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Abstract
This paper deals with existence and uniqueness of solutions for some coupled systems of Caputo-Fabrizio
fractional differential equations. Some applications are made of generalizations of classical fixed point theorems
on generalized Banach spaces. An illustrative example is presented in the last section.
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1. Introduction
There has been a significant development in the area of the

theory of fractional calculus and fractional differential equa-
tions [27]. For some fundamental results in this subject, we
refer the reader to the monographs [4, 7, 8, 20, 25, 29], and the
papers [6, 14]. These fractional differential equations involve
Riemann-Liouville, Caputo, Hadamard and Hilfer fractional
differential operators. In recent times, a new fractional dif-
ferential operator having a kernel with exponential decay has
been introduced by Caputo and Fabrizio [15]. The approach
of with a fractional derivative is known as the Caputo-Fabrizio
operator which has attracted many research scholars due to the
fact that it has a non-singular kernel. Several mathematicians
are involved in development of Caputo-Fabrizio fractional

differential equations, see; [13, 16, 17, 21, 28], and the refer-
ences therein.

Coupled fractional differential equations have received
much attention and its research has developed very rapidly.
They are amongst the strongest tools of modern mathemat-
ics as they play a key role in developing differential models
for highly complex systems. Some of the latest studies on
initial and boundary value problems for coupled fractional
differential equations are presented in [5, 9–11, 18, 19, 24].

Recently, considerable attention has been given to the
existence of solutions of initial and boundary value problems
for fractional differential equations in generalized Banach
spaces [1–3, 23, 26]. In this paper we discuss the existence
and uniqueness of solutions for the coupled system of Caputo-
Fabrizio fractional differential equations,{

(CF Dr1
0 u)(t) = f1(t,u(t),v(t))

(CF Dr2
0 v)(t) = f2(t,u(t),v(t))

; t ∈ I := [0,T ], (1.1)

with the initial conditions{
u(0) = u0,

v(0) = v0,
(1.2)

where T > 0, u0,v0 ∈ Rm, fi : I×Rm×Rm→ Rm, i = 1,2,
are given continuous functions, Rm, m ∈ N∗ is the Euclidian
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Banach space with a suitable norm ‖ · ‖, and CF Dri
tk is the

Caputo–Fabrizio fractional derivative of order ri ∈ (0,1).
As far as we know, this is the first paper considering the

existence of solutions for a coupled system of Caputo-Fabrizio
fractional differential equations on generalized Banach spaces.

2. Preliminaries
Let C be the Banach space of all continuous functions

from I into Rm with the supremum (uniform) norm ‖ ·‖∞, and
C :=C×C be the product Banach space with the norm

‖(u,v)‖C = ‖u‖∞ +‖v‖∞.

By L1(I), we denote the space of Lebesgue-integrable func-
tions v : I→ Rm with the norm

‖v‖1 =
∫ T

0
‖v(t)‖dt.

By AC(I) we denote the space of absolutely continuous func-
tions.

Definition 2.1. [15, 21] The Caputo-Fabrizio fractional in-
tegral of order 0 < r < 1 for a function h ∈ L1(I) is defined
by

CF Irh(τ)=
2(1− r)

M(r)(2− r)
h(τ)+

2r
M(r)(2− r)

∫
τ

0
h(x)dx, τ ≥ 0

where M(r) is normalization constant depending on r.

Definition 2.2. [15, 21] The Caputo-Fabrizio fractional deriva-
tive for a function h ∈ AC(I) of order 0 < r < 1, is defined by,
for τ ∈ I,

CF Drh(τ) =
(2− r)M(r)

2(1− r)

∫
τ

0
exp
(
− r

1− r
(τ− x)

)
h′(x)dx.

Note that (CF Dr)(h) = 0 if and only if h is a constant function.

Definition 2.3. By a solution of the problem (1.1)-(1.2) we
mean a coupled ordered pair of continuous functions (u,v) ∈
C that satisfy (1.1) and (1.2).

