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1 Introduction

In 1938, A.M. Ostrowski proved an interesting integral inequality, estimating the absolute value of the
derivative of a differentiable function by its integral mean as follows

Theorem 1.1. [13] Let f : I — R, where I C R is an interval, be a mappingin the interior 1°of I, and a, b € I°, with
a <b.

If | f'| < Mforall x € [a,b], then

] L (-
f(x)—bia/f(t)dt SM@b-a) |3+~ |, Vrclah (1)

This is well-know Ostrowski inequality.In recent years, a number of authors have written about general-
izations,extensions and variants of such inequalities (see [1} 2, 3]).
Let us recall definitions of some kinds of convexity as follows.

Definition 1.1. Wesay that f : I C R — R (I # ¢) is convex function if the inequality
flx+(1=8y) <tf(x)+ (1 -1f(y) (1.2)
holds for all x,y € I, and t € [0,1].
Definition 1.2. [7] We say that f : I C R — R (I # ¢) is P- function if f is non-negative and the inequality
flix+(1=t)y) < fx)+ f(y) (1.3)

holds for all x,y € I, and t € [0,1].
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Definition 1.3. [8] We say that f : [0,00) — R is s-convex function in the second sense, if the inequality

fltx+ (1 =t)y) <Ef(x)+ (1 -1)°f(y) (1.4)
holds for all x,y € (0,b], t € [0,1] and for fixed s € (0,1]

Definition 1.4. [15] Let hh : ] C R — RR,be a positive function.We say that f : I C R — R (I # ¢) is h-convex
function,
if f is non-negative and
flix+ (1 =ty) <h(t)f(x) +h(1=1)f(y) (1.5)
holds for all x,y € Iand t € [0,1].

Definition 1.5. [17] We say that f : [0,b] — R (0 < b) is said to be m—convex, where m € (0,1] and b > 0,
if for every x,y € [0,b] and t € [0,1], we have

fltx+m(1=-Hy) <tf(x)+m1—1) f(y) (1.6)

Definition 1.6. [12] We say that f : [0,b] — R (0 < b) is said to be (s, m) —convex, where (s,m) € (0,1)* and b > 0
if for every x,y € [0,b] and t € [0,1], we have

fltx+m(1-Hy) <Ef(x)+m(1-1)f(y) (1.7)

Definition 1.7. Let f € L [a, b] . The Riemann-Liouville integrals |7, f(x), J;- f(x) of order & > O,with a > 0
are defined by

X

% f(x) = r(l,x) / (x—)*LF()dt, x>a (1.8)
1 b
Jef(x) = T )/(t—x)“*lf(t)dt, x<b (1.9)
and |2, f(x) = J§ f(x) = f(x)
where .
F(a)= [eft* Lt (1.10)
!
noting also
1
_ [ w1, DO (y)
B(x,y)= {t (1—t)Y " dt = Tty (1.11)

Motivated by the recent results given in [1} 2} [6] O], in the present paper, we provide some companions
of Ostrowski type inequalities involving Riemann — Liouville fractional integrals for functions whose second
derivatives absolute value are h-convex.

2 OSTROWSKI TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS

In order to prove our main results we need the following identity.

Lemma 2.1. Let f : [a,b] — R be a twice differentiable mapping on (a,b) with a < b.If f" € Ly [a,b] then the
following equaliy for fractional integrals holds for any x € [a, ]

1 1
Lo(x) = (x —a)*™ (b — x)**1 { AL (b + (1 —t)a)di+ (x — b /t"‘“f” (tx+ (1—1)b) dt]
0

0
2.12)
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where
La(®) = (a+1) (b—x)* (x =) (b—a) f(x) = T( +2) [(b =)™ J2 fa) + (x =) J2 ()] (213)

