

https://doi.org/10.26637/MJM0901/0005

Separation axioms via $*\delta$ -set in topological vector spaces

T.R. Dinakaran^{1*} and B. Meera Devi²

Abstract

In this paper we introduce a new sort of spaces as $^{*}\delta$ -Homogenous space, $^{*}\delta$ -Hausdorff space and $^{*}\delta$ -Compact space. It provides a new connection between $^{*}\delta$ -Vector spaces and $^{*}\delta$ -homogenous spaces. Also we investigated the relationship between the translation and scalar multiplication mappings and $^{*}\delta$ -homeomorphism on $^{*}\delta$ -Topological vector spaces. Finally we derive $^{*}\delta$ -Topological vector space is $^{*}\delta$ -Hausdorff and $^{*}\delta$ -Compact spaces.

Keywords

* δ -topological vector spaces, * δ -homeomorphism, * δ -continuous, * δ -Hausdorff, * δ -compact.

AMS Subject Classification 54A05, 54C05, 54C08, 57N17.

¹ Department of Mathematics, Sourashtra College, Madurai-625004, Tamil Nadu, India.

²Department of Mathematics, Sri S.Ramasamy Naidu Memorial College, Sattur-626203, Tamil Nadu, India.

Corresponding author: ¹ trd1804@gmail.com; ²abmeeradevi@gmail.com

Article History: Received 14 October 2020; Accepted 02 December 2020

1Introduction332Preliminaries333Translation Mappings344 $*\delta$ -Closure in a $*\delta$ -TVS345 $*\delta$ -Homeomorphism in $*\delta$ -TVS356 $*\delta$ -Hausdorff and $*\delta$ -Compact in $*\delta$ -TVS36References36

Contents

1. Introduction

A topological space is a vector space with a topological structure such that the algebraic operations addition and scalar multiplication are continuous. The concept of vector spaces was introduced by Kolmogroff [1]. In 2015, Khan et al [2] introduced the *s*-topological vector spaces which are generalization of topological vector spaces. In 2016 Khan and Iqbal [3] introduced the irresolute independent of topological vector spaces. In 2019, β -topological vector spaces have been introduced by Sharma and M.Ram [8]. In 2019, S.Sharma et al. [9] investigated almost β -topological vector spaces. Maki et al [4] introduced the notions of generalized homeomorphism in topological spaces. In this paper we introduce a new sort of spaces as * δ -Homogenous space, $*\delta$ -Hausdorff space and $*\delta$ -Compact space. It provides a new connection between $*\delta$ -Vector spaces and $*\delta$ -homogenous spaces. Also we investigated the relationship between the translation and scalar multiplication mappings and $*\delta$ -homeomorphism on $*\delta$ -Topological vector spaces. Finally we derive $*\delta$ -Topological vector space is $*\delta$ -Hausdorff and $*\delta$ -Compact spaces. Throughout the present paper (X, τ) (Simply X) always mean topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, cl(A) and int(A) denote the closure and the interior of A respectively. Now we recall some of the basic definitions and results in topology.

©2021 MJM.

2. Preliminaries

In this section, we recall some definitions and basic results of fractional calculus which will be used throughout the paper.

Definition 2.1. [7] A subset A of a topological space (X, τ) is

- (i) Regular*-open if $A = int(cl^*(A))$
- (ii) Regular*-closed if $A = cl(int^*(A))$

Definition 2.2. [5] The δ -interior of a subset A of X is called δ -open if $A = int_{\delta}(A)$ ie, a set is if it is the union of *Regular*^{*}-open sets. The complement of a δ -open set is called δ -closed set in X.

Definition 2.3. [6] A * δ -topological vector space is a vector space X over the field F (real or complex) with a topology τ with the following conditions.

- (i) Vector addition mapping $m : X \to Y$ defined by m((x,y)) = x + y, for each x, y in X is * δ -continuous
- (ii) Scalar multiplication mapping $M : F \times X \to X$ which define by $M((\lambda, x)) = \lambda x$ for each λ in *F* and *x*, *y* in *X* is * δ -continuous.