Lemma 2.4. Let h ∈ L1(I). Then the linear problem{
(CF Dr

0u)(t) = h(t); t ∈ I := [0,T ]
u(0) = u0,

(2.1)

has a unique solution given by

u(t) =C+arh(t)+br

∫ t

0
h(s)ds, (2.2)

where

ar =
2(1− r)

(2− r)M(r)
, br =

2r
(2− r)M(r)

, C = u0−arh(0).

Proof. Suppose that u satisfies (2.1). From [21, Proposition
1], the equation

(CF Dr
0u)(t) = h(t)

implies that

u(t)−u(0) = ar(h(t)−h(0))+br

∫ t

0
h(s)ds.

Thus from the initial condition u(0) = u0, we obtain

u(t) = u0−arh(0)+arh(t)+br

∫ t

0
h(s)ds.

Hence we get (2.2).
Coversely, if u satisfies (2.2), then u(0) = u0, and for each

t ∈ I := [0,T ], we have

(CF Dr
0u)(t) = h(t).

Hence, u satisfies (2.1).

From the above Lemma, we can conclude the following
Lemma.

Lemma 2.5. A coupled pair of functions (u,v) is a solution
of the system (1.1)-(1.2), if and only if (u,v) satisfies the
following integral equations{

u(t) = c1 +ar1 f1(t,u(t),v(t))+br1

∫ t
0 f1(s,u(s),v(s))ds,

v(t) = c2 +ar2 f2(t,u(t),v(t))+br2

∫ t
0 f2(s,u(s),v(s))ds,

(2.3)

where c1 = u0−ar1 f1(0,u0,v0), and c2 = v0−ar2 f2(0,u0,v0).

Let x, ,y∈Rm with x=(x1,x2, . . . ,xm), y=(y1,y2, . . . ,ym).
By x≤ y we mean xi≤ yi; i= 1, . . . ,m. Also |x|=(|x1|, |x2|, . . . ,
|xm|), max(x,y)= (max(x1,y1),max(x2,y2), . . . ,max(xm,ym)),
and Rm

+ = {x ∈ Rm : xi ∈ R+, i = 1, . . . ,m}. If c ∈ R, then
x≤ c means xi ≤ c, i = 1, . . . ,m.

Definition 2.6. Let X be a nonempty set. By a vector-valued
metric on X we mean a map d : X×X→Rm with the following
properties:

(i) d(x,y)≥ 0 for all x,y∈X , and if d(x,y) = 0, then x= y;

(ii) d(x,y) = d(y,x) for all x,y ∈ X ;

(iii) d(x,z)≤ d(x,y)+d(y,z) for all x,y,z ∈ X .

We call the pair (X ,d) a generalized metric space with

d(x,y) :=


d1(x,y)
d2(x,y)
·
·
·

dm(x,y)

 .

Notice that d is a generalized metric space on X if and only if
di, i = 1, . . . ,m, are metrics on X .
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Definition 2.7. [12] A square matrix of real numbers is said
to be convergent to zero if and only if its spectral radius ρ(M)
is strictly less than 1. In other words, this means that all the
eigenvalues of M are in the open unit disc i.e. |λ | < 1; for
every λ ∈ C with det(M−λ I) = 0; where I denotes the unit
matrix of Mm×m(R).

Example 2.8. The matrix A ∈M2×2(R) defined by

A =

(
a b
c d

)
,

converges to zero in the following cases:

(1) b = c = 0, a,d > 0 and max{a,d}< 1.

(2) c = 0, a,d > 0, a+d < 1 and −1 < b < 0.

(3) a+b = c+d = 0, a > 1, c > 0 and |a− c|< 1.

In the sequel we will make use of the following fixed point
theorems in Generalized Banach spaces.

Theorem 2.9. [23] Let (X ,d) be a complete generalized met-
ric space and N : X→ X a contractive operator with Lipschitz
matrix M. Then N has a unique fixed point x0 and for each
x ∈ X we have

d(Nk(x),x0)≤Mk(M)−1d(x,N(x)), for all k ∈ N.

For n = 1, we recover the classical Banach’s contraction
fixed point result.