Proof. We have

@ = g [ -0 fo .14

1 " (x_a)thrl / X (t_a)szrl .
Tat1) [(x—a) f(x) - [Mf (x)—/ﬁf (t)dt”

a

{(a +1) (x —a)* f(x) — (x — )" f(x) + / (t—a)**! f”(t)dt] ,

a

I'a+2)

multiplying both side of (2.14) by T'(a +2) (b — x)**!, we get

(@+1)(b—x)* (x —a)* f(x) — (b—x)* T (x —a)"™ f/(x)+
Ia+2)(b- X)1X+1 ];‘*f(a) = (b— x)zx+1 (x — a)a+2 }t’“'lf” (tx + (1 —t)a) dt (2.15)
0
And
o
RSO = [ -0 o 2.16)
b
1 (b_x)lx (b_t)“ /
T T) [ x )+/ - f(t)dt]
_ )l b a+1
- F(oci—l) [(bx)“f(xH [(bai)l £ )*/(bo‘f1 f”(t)dt”
[ b
= F(ocl—i—Z) (a+1) (b—2)" f(x) + (b —2)* f/(x) + / (b—)**! f”(t)dt] ,
- x )
= r(aiz) ((X—f—l) (b—x)"‘f(x)+(b_x>0<+1fl(x)+<b_x)0(+2/ttx+1fl/ (tx+(1—t) b)dt]
0

multiplying both side of by I'(a +2)(x — a)**!, we get
) (a+1) (x = a)* "1 (b= 0)" F(x) + (x =) (b= 2)"* f/(x)+
a+l qa _
F(DC + 2) (x - a) ]J(*f(b) - (X _ a)tx+1 (b _ x)tx-‘rZ }‘taﬁ—lf// (tx + (1 _ f) b) dt (2 17)
0

Summing and (2.17), we obtain
T(a+2) (b—x)" " 3 f(a) + T(a+2) (x —a)* "1 L f(b) =
(a+1)(b—a)(x—a)* (b—x)" f(x)+

1 1
(x—a)* (b —x)** | ( [ /t““f“ (tx+ (1 —t)a)dt+ (b —x /t““f” (tx+ (1 —t)b) dt] (2.18)
0 0
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we can rewrite (2.18) as follows

(a+1) (b —a) (x = a)* (b= )" f(x) = [[(&+2) (b= x)* T J& f(a) + T +2) (x = a)* 1 J2 (1)

1 1

= (x — )" (b — x)*H! [(a —x) / P (b 4+ (1 — t) a) dt + (x — b) / FELE (fx 4 (1 — £) b) dt] (2.19)

0 0

thus (2.19) implies (2.12). O

Theorem 2.1. Let f : I — R be a twice differentiable mapping on I° such that |f"| € Ly [a,b], where a,b € I, with
a<b.
If | f"| is convex function on [a,b], and f" is bounded,i.e., || f"| = sup |f"’| < ocofor any x € [a,b] then the
x€(a,b]
following inequality holds
(x — a)a+1 (b — x)lwl (b — a) Hf//H
(a+2) *

|Ly(x)| < (2.20)

Proof. By lemma and Under the given assumptions on f” we have

Lo (x)| =

1 1
(x —a)*™ (b — x)** [(11 —x) /t"‘“f” (tx + (1 —t)a)dt+ (x —b) /t““f” (tx +(1—1t)b) dt]

0 0

< (.X _ a)tx+1 (b _ x)ﬂHr]
1 1
y {(x—a) /t“+1(t (0| + (1= 6) | f" (@) )dt + (b x) /t“H )|+ (- 1) \f”(b)\)dt]
0 0

1
Hf//H a+l (b— x)l’é“rl (b —X4x— 11) /t““dt
0

= (a +2) ||fUHoo
O

Remark 2.1. Under the same hypotheses of Theorem 2.1|at the exception of the convexity of f"the inequality (2.20)
remains valid.

Corollary 2.1. With the assumptions in Theorem in the case where & = 1,0ne has the inequality

‘ﬂ“;b e 7f(t)dt <D @21)
a
Proof. Choose x = “zih and &« = 1in (2.9), we get
AL L /f | < L2027 2)
dividing both side of by @ we obtain (2.21). O

Remark 2.2. The inequality (2.21) is obtained in [9], choose x = # in theorem 2.2.
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Corollary 2.2. With the assumptions in Theorem 2.1} in the case where & = 1,0ne has the inequality.

