 − 5β− 3αβ− 8α2β]

2(1 + 2α)2(1 + 3α)2(1 + 4α)

+
3(4− c2)(1− β)2

(1 + 2α)(1 + 4α)

}
= G(c),

which implies that G(c) turns at c = 0 and c =
√

(22α3+31α2+11α−2β2−5β−3αβ−8α2β)
3(1+2α)(1+3α)2 ,

with its maximum at c = 0. That is, G(c) ≤ 12(1−β)2

(1+2α)(1+4α) .

Thus for all admissible c ∈ [0, 2], the maximum of the functional |a2a4 − a2
3| are given by the inequalities of the

theorem.
If p(z) ∈ P, with c1 = 1, c2 = −1, c3 = −2, then p(z) = 1−z2

1−z+z2 = 1 + z − z2 − 2z3 + · · · ∈ P which shows that
the result is sharp.

Lemma 3.3. Let f ∈ Cβ
α . Then we have the best possible bound for

|a3 − a2
2| ≤

{
1
3 α = 0, β = 0

1−β
3(1+3α) 0 < α ≤ 1, 0 < β ≤ 1.

Proof. Let f ∈ Cβ
α . Then proceeding as in Lemma 3.1, we have

|a3 − a2
2| =

∣∣∣∣∣ c2(1− β)
6(1 + 3α)

−
c2

1(1− β)2(1 + 5α)
12(1 + 2α)2(1 + 3α)

∣∣∣∣∣ (3.8)

and

|a3 − a2
2| =

(1− β)
6(1 + 3α)

∣∣∣∣∣c2 −
c2

1(1− β)(1 + 5α)
2(1 + 2α)2

∣∣∣∣∣ .

Setting σ = (1−β)(1+5α)
(1+2α)2 , using Lemma 2.3, we have |a3 − a2

2| ≤
(1−β)

3(1+3α) .

If p(z) ∈ P with c1 = 0, c2 = 2, then p(z) = 1+z2

1−z2 = 1 + 2z2 + 2z4 + · · · ∈ P, which shows that the result is
sharp.
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Remark 3.1. Let f ∈ Cβ
α . By Lemma 2.1, we have

|a3| =

∣∣∣∣∣ c2(1− β)
6(1 + 3α)

+
c2

1(1− β)2

6(1 + 2α)(1 + 3α)

∣∣∣∣∣ ,

≤ (1− β)(3 + 2α− 2β)
3(1 + 2α)(1 + 3α)

,

|a4| =

∣∣∣∣∣ c3(1− β)
12(1 + 4α)

+
c1c2(3 + 8α)(1− β)2

24(1 + 2α)(1 + 3α)(1 + 4α)
+

c3
1(1− β)3

24(1 + 2α)(1 + 3α)(1 + 4α)

∣∣∣∣∣ ,

≤ (1− β)(6 + 6α2 + 2β2 + 13α− 7β− 8αβ)
6(1 + 2α)(1 + 3α)(1 + 4α)

,

|a5| =

∣∣∣∣∣ 1
20(1 + 5α)

{
c1c3(1− β)2(4 + 4α)

3(1 + 2α)(1 + 4α)
+

c4
1(1− β)4

6(1 + 2α)(1 + 3α)(1 + 4α)
+

c2
2(1− β)2

2(1 + 3α)

+
c2

1c2(1− β)3(6 + 20α)
6(1 + 2α)(1 + 3α)(1 + 4α)

+ c4(1− β)

}∣∣∣∣∣
≤ (1− β)(120 + 408α2 + 500α− 576αβ− 432α2β + 160αβ2 + 188β + 96β2)

120(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)
.

This leads to the next theorem which gives a sharp result by using Lemmas 3.1,3.2 and 3.3 and Remark 3.1.

Theorem 3.1. Let f ∈ Cβ
α . Then

|H3(1)| ≤ (1− β)2(3 + 2α− 2β)
3(1 + 2α)(1 + 3α){

(1− β)2

N
[M1V1V2 + (4V2 −V1){M2V1 + V1P1 + P2}]

}
+

(1− β)(6 + 6α2 + 2β3 + 13α− 7β− 8αβ)
6(1 + 2α)(1 + 3α)(1 + 4α){

(1− β)
MA2

√
A1

A2
[B1 + (4A2 − A1)(B2 + B3)]

}

+
(1− β)(120 + 408α2 + 500α− 576αβ− 432α2β + 160αβ2 + 188β + 96β2)

120(1 + 2α)(1 + 3α)(1 + 4α)(1 + 5α)

× (1− β)
3(1 + 3α)

.

When α = 0, β = 0, we have the following corollary due to [1].

Corollary 3.1. If α = 0, β = 0, then

|H3(1)| ≤ 32 + 33
√

3
72
√

3
= 0.714933452973167.
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