Theorem 2.10. [22] Let X be a generalized Banach space
and N : X → X be a continuous and compact mapping. Then
either,

(a) The set

A := {x ∈ X : x = λN(x) f or some λ ∈ (0,1)}

in unbounded, or

(b) The operator N has a fixed point.

3. Existence and Uniqueness Results
In this section, we are concerned with the existence and

uniqueness results of the system (1.1)-(1.2). The following
hypotheses will be used in the sequel.

(H1) There exist continuous functions pi,qi : I→ (0,∞); i =
1,2 such that

‖ fi(t,u1,v1)− fi(t,u2,v2)‖
≤ pi(t)‖u1−u2‖+qi(t)‖v1− v2‖,

f or a.e. t ∈ I, and each ui,vi ∈ Rm, i = 1,2.

(H2) There exist continuous functions ai,bi : I→ (0,∞); i =
1,2 such that for a.e. t ∈ I and each u,v ∈ Rm,

‖ fi(t,u,v)‖ ≤ ai(t)‖u‖+bi(t)‖v‖,

f or a.e. t ∈ I, and each u,v ∈ Rm,

(H3) For any bounded set B⊂ C , the sets

{t 7→ fi(t,u(t),v(t)) : (u,v) ∈ B}; i = 1,2,

are equicontinuous in C .

First, we prove an existence and uniqueness result for the
coupled system (1.1)- (1.2) by using a Banach’s fixed point
theorem type in generalized Banach spaces. Set

p∗i := sup
t∈I

pi(t), q∗i := sup
t∈I

qi(t); i = 1,2.

Theorem 3.1. Assume that the hypothesis (H1) holds. If the
matrix

M :=
(

(ar1 +T br1)p∗1 (ar1 +T br1)q
∗
1

(ar2 +T br2)p∗2 (ar2 +T br2)q
∗
2

)
converges to 0, then the coupled system (1.1)-(1.2) has a
unique solution.

Proof. Define the operators Ni : C →C; i = 1,2 by

(N1(u,v))(t)= c1+ar1 f1(t,u(t),v(t))+br1

∫ t

0
f1(s,u(s),v(s))ds,

(3.1)

and

(N2(u,v))(t)= c2+ar2 f2(t,u(t),v(t))+br2

∫ t

0
f2(s,u(s),v(s))ds.

(3.2)

Consider the operator N : C → C defined by

(N(u,v))(t) = ((N1(u,v))(t),(N2(u,v))(t)). (3.3)

Clearly, the fixed points of the operator N are solutions of the
system (1.1)-(1.2).
For any i∈ {1,2} and each (u1,v1),(u2,v2)∈C and t ∈ I, we
have

‖(N1(u1,v1))(t)− (N1(u2,v2))(t)‖
≤ ar1‖ f1(t,u1(t),v1(t))− f1(t,u2(t),v2(t))‖

+ br1

∫ t

0
‖ f1(s,u1(s),v1(s))− f1(s,u2(s),v2(s))‖ds

≤ ar1(p1(t)‖u1(t)−u2(t)‖+q1(t)‖v1(t)− v2(t)‖)

+ br1

∫ t

0
(p1(s)‖u1(s)−u2(s)‖+q1(s)‖v1(s)− v2(s)‖)ds

≤ ar1(p∗1‖u1−u2‖∞ +q∗1‖v1− v2‖∞)

+ T br1(p∗1‖u1−u2‖∞ +q∗1‖v1− v2‖∞)

≤ (ar1 +T br1)(p∗1‖u1−u2‖∞ +q∗1‖v1− v2‖∞).
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Thus, we get,

‖N1(u1,v1)−N1(u2,v2)‖∞ ≤ (ar1 +T br1)(p∗1‖u1−u2‖∞

+q∗1‖v1− v2‖∞).

Also, for each (u1,v1),(u2,v2) ∈ C and t ∈ I, we get

‖N2(u1,v1)−N2(u2,v2)‖∞ ≤ (ar2 +T br2)(p∗2‖u1−u2‖∞

+q∗2‖v1− v2‖∞).