U= (2.23)

O 4 p(esty 1
) /

Proof. Apply Theorem a faith on the interval [ a, %} taking & = 1in (2.9), and replace x by %42, we get

bia
2

(b—a)® 3a+b 2 / (b— "
16 f 4 ) b—a fnar| < 1536 Hf les @24)
a
implies
b+11

3a + b (b—a)?
it 2 / far < C g 2.25)
Apply Theorem [1.1|another faith on the interval {“zib, b|, taking « = 1in (2.9) , and replace x by “+3b we

get

a + 3b (b—a)?
f( —a /f t < 926 ”f//Hoo (2'26)
summing (2.25) and (2.26), dividing the result by 2 we obtain (2.23). O

Remark 2.3. The inequality (2.23) is obtained in [9] corollary 2.3

Corollary 2.3. Let f : [ — R be a twice differentiable mapping on I° such that |f"| € Ly [a,b], where a,b € I, with
a<b.

If |f"|7 is convex function on [a,b], p,q > 1, % % = land and f” isbounded,i.e., || f"|, = xil[g:;] If"| < oo,
for any x € [a,b],
then the following inequality holds
1
Ll < G -0 00 () I 227)

Proof. under the assumptions given on f”and using the well-known Hélder’s inequality for lemma we
get

|La(x)| =

1 1
(x —a)*™ (b — x)**? [(a —x) /t““f” (tx + (1 —t)a)dt + (x — b) /t"‘“f” (tx + (1 —t)b) dt]

0 0

1 1
< (x—a)"" (b —x)¥ {(x )/t‘”l |f" (tx+ (1 —t)a)|dt + (b )/t““ |f" (tx+ (1 —t) b)\dt]
0 0

1 1

(x —a) (}H“l)iﬂdt) ’ <} If" (tx + (1 —t)a)|" dt) ﬁ +
< (X _ a)a+l (b _ x)tx+1 0 0 1

(b—x) <}t<fx+l>lﬂdt> ’ (} |f" (tx + (1 —t) b)|1 dt)
0 0
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GV"WMq+Ot)ﬁ%MW)m> N

1
q

UV”@Hq+ﬂtHﬁ%mq)w>

< e -0 0-0) ()

O

Theorem 2.2. Let f : I C [0,00) — R be a twice differentiable mapping on I° such that |f"| € Ly [a,b], where
a,be l,witha <b.
If |f"| is P-convex on [a,b], and and f" is bounded,i.e., ||f"||, = sup |f”| < oo, for any x € [a,b], then the
x€la,b]
following inequality holds
2 (k- - b—a) |,
< .
La(x)] < ) 1] (228)

Proof. by lemma and Under the given assumptions on f”, we have

Lo ()] =

1 1
(x —a)*™ (b — x)** [(11 —x) /t"‘“f” (tx + (1 —t)a)dt+ (x —b) /t‘”lf” (tx +(1—1t)b) dt]

0 0

1 1
< (x—a)*" (b —x)"* [(x —a) /t"‘“(!f"(x)\ + [f(@])dt + (b —x) /t"‘“( (0] + !f”(b)f)df]

0 0

1
2 - 5= ) et 2T OO a)
0

(v +2)
O
Corollary 2.4. With the assumptions in Theorem in the case where & = 1,0ne has the inequality
‘f(‘Z Ly /f pat| < ~E=9 gy (229)
—a) 12 ©

Proof. just takein (2.28), a =1, x = M and dividing both side of the result by La)s ) we obtain (2.29). O

Corollary 2.5. With the assumptions in Theorem[2.2} in the case where x = 1,0ne has the inequality

b_a)2 1
< Il (2.30)

3a+b 11+3b
|ﬂ )74 _a/f »

Proof. The steps of the proof are similar to that of Corollary 2.2} we start by applying Theorem[2.2]a faith on
the interval {a b taking « = 1 and x = 3%, and a second time on the interval [%42,b] for « = 1 and

X = % , make the sum and dividing the results by 2, we obtain (2.30). O

Corollary 2.6. Let f : [ C [0,00) — R be a twice differentiable mapping on I° such that |f"| € L [a,b], where
a,bel,witha <b.
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If [f”|7 is P-convex on [a,b],p,q > 1,% +% = land and f” is bounded,ie., ||f"||, = sup |f"| < oo, for

x€[a,b]
any x € [a,b],

then the following inequality holds

Ll <28 6= 0) (-0 -0 (g ) 1 @31)

