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Abstract
This paper deals solutions for system of linear Volterra integral equations with variable coefficients using the
Haar wavelet method. The powerful properties of Haar wavelets are used to reduce the system of Volterra
integral equations to a system of algebraic equations. Few problems are considered to examine the efficiency
and applicability of the method. A collocation technique is utilized to find the approximate solution. Accuracy of
the method is exemplified by the graph and table results.
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1. Introduction
Volterra integral equations arise in many applications of

science and technology. They are population dynamics, spread
of epidemics and semiconductor devices, potential theory,
dirichlet problems, electrostatics, mathematical modeling of
radioactive equilibrium, the particle transport problems of
astrophysics and reactor theory and radioactive heat transfer
problems etc. The system of linear Volterra integral equa-
tions was solved by many researchers with different numer-
ical methods. Berenguer et al. [1] have solved with the aid
of bi-orthogonal systems in Banach spaces, Niyazi et al. [2]
have used Bessel polynomials method,, Roodaki et. al.[3]
have employed delta basis functions(DBFs), Balakumar et al.

[4] have applied the block-pulse functions method, Li-Hong
et al. [5] have applied reproducing kernel method.

From the beginning of 1990’s wavelet method have been
applied for solving integral equations. Alfred Haar a Hungar-
ian mathematician introduced the pair of piecewise constant
functions called wavelets. Many types of wavelets exist but
Haar wavelet is the simplest among them. Haar wavelets are
compactly supported and orthogonal functions. Haar wavelets
have many valued properties, so they can be used in the solu-
tion of differential equations, integral equations and integro-
differential equations, signal and image processing. Haar
wavelet collocation method is used for the solution of sev-
enth and eighth order boundary value problems by Reddy et.
al.[6,7]. Haar wavelets are used to solve linear and nonlinear
integral equations by Lepik [8], Maleknejad et al.[9], Babolian
et. al.[10],. Farshid [11], Aziz et. al.[12]. By the inspiration
of these articles we proposed this work.

General form of system of linear Volterra integral equa-
tions with variable coefficients are defined over[a,b] as

n

∑
s=1

cq,s(x)ys(x)−
∫ x

a
{

n

∑
s=1

kq,s(x, t)ys(t)}dt = fq(x),

q = 1,2, ...,n,
(1.1)
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cq,s(x) and fq(x) are given functions of x ∈ [a,b], kq,s(x, t) is
kernal of integral equation, ys(x) is unknown function.

This paper is organized as follows. In section 2, Haar
wavelets and their integrals is explained. In section 3, solving
the problem by the proposed method is presented. In section 4,
Experiment of method on few test problems is demonstrated.
In section 5, we discussed the results. Finally in section 6, we
gave the conclusion.

2. Haar wavelets and their integrals

Let us assume that integration domain [a,b] is divided
into 2J+1 subintervals of equal length ∆x = (b−a)

2J+1 . Here
J ∈ N is maximal level of resolution. Next two parameters,
translation and dilation are denoted as j = 0,1,2, ...J and
k = 0,1,2, ...,2 j−1 respectively. Haar family is defined as

hi(x) =


1, for x ∈ [α,β ),

−1, for x ∈ [β ,γ),

0, otherwise,
(2.1)

where i = m+ k+1, α = k
m , β = k+0.5

m , γ = k+1
m , where

m = 2 j.
Eq. (2.1) is valid for i > 2. For i = 1 we have Haar scaling
function which is also called father wavelet

h1(x) =

{
1, for x ∈ [a,b),
0, otherwise,

(2.2)

For i = 2 we have mother wavelet

h2(x) =


1, for x ∈ [a, a+b

2 ),

−1, for x ∈ [ a+b
2 ,b),

0, otherwise.
(2.3)

Integrals of Haar wavelets are as follows:

p1,i(x) =
∫ x

0
hi(x

′
)dx

′
=


x−α, for x ∈ [α,β ),

β − x, for x ∈ [β ,γ),

0, otherwise,
(2.4)

Haar wavelets with ν times of integration is given by

pν ,i(x) =
∫ x

0
pν−1(x

′
)dx

′
, ν = 2,3, ...,n,n∈N. (2.5)