Hence,

d(N(u1,v1),N(u2,v2))≤Md((u1,v1),(u2,v2)),

where

d((u1,v1),(u2,v2)) =

(
‖u1−u2‖∞

‖v1− v2‖∞

)
.

Since the matrix M converges to zero, then Theorem 2.9
implies that the system (1.1)- (1.2) has a unique solution.

Now, we prove an existence result for the coupled sys-
tem (1.1)-(1.2) by using the nonlinear alternative of Leray–
Schauder type in generalized Banach space. Set

a∗i := sup
t∈I

a(t), b∗i := sup
t∈I

b(t) : i = 1,2,

A = max{ar1a∗1 +ar2a∗2,ar1b∗1 +ar2b∗2},

and
B = max{br1a∗1 +br2a∗2,br1b∗1 +br2b∗2}.

Theorem 3.2. Assume that the hypotheses (H2) and (H3)
hold. If A < 1, then the coupled system (1.1)-(1.2) has at least
one solution.

Proof. . We show that the operator N : C → C defined in
(3.3) satisfies all conditions of Theorem 2.10. The proof will
be given in four steps.

Step 1. N is continuous.
Let (un,vn)n be a sequence such that (un,vn)→ (u,v) ∈ C as
n→ ∞. For any i ∈ {1,2} and each t ∈ I, we have

‖(Ni(un,vn))(t)− (Ni(u,v))(t)‖
≤ ari‖ fi(t,un(t),vn(t))− fi(t,u(t),v(t))‖

+ bri

∫ t

0
‖ fi(s,un(s),vn(s))− fi(s,u(s),v(s))‖ds

≤ (ari +T bri)‖ fi(·,un(·),vn(·))− fi(·,u(·),v(·))‖∞.

Since fi is continuous, then by the Lebesgue dominated con-
vergence theorem, we get

‖Ni(un,vn)−Ni(u,v)‖∞→ 0 as n→ ∞.

Hence N is continuous.

Step 2. N maps bounded sets into bounded sets in C .
Let R > 0 and set

BR := {(µ,ν) ∈ C : ‖µ‖∞ ≤ R,‖ν‖∞ ≤ R}.

For each (u,v) ∈ BR and t ∈ I, we have

‖(N1(u,v))(t)‖ ≤ ‖c1‖+ar1‖ f1(t,u(t),v(t))‖

+br1

∫ t

0
‖ f1(s,u(s),v(s))‖ds

≤ ‖c1‖+ar1(a1(t)‖u(t)‖+b1(t)‖v(t)‖)

+br1

∫ t

0
(a1(s)‖u(s‖+b1(s)‖v(s)‖)ds

≤ ‖c1‖+(ar1 +T br1)(a
∗
1 +b∗1)R

:= `1.

Thus,

‖N1(u,v)‖∞ ≤ `1.

Also, for each (u,v) ∈ BR and t ∈ I, we get

‖N2(u,v)‖∞ ≤ ‖c2‖+(ar2 +T br2)(a
∗
2 +b∗2)R

:= `2.

Hence,

‖N(u,v)‖C ≤ (`1, `2) := `.

Step 3. N maps bounded sets into equicontinuous sets in
C .
Let BR be the ball defined in Step 2. For each t1, t2 ∈ I with
t1 ≤ t2 and (u,v) ∈ BR, we have

‖(N1(u,v))(t1)− (N1(u,v))(t2)‖
≤ ar1‖ f1(t2,u(t2),v(t2))− f1(t1,u(t1),v(t1))‖

+br1

∫ t2

t1
‖ f1(s,u(s),v(s))‖ds

≤ ar1‖ f1(t2,u(t2),v(t2))− f1(t1,u(t1),v(t1))‖
+Rbr1(a

∗
1 +b∗1)(t2− t1)

→ 0 as t1→ t2.