Proof. by lemma 2.1, the assumptions given on f”and using the well-known Holder’s inequality, we have

(x —a) }t’”l |f" (bx + (1 —t)a)| dt+
La(x)] < (x —a)** (b —x)** 0

(b—x) [tFL|f" (tx + (1 —t) b)| dt

<= O%'—‘

(x —a) (}’twﬂwdt) (} |f"(tx + (1 —t)a)|? dt) +
< (x _ a)tx+1 (b - x)t)(+1 0 . 0 L
1 p 1 q
(b—x) (fﬂ“ﬂ)vdt) (f If" (tx + (1 —t)a)| dt)
0

0

1
q

1 /1
(x—a >(<a+1p+1)”(g<f” W+ 1f @7) d ) -

< (.X' . a)tJH—l (b _ x)DH—l

1 g
(b (tX+1 p+1 Lg f// |q+ |f,/( )‘ ) dt)

<21 (b—a) (x —a)**! (b — x)**1 (Mw)p!!f”\!w

O

Theorem 2.3. Let f : [ C [0,00) — R be a twice differentiable mapping on 1° such that f" € Lq [a,b], where a,b € I,
with a < b.

If|f"| is s-convex on [a, b] with s € (0,1), and and f" is bounded,i.e., || f" |, = sup |f"| < oo, forany x € [a, b],

x€la,b]

then the following inequality holds

ILy(x)] < (b—a) (x —a)** ! (b — x)**! uc—klﬁ +B@+2,5+1)| ||f"|lo (2.32)

Proof. by lemma[2.1} and since [f”| is s-convex and |f”'| < M, then we have

(x —a) }taﬂ I (tx + (1= t)a)| dt+
La(x)] < (x = a)**! (b — x)**! 0

(b—x) }twl [ (tx + (1 — ) )| dt
0
S (x _ a)l)é+1 (b _ x)l)l+1
1
) [ (I )+ (-1 I @) de
1
x) {t““ (B 1" ()] + @ =t |f (b)) dt

< ||f//“0o IX+1 (b _ x)DC+l

- 1 1 1 1
« [(x—a) (/t*+5+1dt+/t“+1 (1—t)sdt) +(b—x) (/t“+s+ldt+/t“+l (1—t)sdt>]
0

0 0 0
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Corollary 2.7. With the assumptions in Theorem in the case where « = 1,0ne has the inequality
a+b (b—a)? s2 435 +4 .
< 2.
\ﬂ = /f na <5 [T e 9
Proof. The proof is similar to that of Corollary[2.1] O
Corollary 2.8. With the assumptions in Theorem in the case where « = 1,0ne has the inequality
(3atby 4 £( ”+3b (b—a)? s2+3s+4
ST /f tydt| < ) 1 | (2.34)
2 b—a 32 (s+3)(s+2)(s+1)
Proof. The proof is similar to that of Corollary[2.2] O

Corollary 2.9. Let f : I C [0,00) — R be a twice differentiable mapping on I° such that f" € L [a,b], where a,b € I
with a < b.

If |f"|7 is s-convex on [a,b] with s € (0,1),p,q > 1,%4— % = 1and and f” is bounded,i.e., || f"||

sup
|f"| < oo, for any x € [a,b],

x€[a,b]
then the following inequality holds

L) <20 (0-0) -0 -0 (g ) (S+1) TN (2.35)

Proof. by lemma the assumptions given on f”and using the well-known Holder’s inequality, we have

(x —a) [#FL | (tx + (1 — t) a)| di+
La(x)] < (x —a)""" (b—x)*" 0

x) }t*“ |f"(tx + (1 —t) b)| dt
0

1

(x —a) (}’t("‘“)”dt) ' (} |f(tx + (1 —t)a)|? dt) ' +
< (x—a)* (b —x)*H! ° N 1
1 p 1 q
(b—x) <ft<"‘+1)i°dt> (f | (tx + (1 —t) b)| dt)
0 0
(EF O+ @ =) |f" (@)]) dt) +

1 /1 %
)’ ({ (B (1 + (1= [ (B)]7) dt)