The pair $(X_{(F)}, \tau)$ is said to be Topological vector space. In short, it is denoted by *X*, a * δ -TVS.

Definition 2.4. *[2]* If *X* is a Vector space then *e* denotes its identity element, and for a fixed $x \in X$, $_xT : X \to X$; $y \to x + y$ and $T_x : X \to X$; $y \to y + x$ denote the left and right translation by *x* respectively.

Definition 2.5. [6] Let *Y* be a Linear Subspace of (X, τ) which means $Y + Y \subseteq Y$ and for all $\alpha \in F$, $\alpha Y \subseteq Y$.

Result 2.6. [6] Let $(X_{(F)}, \tau)$ be a * δ -TVS. If *A* is open in $(X_{(F)}, \tau)$, then the following are true. (*i*) x + A is a * δ -open for each $x \in X$

(*ii*) αA is a * δ -open for all non-zero scalar α in *X*.

Result 2.7. [6] In a * δ -TVS ($X_{(F)}$, τ), for any * δ -open set U containing 0, there exists a symmetric * δ -open set V containing 0 such that $V + V \subseteq U$.

Result 2.8. [6] Let X be $*\delta$ -TVS. If A is open subset of X then A + B is a $*\delta$ -open in X for any subset B of X.

3. Translation Mappings

In this section we prove that translation mappings are δ -continuous in a δ -Topological Vector Spaces. Also it's basic properties have been derived.

Theorem 3.1. In a * δ -TVS $(X_{(F)}, \tau)$, for any $x \in X$, the translation mapping $T_x : X \to X$ defined by $T_x(y) = y + x$ for all $y \in X$ is * δ -continuous function.

Proof. Suppose that $(X_{(F)}, \tau)$ is a * δ -topological vector space. Let $x \in X$ be arbitrary. Let K be any open set in the codomain X containing $T_x(y) = y + x$. By hypothesis, there exists a * δ -open set U containing y and V containing x such that $U + V \subseteq K$. Then $T_x(U) = U + x \subseteq U + V \subseteq K$. It is proved that for every open set K containing $T_x(y)$, \exists a * δ -open set U containing y such that $T_x(U) \subseteq K$. Therefore the translation mapping T_x is * δ -continuous function.

Theorem 3.2. In a * δ -TVS $(X_{(F)}, \tau)$, for any $\alpha \in F$, the multiplication mapping $M_{\alpha} : X \to X$ defined by $M_{\alpha}(x) = \alpha . x$ is * δ -continuous mapping.

Proof. Suppose that $(X_{(F)}, \tau)$ is a * δ -topological vector space. Let *K* be any open set in the *X* containing $M_{\alpha}(x) = \alpha . x$. By hypothesis, there exists a * δ -open set *U* in *F* containing α and *V* in *X* containing *x* such that $UV \subseteq K$. Then $M_{\alpha}(V) = \alpha V \subseteq UV \subseteq K$. It is proved that for every open set *K* containing $M_{\alpha}(x), \exists a * \delta$ -open set *V* in *X* containing *x* such that $M_{\alpha}(V) \subseteq K$. Hence M_{α} is * δ -continuous mapping. \Box

Theorem 3.3. Let $(X_{(F)}, \tau)$ be a * δ -TVS. If U is open in X, then U + x is a * δ -open subset of $X \forall x \in X$.

Proof. Let $u + x \in U + x$ be arbitrary. Now U is an open set in X containing $u = u + x - x = T_{-x}(U + x)$. Since the translation map T_{-x} is * δ -continuous, $\exists a * \delta$ -open set V containing u + x such that $T_{-x}(V) \subseteq U$. That is, $V + (-x) \subseteq U$ and hence $V \subseteq U + x$. It is proved that for any point $u + x \in U + x$, there exists * δ -open set V containing u + x such that $u + x \in V \subseteq U + x$. therefore u + x is * δ -open subset of X, $\forall x \in X$.