Also, from (H3), we get

‖(N2(u,v))(t1)− (N2(u,v))(t2)‖
≤ ar2‖ f2(t2,u(t2),v(t2))− f2(t1,u(t1),v(t1))‖
+ Rbr2(a

∗
2 +b∗2)(t2− t1)

→ 0 as t1→ t2.

Hence, the set N(BR) is equicontinuous in C .

As a consequence of Steps 1 to 3, with the Arzela–Ascoli
theorem, we conclude that N maps BR into a precompact set
in C .

Step 4. The set E consisting of (u,v) ∈ C such that
(u,v) = λN(u,v) for some λ ∈ (0,1) is bounded in C .
Let (u,v)∈C such that (u,v) = λN(u,v). Then u= λN1(u,v)
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and v = λN2(u,v). Thus, for each t ∈ I, we have

‖u(t)‖ ≤ ‖c1‖+ar1‖ f1(t,u(t),v(t))‖

+br1

∫ t

0
‖ f1(s,u(s),v(s))‖ds

≤ ‖c1‖+ar1(a
∗
1‖u(t‖+b∗1‖v(t)‖)

+br1

∫ t

0
(a∗1‖u(s‖+b∗1‖v(s)‖)ds.

Also, we get

‖v(t)‖ ≤ ‖c2‖+ar2(a
∗
2‖u(t)‖+b∗2‖v(t)‖)

+br2

∫ t

0
(a∗2‖u(s)‖+b∗2‖v(s)‖)ds.

Thus, we get

‖u(t)‖+‖v(t)‖ ≤ ‖c1‖+‖c2‖+(ar1a∗1 +ar2a∗2)‖u(t)‖
+ (ar1b∗1 +ar2b∗2)‖v(t)‖

+
∫ t

0
[(br1a∗1 +br2a∗2)‖u(s)‖

+(br1b∗1 +br2b∗2)‖v(s‖]ds

≤ ‖c1‖+‖c2‖+A(‖u(t‖+‖v(t‖)

+ B
∫ t

0
(‖u(s)‖+‖v(s)‖)ds.

Hence, we obtain

‖u(t)‖+‖v(t)‖ ≤ ‖c1‖+‖c2‖
1−A

+
B

1−A

∫ t

0
(‖u(s)‖+‖v(s)‖)ds.

By applying a classical Gronwall’s lemma, we get

‖u(t)‖+‖v(t)‖ ≤ ‖c1‖+‖c2‖
1−A

exp
(

B
1−A

∫ t

0
ds
)

≤ ‖c1‖+‖c2‖
1−A

exp
(

BT
1−A

)
= L.

This gives

‖u‖∞ +‖v‖∞ ≤ L.

Hence

‖(u,v)‖C ≤ L.

This shows that the set E is bounded.

As a consequence of Steps 1 to 4, together with Theorem
2.10, we can conclude that N has at least one fixed point in
BR which is a solution of the system (1.1)-(1.2).

4. An Example
Consider the following coupled system of Caputo-Fabrizio

fractional differential equations,
(CF D

1
2
0 u)(t) = f (t,u(t),v(t));

(CF D
1
4
0 v)(t) = g(t,u(t),v(t));

un(0) = 1,
vn(0) = 0,

: t ∈ [0,1], (4.1)

where

f (t,u,v) =
t
−1
4 (u(t)+ v(t))sin t

64(1+
√

t)(1+ |u|+ |v|)
; t ∈ [0,1],

g(t,u,v) =
(u(t)+ v(t))cos t
64(1+ |u|+ |v|)

; t ∈ [0,1].

Set r1 =
1
2 and r1 =

1
4 . The hypothesis (H1) is satisfied with

p∗1 = p∗2 = q∗1 = q∗2 =
1
64

.

Also the matrix

M :=
(

(ar1 +T br1)p∗1 (ar1 +T br1)q
∗
1

(ar2 +T br2)p∗2 (ar2 +T br2)q
∗
2

)

=
1

64

(
ar1 +br1 ar1 +br1
ar2 +br2 ar2 +br2

)
converges to 0. Hence, Theorem 3.1 implies that the system
(4.1) has a unique solution defined on [0,1].
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