Haar matrix H and integrated Haar matrices p1 for J = 2 are
given as

H =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


,

p1 =


0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375
0.0625 0.1875 0.3125 0.4375 0.3125 0.1875 0.0625
0.0625 0.1875 0.1875 0.0625 0 0 0 0

0 0 0 0 0.0625 0.1875 0.1875 0.0625
0.0625 0.0625 0 0 0 0 0 0

0 0 0.0625 0.0625 0 0 0 0
0 0 0 0 0.0625 0.0625 0 0
0 0 0 0 0 0 0.0625 0.0625


Any function which is having finite energy on [a,b] and square
integrable i.e. f ∈ L2[a,b] can be expressed as infinite sum of
Haar wavelets:

f (x) =
∞

∑
i=1

aihi(x), (2.6)

where ai are called Haar coefficients. if f is either piecewise
constant or wish to approximate by piecewise constant during
each subinterval then series can be terminated to finite terms
as

f (x) =
2J+1

∑
i=1

aihi(x). (2.7)

3. Method of Solution
The application of Haar wavelet method to the system of

linear Volterra integral equations with variable coefficients
defined over [0,1] had the following steps:

(1): General form of system of linear Volterra integral equa-
tions with variable coefficients Eq.(1.1) can be rewrite
as

C(x)Y (x)−
∫ x

0
{K(x, t)Y (t)}dt = F(x) (3.1)

where,

C(x)=


c1,1(x) c1,2(x) ... c1,n(x)
c2,1(x) c2,2(x) ... c2,n(x)

. . .

. . .

. . .
cn,1(x) cn,2(x) ... cn,n(x)

 ,Y (x)=


y1(x)
y2(x)
.
.
.

yn(x)



,K(x, t) =


k1,1(x, t) k1,2(x, t) ... k1,n(x, t)
k2,1(x, t) k2,2(x, t) ... k2,n(x, t)

. . .

. . .

. . .
kn,1(x, t) kn,2(x, t) ... kn,n(x, t)

 ,

F(x) =


f1(x)
f2(x)
.
.
.

fn(x)

 .

(2): Approximate the unknown functions ys(x) in terms of
Haar functions

ys(x) =
2J+1

∑
i=1

as,ihi(x), s = 1,2, ...,n, J ∈N. (3.2)

2
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(3): Substitute Eq.(3.2) into (3.1) we get


c1,1(x) c1,2(x) ... c1,n(x)
c2,1(x) c2,2(x) ... c2,n(x)

. . .

. . .

. . .
cn,1(x) cn,2(x) ... cn,n(x)





2J+1

∑
i=1

ai,1hi(x)

2J+1

∑
i=1

ai,2hi(x)

.

.

.
2J+1

∑
i=1

ai,nhi(x)


−

∫ x

0


k1,1(x,t) k1,2(x,t) ··· k1,n(x,t)
k2,1(x,t) k2,2(x,t) ... k2,n(x,t)

. . .

. . .

. . .
kn,1(x,t) kn,2(x,t) ... kn,n(x,t)





2J+1

∑
i=1

ai,1hi(t)

2J+1

∑
i=1

ai,2hi(t)

...
2J+1

∑
i=1

ai,nhi(t)


dt =

 f1(x)
f2(x)
... fn(x)

,

(3.3)

system (3.3) can be written as

2J+1

∑
i=1

as,i[hi(x)cq,s(x)−
∫ x

0
kq,s,i(x, t)hi(t)dt] = fq(x),

q,s = 1,2, ...,n,
(3.4)

2J+1

∑
i=1

as,iDq,s,i(x) = fq(x), (3.5)

where Dq,s,i(x) = hi(x)cq,s(x)−
∫ x

0 kq,s(x, t)hi(t)dt.

(4): Discritize the equation (3.5) at collocation points xl =
(x̃l−1+x̃l)

2 ,
l = 1,2, ...,2J+1, where x̃r is the grid point given by
x̃r = a+ r4x, r = 0,1, ...,2J+1, we get linear system

2J+1

∑
i=1

as,iDq,s,i(xl)= fq(xl), l = 1,2, ...,2J+1, q,s= 1,2, ...,n.