Theorem 3.4. Let $(X_{(F)}, \tau)$ be a * δ -TVS. If *U* is open in *X*, then α .*U* is a * δ -open in *X* for any nonzero element $\alpha \in F$.

Proof. Let $x \in \alpha.U$ be arbitrary. Then $x = \alpha u$ for some $u \in U$. Now U is open set in the codomain X containing $u = \frac{1}{\alpha}(\alpha u) = M_{\frac{1}{\alpha}}(\alpha U) = M_{\frac{1}{\alpha}}(x)$. Since the multiplication mapping $M_{\frac{1}{\alpha}}: X \to X$ is * δ -continuous, there exists a * δ -open set V containing $\alpha u = x$ such that $M_{\frac{1}{\alpha}}(V) \subseteq U$. That is, $\frac{1}{\alpha}(V) \subseteq U$. Hence $V \subseteq \alpha U$. Therefore αu is * δ -open subset of X for any non-zero element $\alpha \in F$.

4. * δ -Closure in a * δ -TVS

Definition 4.1. The $*\delta$ -interior of a subset *A* of *X* is the union of all regular*-open sets of *X* contained in *A* and is denoted by $int_*\delta(A)$.

Definition 4.2. A subset *A* of a topological space (X, τ) is called $*\delta$ -open if $A = int_*\delta(A)$. i.e., a set is $*\delta$ -open if it is the union of regular*-open sets. The complement of a $*\delta$ -open is called $*\delta$ -closed set in *X*.

Note 4.3. The $\star \delta$ -closure of a subset *A* of (X, τ) is denoted by $cl_{\star \delta}(A)$.

Theorem 4.4. In a * δ -TVS ($X_{(F)}, \tau$), a scalar multiple of a * δ -closed set is * δ -closed for any $\alpha \in F$.

Proof. Let *U* be any * δ -closed subset of *X* and $\alpha \in F$ be arbitrary. $(\alpha U)^c = X \setminus \alpha U = \alpha (X \setminus U) = \alpha U^c$. Since *U* is * δ -closed subset of *X*, U^c is * δ -open subset of *X*. Since every * δ -open set is open, U^c is an open subset of *X*. By Result 2.6, αU^c is a * δ -open subset of *X*. Then $(\alpha U)^c$ is a * δ -open. So αU is a * δ -closed subset of *X*.

Theorem 4.5. Let *A* be any closed subset of a δ -topological vector space $(X_{(F)}, \tau)$. Then the following are true. (*i*) x + A is δ -closed for each $x \in X$

(*ii*) αA is a * δ -closed for each non-zero scalar α in *F*.

Proof. (*i*) Let $y \in cl_{\star_{\delta}}(x+A)$. Now consider z = -x+y and let K be any open set in X containing z. Then by definition of $\star\delta$ -topological vector space, there exists $\star\delta$ -open sets Uand V in X such that $-x \in U, y \in V$ and $U+V \subseteq K$. Since $y \in cl_{\star_{\delta}}(x+A), (x+A) \cap V \neq \phi$. Then there is $a \in (x+A) \cap V$. Now $-x + a \in A \cap (U+V) \subseteq A \cap K \Rightarrow A \cap K \neq \phi$ which implies $z \in cl(A) = A \Rightarrow y \in x+A$. Hence $cl_{\star_{\delta}}(x+A) \subseteq x+A$. Always $x+A \subseteq cl_{\star_{\delta}}(x+A)$. Thus $x+A = cl_{\star_{\delta}}(x+A)$. Hence x+A is $\star\delta$ -closed in X.