L ;
s(b—a)(x—a)““(b—x)““(W)”(/( +(1-17)d ) 171l

0

21 (b—a) (x—a)* ! (b — x)*"! ((erl)p“); <S+1> £l

N
OS—

—~
Aoyl
|
=
~—
N
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Theorem 2.4. Let f : I C [0,00) — R be a twice differentiable mapping on I° such that |f"| € Ly [a,b], where
a,be I, witha < b.
If |f"| is h-convex on [a,b], and f" is bounded,i.e., ||f" | = sup |f"| < oo, forany x € [a, b],

x€[a,b]

then the following inequality holds
1
Lo ()] < [|f"]|o (0 —a) (x = )" (b= x)* " / (EH 4 (1= " Dh(pdt. (2.36)
0

Proof. by lemma[2.1} and since |f”|is h-convex and |f”'| < M, then we have

a) }t““ |f"(tx + (1 —t)a)| dt+

La(x)] < (x —a)*™ (b —x)* ™ 0

x) [t (tx + (1 — t) b)| dt
0

< (X _ a)zx+1 (b _ x)a+l

1
(x —a) {t““(h(f) ")+ R (=) |f(a)])dt+
1
(b—x) [t () |f" (x)| + h (1= t) [f"(b) )t

0

IN

1"l (0= a) (x = )" (0 — )" [ #5 (h(8) + 1 (1= £))dt

= |l (b= a) (x=@)* T (b =)™ [ (#F 4+ (1= )" ().

ot — = s

O
Corollary 2.10. With the assumptions in Theorem in the case where o« = 1,0ne has the inequality
oth, < Wl (b0
£( o /f /2t2 2t + 1)h(t)dt. (2.37)
0
Proof. The proof is similar to that of Corollary 2.1] O
Corollary 2.11. With the assumptions in Theorem in the case where & = 1,0ne has the inequality
1
3a+b a+3b 1" _ 2
|f( 1 )erf( 1 a/f tdt| < JF oo (b= a)” H ) /2t2 2t + 1)h(t)dt. (2.38)
0
Proof. The proof is similar to that of Corollary2.2] O

Corollary 2.12. Let f : I C [0,00) — R be a twice differentiable mapping on I° such that |f"| € Ly [a,b], where
a,be I, witha <b.

If | f”|" is h-convex on [a,b],p,q > 1,% + % = 1and and f” is bounded,i.e., || f"||, = sup |f"| < oo, for

x€[a,b]
any x € [a,b], then the following inequality holds

vz i
La(x)| < 27 (b—a) (x — a)+! (b — x)*+) ((1)” (/h(t) dt) 171 (2.39)
0
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Proof. By lemma 2.1} the assumptions given on f”and using the well-known Hoélder’s inequality, we have

(x —a) }twﬂ |f/(tx + (1 —t)a)| dit+
La(x)] < (x —a)*™" (b —x)*"! %
(b—x) ft““ |f”(tx +(1—¢t)b)|dt
0

1
(x4+1)(b—a)

1 1
X [(bx) (xfa)z/t’”l |f"(tx+ (1 —t)a)| dt+ (a—x) (bfx)z/t’”l |f”(tx+(lt)b)|dt]
0

0

1
q

(}’ |f"(tx + (1 —t)a)|? dt) +
0

(x —a) <}t("‘+1)f’dt) '
< (x _ a)lXJrl (b _ x)zx+l 0

(b —x) <}‘t<“+1>mt> (} |f"(tx + (1 —t)a)| dt>
0 0

==
<=

« « L
— (b—a) (x— a)"* (b — x)** <((X+1)p+1)

==

L/ i
< 2% (b a) (x— ) (b— 2y (W) ” (/h(t) dt) 17

0

1
(/ (&) [f" O+ (1= 1) [ (@)]") dt)
0

1
q

O

Now, using the above reasoning we can obtain some new Ostrowski Type inequalities involving Riemann-

Liouville fractional integrals for functions whose derivatives are m-convex.

Theorem 2.5. Let f : I — R be a twice differentiable mapping on 1° such that |f"| € Lq [a,b], where a,b € I, with

0<a<hb.