(3.6)

Block matrix of the above system is:
D1,1 D1,2 ... D1,n
D2,1 D2,2 ... D2,n
. . .
. . .
. . .

Dn,1(x) Dn,2(x) ... Dn,n(x)


(n2J+1×n2J+1)

a1
a2
.
.
.

an


(n2J+1×1)

=

 f1
f2
...
fn


(n2J+1×1)

(3.7)

D(n2J+1)×(n2J+1)a(n2J+1)×1 = F(n2J+1)×1,

i = 1,2, ...,2J+1, l = 1,2, ...,2J+1,
(3.8)

here Dq,s(i, l) = Dq,s,i(xl), i = 1,2, ...,2J+1,
l = 1,2, ...,2J+1.

(5): Calculate the Haar wavelet coefficients as,i and obtain
the Haar solutions for unknown functions ys for s =
1,2, ..,n.

4. Numerical Examples

In this section, we applied the proposed method on six
problems to check the applicability and accuracy of the method.
We compared the obtained results with existing numerical
methods in the literature. We computed the maximum abso-

lute errors
(

eJ
s = max|ys(xl)app−ys(xl)exact|,s = 1,2, ...,n,

l = 1, ...,2J+1
)

using MATLAB software.

Example 1 : Consider the system of linear Volterra integral
equations with variable coefficients[5]


2xy1(x)+ xy2(x)−

∫ x
0 3ty1(t)dt−

∫ x
0 (2x+1)y2(t)dt

= f1(x)
xy1(x)−2xy2(x)−

∫ x
0 2(x+ t)y1(t)dt−

∫ x
0 2(x+ t)ty2(t)dt

= f2(x),

(4.1)

with F(x) =
[

2x,x− 5x3

3 + 7x4

6

]T

.

Exact solution of this system is Y (x)= [x+1,−x]T . In Figure1,
the approximate and exact solution of Eq.(4.1) for J = 4 is
compared. In Figure 2 and Figure 3 absolute errors obtained
to y1(x) and y2(x) of Eq.(4.1) for J = 3,5 and 7 are presented.
In Table 1 maximum absolute errors for various values of
resolution are inserted.
Example 2 :Consider the system of Volterra integral equations
with variable coefficients [2] is considered


y1(x)+ xy2(x)−

∫ x
0 x2cos(t)y1(t)dt +

∫ x
0 x2sin(t)

y2(t)dt = f1(x)
−2xy1(x)+ y2(x)−

∫ x
0 sin(x)cos(t)y1(t)dt +

∫ x
0 sin(x)

sin(t)y2(t)dt = f2(x),

(4.2)

with F(x) = [sin(x)+ xcos(x),cos(x)− 2xsin(x)]T . Its ana-
lytic solution is Y (x) = [sin(x),cos(x)]T . Approximate and
Haar solution of Eq.(4.2) for J = 5 is shown in the Figure
4. In Table 2 maximum absolute errors for various values of
resolution are tabulated.

3
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Example 3 :Consider the system of linear Volterra integral
equations[13,4]

y1(x)−
∫ x

0
(t2− x)y1(t)dt−

∫ x

0
(t2− x)y2(t)dt = f1(x)

y2(x)−
∫ x

0
ty1(t)dt−

∫ x

0
ty2(t)dt

= f2(x),

(4.3)

with F(x) =
[

x+ x3

2 + x4

12 −
x5

5 ,x
2− x3

3 −
x4

4

]T

. Exact solu-

tion of above problem is Y (x) = [x,x2]T . The comparison of
approximate and exact solution of Eq.(4.3) for J = 3 is repre-
sented in Figure 5. Absolute errors obtained to y1(x) and y2(x)
of Eq. (4.3) for J = 3,5 and 7 are demonstrated in Figure
6 and Figure 7. The maximum absolute errors for various
values of resolution are inserted in Table 3 and compared to
the block pulse function method (BPFM)[4].
Example 4 :Solve the system of linear Volterra integral
equations[3]