(*ii*) Let $x \in cl_{\star\delta}(\alpha A)$ and let K be any open neighborhood of $y = \frac{1}{\alpha}x$ in X. Since $(X_{(F)}, \tau)$ is $\star\delta$ -TVS, $\exists \star\delta$ -open sets U in F containing $\frac{1}{\alpha}$ and V in X containing x such that $U.V \subseteq K$. By hypothesis, $(\alpha A) \cap V \neq \phi$. Therefore there is $a \in (\alpha A) \cap V$. Now $\frac{1}{\alpha}a \in A \cap (U.V) \subseteq A \cap K \Rightarrow A \cap K \neq \phi \Rightarrow y \in cl(A) = A \Rightarrow x \in \alpha A$. Then $cl_{\star\delta}(\alpha A) \subseteq \alpha A$. Always $\alpha A \subseteq cl_{\star\delta}(\alpha A)$. Hence $\alpha A = cl_{\star\delta}(\alpha A)$. Thus αA is $\star\delta$ -closed.

Theorem 4.6. Let $(X_{(F)}, \tau)$ be a * δ -TVS. If *U* is * δ -open set in *X*, then there exists a * δ -open set *V* in *X* containing 0 such that $u + V \subseteq U$ for all $u \in U$.

Proof. Let *U* be any * δ -open set in $(X_{(F)}, \tau)$. Since every * δ -open set is open, *U* is an open subset of *X*. By Result 2.6, U + x is * δ -open set in *X* for all $x \in X$. In particular U - u is a * δ -open set in *X* containing 0 for all $u \in U$. By taking V = U - u, we get a * δ -open set *V* containing 0 such that $u + V \subseteq U$.

Theorem 4.7. Let *S* and *T* be any subsets of a $\star \delta$ -TVS $(X_{(F)}, \tau)$, then $cl_{\star\delta}(S) + cl_{\star\delta}(T) \subseteq cl_{\star\delta}(S+T)$.

Proof. Let $z \in cl_{\star_{\delta}}(S) + cl_{\star_{\delta}}(T)$ be arbitrary. Then z = x + y where $x \in cl_{\star_{\delta}}(S)$ and $y \in cl_{\star_{\delta}}(T)$. Let K be any \star_{δ} -open set in X containing z = x + y. Since every \star_{δ} -open set is open, K is open in X containing z. Since X is a \star_{δ} -TVS, the condition of \star_{δ} -Topological vector space, there exists \star_{δ} -open sets U in X containing x, V in X containing y such that $U + V \subseteq K$. Since $x \in cl_{\star_{\delta}}(S), y \in cl_{\star_{\delta}}(T)$, there are $a \in S \cap U$ and $b \in T \cap V$. Then $a + b \in (S + T) \cap (U + V) \subseteq (S + T) \cap K$. So, $K \cap (S + T) \neq \phi$. Therefore $z = x + y \in cl_{\star_{\delta}}(S + T)$.

Theorem 4.8. Let $(X_{(F)}, \tau)$ be a * δ -TVS and let *S*, *T* be subsets of $(X_{(F)}, \tau)$. If *T* is * δ -open, then $S + T = cl_{\star_{\delta}}(S) + T$.

Proof. Let *S* and *T* be any two subsets of a * δ -TVS *X*. Always, $S \subseteq cl_{\star_{\delta}}(S)$. So $S + T \subseteq cl_{\star_{\delta}}(S) + T$. Now let $y \in cl_{\star_{\delta}}(S) + T$ be arbitrary. Then y = x + b where $x \in cl_{\star_{\delta}}(S)$ and $b \in T$. Since *T* is * δ -open, by Theorem 4.6, \exists a * δ -open set *V* containing 0 such that $V + b \subseteq T$. Since *V* is * δ -open in *X* containing zero and -V is also a * δ -open in *X* containing zero. Now x + (-V) is * δ -open set containing *x*. Since $x \in cl_{\star_{\delta}}(S)$, $S \cap (x - V) \neq \phi$. Choose $a \in S \cap (x - V)$. Then $a \in S$ and $a \in x - V$ or $x - a \in V$. Now $y = x + b = x + b - a + a = a + (x - a) + b \in a + V + b \subseteq S + T$. Hence $cl_{\star_{\delta}}(S) + T \subseteq S + T$. Therefore $S + T = cl_{\star_{\delta}}(S) + T$.