If |f"| is m—convex function on |a,b],m € (0,1] and f" is bounded,ie., ||f"|, = sup |f’| < oofor any

x€(a,b]

x € [a, b] ,then the following inequality holds
La(x)| < (1 =m) (x =)™ (b —x)*"1 (Y1 + Yo) || ]|

1 1 /0
ahere s = (x =) [ 75 ( 258 + 37 (U2 + )|

1 b—x 1
s [ (855 )2 ()]

Proof. By lemma 2.1} and Under the given assumptions on f” we have

X

b
(b x)*+! / (v — a7 () dy + (x — a)**! / (b— ) £ () dy

a

|La(x)] =

(b— )" (x — ma) j" (tx+m(1—t)a—a)*™ f7 (tx +m (1 —t)a)dt+
(1-m)a
_ X —ma

(x —a)* ™ (b — mx) }’ (b—(tb+m (1 —t)x)) L f" (th+m (1 —t)x)dt
(1-m)x
b—mx

(2.40)
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(b= )" (x — ma)? } (t— <};:§3ﬁ)““ ' (b m (1= £)a)| i+ |
(1-m)a
§ x—mal
(x—a) " (b—mx)* [ A=) (tb+m (1 —t)x)|dt
(1—m)x
L b—mx J
oo e (-G |
(1-m)a
—m) [|f"« o
(x—a) T (b—mx)*2 [ (A=) (4 ) dt
(1—-m)x
L b— mx J
i M 1 w42
S Sa) e+
(1—-m)a ( )
(1 _ m) (b _ x)t)Hr] (.X' _ ma>a+2 X —ma . .
((iiﬁi” + (1Tm)) J (t* (iiﬁl”) dat
(1-m)a
< "l ) - M .
[ == P
(1—m)x
(1 _ 7’1’1) (X _ a)uc+1 (b _ mx)tx+2 b —mx )
(1) J  a-e)a
(1—m)x
L L b—mx J

<(1-m) (x—a)*" (b— 2" (Y1 +Y2) || ]

Corollary 2.13. With the assumptions in Theorem in the case where & = 1, one has the inequality

b
‘ﬂ“;b)- oo [f

1—m) (b—a)? "
< Q=m0 Zal oy

1—m)(b—a)? 1 2(1
where ¢ = 4(b+(l£2mr;2)((2bti)m(b+a)) +3 [ﬁ + h+(<1$r)n)*a] :

Proof. Choose x = # and & = 1in (2.40), we get

f(a+b /f 0 dt

dividing both side of by % we obtain (2.47).

Corollary 2.14. With the assumptions in Theorem in the case where & = 1,0ne has the inequality.

(b —a)®
2

m b

< A= Ema

1- b— § 1
T

< (Y1 +¥2)

3a+b a+3b b
|f< SRS SRy

b—a

where Y1 = 73* {b+( 1 1

3—4m)a — (2—m)b+(2—3m)a } *
b— 1 1
and ¥y = Ta [(372m)b+(172m)a ~ (@A=3m)b—ma +

4(1-m)
[% + b+(3:4111mu)a} /
m 2(1—m)(a+b)
[f + 4(3724m)b+(7172m)a} :

=

1
3
1
3
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(2.41)

(2.42)

(2.43)
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Proof. Apply Theorem [2.5] a faith on the interval [ } Jtaking & = 1 in ( , and replace x by 3% we
get

b- ’ 3 b — b— 17
| / fioar| | < SR ) (244)
(2.44) implies
b# o )2
U - 2 [ < L= O ey, 2.45)

a

Apply Theorem. another faith on the interval [ b} , taking & = 1in (2.40) , and replace x by “+3b
we get

a + 3b (1-m)(b—a 2
£ /f D] < JO=a) ) on (2.46)
—a 64
b+a
summing (2.45) and (2.46), dividing the result by 2 we obtain (2.43). O