y1(x)+
∫ x

0
x2ty1(t)dt−

∫ x

0
xty2(t)dt = f1(x)

y2(x)−2
∫ x

0
(x+ t)y1(t)dt +3

∫ x

0
xty2(t)dt = f2(x),

(4.4)

with F(x) =
[

x+ x5

12 ,x
2− 5x3

3 + 3x5

4

]T

. The analytical solution

of this problem is Y (x) =
[

x,x2
]T

. In Figure 8 the comparison

of approximate and exact solution of Eq.(4.4) for J = 5 is
presented. Absolute errors obtained to y1(x) and y2(x) of Eq.
(4.4) for J = 3,5 and 7 are shown in Figure 9 and Figure 10.
The maximum absolute errors for various values of resolution
compared with the delta basis functions method is shown in
Table 4.
Example 5 :Consider the system of Volterra integral equations
with variable coefficients [13]

y1(x)−
∫ x

0
y1(t)dt−

∫ x

0
2y2(t)dt−

∫ x

0
y3(t)dt = f1(x)

y2(x)−
∫ x

0
ty1(t)dt−

∫ x

0
(2x−2t)y2(t)dt = f2(x)

y3(x)−
∫ x

0
y1(t)dt = f3(x),

(4.5)

with F(x) =
[

3x− cos(2x)− x3, 3sin(2x)
2 − xex,x2− ex

]T

.

Exact solution of this problem is y(x) = [e2x,sin(2x),x2−1]T .
Approximate and exact solution of Eq. (4.5) for J = 3 is
compared in Figure 11. maximum absolute errors for various
values of resolution are inserted in Table 5.

Example 6 :Consider the system of linear Volterra integral

equations [13]

y1(x) −
∫ x

0
y2(t)dt−

∫ x

0
y3(t)dt = f1(x)

y2(x) −
∫ x

0
(x−1)y1(t)dt−

∫ x

0
ty2(t)dt +

∫ x

0
xy4(t)dt

= f2(x)

y3(x) −
∫ x

0
(x− t)y1(t)dt +

∫ x

0
3t2y4(t)dt = f3(x)

y4(x) −
∫ x

0
(2x−3t)y1(t)dt = f4(x). (4.6)

with

F(x) =
[
−x3 − x, x5

4 −
x4

4 −
x3

2 − 3x2 − 1, x6

2 −
31x3

6 + 2x2 +

3,x5−5
]T

.

The analytical solution of the system is y(x) = [x,x2−1,2x2+
3,x3−5]T . In Figure 12 approximate and analytical solution
of Eq.(4.6) for J = 4 is compared to each other. In Table 6
maximum absolute errors obtained from Eq.(4.6) for various
values of resolutions are shown.

5. Results and Discussions
We analyzed the obtained results in the form of figures

and tables. In Examples 1− 6, the approximate and exact
solutions obtained at collocation points for J = 4,5,3,5,3
and 4are compared in Figures 1,4,5,8,11 and 12 respectively.
This comparison pointed the accuracy of approximate solu-
tions. Absolute errors with step size 0.1 to each unknown
of Examples 1,3 and 4 for J = 3,5 and 7 are obtained and
shown in Figures 2− 3, Figures 6− 7, and Figures 9− 10.
These figures showed the relation between absolute errors and
resolution values i.e. absolute errors curves approaches to
X−axis (where the absolute errors are zero) as the resolution
value increases. The maximum absolute errors obtained by
proposed method are inserted in tables with compared to BPFs
and DBFs method. These comparisons have shown accuracy
and superiority of the Haar wavelet method.

6. Conclusion
In this paper, we applied the Haar wavelet collocation

method for solving system of Volterra integral equations with
variable coefficients. Six examples are considered to test
the applicability of the method. We proved the accuracy
and efficiency of the present method comparing with other
numerical methods such as BPEs and DBFs methods.