5. $^{*}\delta$ -Homeomorphism in $^{*}\delta$ -TVS

In this section, it has been shown that translation and scalar multiplication mappings are $*\delta$ -homeomorphism on a $*\delta$ -TVS.

Definition 5.1. A bijective function f from a * δ -TVS X to itself is called * δ -homeomorphism if f and f^{-1} are * δ -continuous on a * δ -TVS X.

Definition 5.2. A TVS $(X_{(F)}, \tau)$ is called as * δ -homogeneous space, if for all $x, y \in X$, there is * δ -homeomorphism f of the space X onto itself such that f(x) = y.

Theorem 5.3. Translation mapping on a $*\delta$ -topological vector space is $*\delta$ -homeomorphism.

Proof. Let $(X_{(F)}, \tau)$ be a * δ -TVS, $\forall x \in X$, translation mapping $T_x : X \to X$ is defined by $T_x(z) = z + x$ for all $z \in X$. Clearly, T_x is a bijective mapping for all $x \in X$. By Theorem 3.1, T_x is * δ -continuous. Let U be any open set containing the point z, where z in X. By Theorem 3.3, $U + x = T_x(U)$ is * δ -open in X. Therefore T_x is a * δ -homeomorphism. \Box

Theorem 5.4. Multiplication mapping on a δ -TVS is δ -homeomorphism.

Proof. Let $(X_{(F)}, \tau)$ be a * δ -TVS and let the arbitrary scalar $\alpha \in F$. Multiplication mapping $M_{\alpha} : X \to X$ is $M_{\alpha}(x) = \alpha . x$ Obviously, it is a bijective mapping. By Theorem 3.2, M_{α} is * δ -continuous for any $\alpha \in F$. Then $M_{\alpha}(U) = \alpha . U$ where U is any pen set in X. By Theorem 3.4, $\alpha . U$ is * δ -open in X. Hence M_{α} is * δ -homeomorphism.

Theorem 5.5. * δ -closure of a linear subspace of a * δ -TVS is a * δ -TVS.

Proof. Let $(X_{(F)}, \tau)$ be a * δ -TVS and H be any linear subspace of X. Then $H + H \subseteq H$ and $\alpha H \subseteq H$ for all $\alpha \in F$. So $cl_{\star\delta}(H+H) \subseteq cl_{\star\delta}(H)$ and $cl_{\star\delta}(\alpha H) \subseteq cl_{\star\delta}(H)$ for all $\alpha \in F$. By Theorem 4.7, $cl_{\star\delta}(H) + cl_{\star\delta}(H) \subseteq cl_{\star\delta}(H+H) \subseteq cl_{\star\delta}(H)$. Also since scalar multiplication is a * δ -homeomorphism, by Theorem 4.4, it maps * δ -closure of a set into * δ -closure of its image. So $\alpha(cl_{\star\delta}(H)) = cl_{\star\delta}(\alpha H)$.

Theorem 5.6. Every δ -TVS is δ -homogeneous space.

Proof. Let $(X_{(F)}, \tau)$ be a * δ -TVS. Take $x, y \in X$ and take z = (-x) + y. Define a translation map $T_z : X \to X$ by $T_z(x) = x + z \forall x \in X$. Then $T_z(x) = y$ for all $x \in X$. By Theorem 5.3, $T_z : X \to X$ is * δ -homeomorphism. Hence $(X_{(F)}, \tau)$ is an * δ -homogeneous space.

Theorem 5.7. $g: (X_{(F)}, \tau_1) \to (X_{(F)}, \tau_2)$ be a homeomorphism of * δ -TVS. If g is * δ -continuous at 0 in X then g is * δ -continuous on X.

Proof. Let $x \in X$ be arbitrary. Suppose that K is * δ -open set in Y containing y = g(x). By Theorem 3.1, $T_y : Y \to Y$, defined by $T_y(x) = x + y$ for all $x \in Y$ is * δ -continuous. Therefore

there is a * δ -open set *V* of 0 such that $T_y(V) = V + y \subseteq K$. Since *g* is * δ -continuous at 0 in *X*, \exists * δ -open set *U* in *X* containing 0 such that $f(U) \subseteq V$. Since $T_x : X \to X$ is * δ -homeomorphism, U + x is * δ -open set containing *x*. Then $f(U+x) = f(U) + f(x) = f(U) + y \subseteq V + y \subseteq K$. Therefore *g* is * δ -continuous at *x* of *X* and hence on *X*.