Theorem 2.6. Let f : I C [0,00) — R be a twice differentiable mapping on I° such that |f"'| € Ly [a,b], where
a,bel,witha <b.
If |f"] is (s, m) —convex on [a,b], where (s,m) € (0,1)*, and and f" is bounded,ie., || f"|., = sup |f"| < oo,

x€[a,b]

forany x € [a, b], then the following inequality holds

Lo(0)] < (1—m Hf”l\oo[ (b—x)™* (x — 2+ <b—a>+xl+m} (2.47)

m
1—m)(a+2)

where x1 = (b — )" (x —ma) = (1 —m)a)* "2 B(a+2,—s—a—2),
and xo = (x —a)*™ (b —mx)* " B (a+2,5+1).
Proof. by lemma and Under the given assumptions on f”, we have

X b

(b— x)*+! / (v — a7 () dy + (x — a)**! / (b— ) £ () dy

a

|La(x)] =

(b—x)""! (x — ma) j" (tx+m(1—t)a—a)*™ f7 (tx +m (1 —t)a)dt+
(1-m)a

X —ma

1

(x—a)* " b—mx) [ (b—(tb+m(A—)x) T (th+m(1—t)x)dt
(1-m)x
b—mx

(b — )" (x — ma)* 2 ’ j‘ ) (t— Q;Z};’)““f" (tx+m(1—t)a)dt| +
—m)a

X —ma

IA

(x — a)**! (b — mx)*+? } (1=t 7 (th+m (1 —t) x) dt
1-m)x
b—mx
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1 a+1
(b—x) T x—may 2 (0= G e (1= ) e+
(1-m)a
< X —ma
— 1
(x—a) " (b—mx)* [ A=) (tb+m (1 —t)x)|dt
(1-—m)x
L b—mx J
i ) . ]
(b—xp T e —may? (0= ST 0 ) o (1= ) [ () e+
(1-m)a
< X — mal
(=) o —mx)**? [ (L=t ) (O) |+ m (L) |7 (x)]) dt
(1-m)x
L b—mx J
i ) . ]
(b— 0 a2 [ (e Gy e g oy gy
(1-m)a
<@=-m|f'| T
(x —a)*™ (b — mx)**? S/ (1—¢)* (£° + 12 dt
(1-m)x
L b—mx J
r Mw (l’] _ x)lx+1 (x _ a)lXJrZ + an (x _ a)Dé+1 (b _ x)lXJrZ + b
1
(b — x)terl (x — ma)““ ((i:;niia)wsﬂ I (1- t)a+1 = (s+at3) gy 4
o 1) =
o X —ma
1
(x—a)*T (b —mx)r [ (1t )" edt
(1-m)x
L b—mx J
Mw (b _ x)t)Hrl (x - a)lx+2 + M;w (x _ a)vé+1 (b - x)lx+2 +
21
b— %) (x — ma)et? (Qzma) T 1— )l p=(s+atd) g o
“m | OO e () (e
1
(x —a)"™ (b —mx)"" [ (1—t )" dt
0
m [ ®
71’}’1) ||f”Hoo |:(1 _m) (0(+2> (bix) o (xi a) i (bfa) + X1+ X2

Corollary 2.15. With the assumptions in Theorem in the case where & = 1,0ne has the inequality

a+b
2

b
1
-3 [f(t)dt

’

where I’ =

24m

Proof. just takein 2.47), a =1, x = # and dividing both side of the result by (b=a)”

1-m
<
== <b—a

m(b—a)3 + (b+(1- 2m)a) (1 m u)s+3'3(3,_s —3)+ ((2-m) b ma)® B(3,5+1).

JIER

) we obtai

Corollary 2.16. With the assumptions in Theorem in the case where & = 1,0ne has the inequality

b

L [rar

a

)+ f(EE
2

‘f@”ﬁ

<& +§2

o 1l

in (2.48).
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where $; = mb—a) | ( b+(34_4m)”)_s ((1—m)a)*B(3,—s—3)+ W,ﬁ (3,s+1),

48(1—m)
3 —s s+3 3
and {p = Tg((lal:% 4 ((372m)bz(172m)u) ((17m;(b+u)) B(3,—s—3)+ ((473m)bj6t4(273m)u) B3, s+1).
Proof. The steps of the proof are similar to that of Corollary we start by applying Theorem [2.6a faith on
the interval {a, %b} taking @ = 1and x = S“I b and a second time on the interval [%,b] fora = 1 and
X = %, make the sum and dividing the results by <b;2” ) 3, we obtain (2.49). O
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