4
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Figure 1. Comparison of absolute errors obtained to y1 of Ex.
1 for J=3,5 and 7.
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Figure 2. Comparison of absolute errors obtained to y1 of Ex.
1 for J=3,5 and 7.
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Figure 3. Comparison of absolute errors obtained to y2 of Ex.
1 for J=3,5 and 7.
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Figure 4. Comparison of approximate and exact solution of
Ex. 2 for J = 5.
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Figure 5. Comparison of approximate and exact solution of
Ex. 3 for J = 3.
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Figure 6. Comparison of absolute errors obtained to y1(x) of
Ex. 3 for J = 3,5 and 7.
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Figure 7. Comparison of absolute errors obtained to y2(x) of
Ex. 3 for J = 3,5 and 7..
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Figure 8. Comparison of approximate and exact solution of
Ex. 4 for J = 5.
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Figure 9. Comparison of absolute errors obtained to y1(x) of
Ex. 4 for J = 3,5 and 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 

J=3
J=5
J=7

Figure 10. Comparison of absolute errors obtained to y2(x)
of Ex. 4 for J = 3,5 and 7..
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Figure 11. Comparison of approximate and exact solution of
Ex. 5 for J = 3.
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Figure 12. Comparison of approximate and exact solution of
Ex. 6 for J = 4.
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Table 1. Maximum absolute Errors Obtained by HWCM for
Ex. 1

2J+1 eJ
1 eJ

2
4 4.9920E-02 2.2735E-02
8 1.8063E-02 9.8495E-03

16 8.3921E-03 4.4424E-03
32 4.0473E-03 2.0902E-03
64 1.9879E-03 1.0111E-03

Table 2. Maximum absolute Errors Obtained by HWCM for
Ex. 2.

2J+1 eJ
1 eJ

2
4 2.3912E-04 5.3595E-03
8 6.9063E-05 1.3756E-03

16 1.8401E-05 3.4720E-04
32 4.7402E-06 8.7148E-05
64 1.2023E-06 2.1823E-05

Table 3. Maximum absolute Errors Obtained by HWCM for
Ex. 3

HWCM BPFM [4]
2J+1 eJ

1 eJ
2 M eJ

1 eJ
2

32 1.2417E-04 1.5327E-04 32 1.5667E-02 1.6419E-02
64 3.1106E-05 3.8929E-05 64 7.8226E-03 7.9170E-03

128 7.7839E-06 9.8093E-06 128 3.9087E-03 4.2478E-03
256 1.9468E-06 2.4620E-06 256 1.9537E-03 1.9596E-03

Table 4. Maximum absolute Errors Obtained by HWCM for
Ex. 4

HWCM DBFM [3]
2J+1 eJ

1 eJ
2 M eJ

1 eJ
2

4 4.4007E-03 6.3413E-03 4 4.0842E-02 7.6737E-02
8 1.2720E-03 1.6616E-03 8 2.0529E-02 3.6356E-02
16 3.3612E-04 4.1834E-04 16 1.0225E-02 1.8777E-02
32 8.6060E-05 1.0456E-04 32 5.1226E-03 9.3665E-03
64 2.1753E-05 2.6134E-05 64 2.5608E-03 4.6931E-03

Table 5. Maximum absolute Errors Obtained by HWCM for
Ex. 5

2J+1 eJ
1 eJ

2 eJ
3

4 4.6131E-01 1.8109E-03 1.6945E-01
8 6.9063E-05 1.3756E-03 4.4840E-02

16 1.8401E-05 3.4720E-04 1.1883E-02
32 4.7402E-06 8.7148E-05 3.0815E-03
64 1.2023E-06 2.1823E-05 7.8608E-04

Table 6. Maximum absolute Errors Obtained by HWCM for
Ex. 6

2J+1 eJ
1 eJ

2 eJ
3 eJ

4
4 1.8376E-02 1.2799E-02 1.6272E-02 7.3133E-03
8 4.6725E-03 3.6111E-03 5.8342E-03 1.9372E-03

16 1.1860E-03 9.6654E-04 1.7121E-03 5.0253E-04
32 2.9726E-04 2.5051E-04 4.6198E-04 1.2831E-04
64 7.4334E-05 6.3802E-05 1.1988E-04 3.2444E-05
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