Theorem 5.8. In a * δ -TVS ($X_{(F)}, \tau$), every * δ -open subspace of X is * δ -closed.

Proof. Let *Y* be a * δ -open subspace of *X*. By Theorem 3.1, $T_x: X \to X$ defined by $T_x(y) = x + y$ for all $y \in X$ is * δ homeomorphism. Therefore Y + x is * δ -open subset of *X* for all $x \in X$. Since arbitrary union of * δ -open subsets is a * δ -open, $Y = \bigcup_{x \in Y^c} (Y + x) = U(\text{say})$ is * δ -open subset of *X*. Now $Y = X \setminus U$ is * δ -closed subsets of *X*. Hence every * δ -open subspace of *X* is * δ -closed in *X*.

6. * δ -Hausdorff and * δ -Compact in * δ -TVS

In this section, we defined $*\delta$ -Hausdorff and $*\delta$ -Compact spaces. Also we derive $*\delta$ - topological vector space is a $*\delta$ -Hausdorff and $*\delta$ -Compact spaces.

Definition 6.1. A Topological space X is said to be $*\delta$ -Hausdorff if for every $x \neq y \in X$, there exists a $*\delta$ -open sets U_x, V_y such that $x \in U_x, y \in V_y$ and $U_x \cap V_y = \phi$.

Definition 6.2. A Topological space X is called δ -Compact if every cover of X by δ -open sets has finite subcover. A subset A of X is said to be δ -compact if every cover of A by δ -open sets of X has a finite subcover.

Theorem 6.3. Every $\star \delta$ - TVS $(X_{(F)}, \tau)$ is $\star \delta$ -Hausdorff

Proof. Let $a \in X, a \neq 0$. Since every singleton set in a * δ -TVS is * δ -closed, {*a*} is * δ -closed in *X*. Then {*a*}^{*c*} = *X* \ {*a*} = *U*(say) is * δ -open set containing 0. By Result 2.7, \exists a symmetric * δ -open set *V* containing 0 such that $V + V \subseteq U$. Then by Result 2.8, a + V = a - V is * δ -open set. If $V \cap (a - V) \neq \phi$, then take $y \in V \cap (a - V)$. $y \in a - V \Rightarrow y = a - x$ for some $x \in V \Rightarrow x + y = a \Rightarrow a \in V + V$ as $x, y \in V \Rightarrow a \in U$ which is a contradiction. Therefore $V \cap (a - V) = \phi$. Hence the points 0 and $a \neq 0$ are separated by * δ -open sets in *X*. Thus $(X_{(F)}, \tau)$ is * δ -Hausdorff space.

Theorem 6.4. Let *A* be $*\delta$ - compact set in a $*\delta$ -TVS $(X_{(F)}, \tau)$. Then x + A is compact $\forall x \in X$.

Proof. Let *A* be * δ -compact subset of * δ -TVS *X*. Let { U_{α} : $\alpha \in I$ } be a * δ -open cover for x + A. Then $x + A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$ which implies that $A \subseteq (-x) + \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} (-x + U_{\alpha})$. Since U_{α} is * δ -open subset of * δ -topological vector space, $(-x + U_{\alpha})$ is also * δ -open subset of *X* for each $x \in X$. Since *A* is * δ -compact, there exists a finite subset I_0 of *I* such that $A \subseteq \bigcup_{\alpha \in I_0} (-x + U_{\alpha})$. This implies that $x + A \subseteq \bigcup_{\alpha \in I_0} U_{\alpha}$. Thus x + A is compact. **Theorem 6.5.** Let $(X_{(F)}, \tau)$ be an * δ -TVS. The scalar multiple of * δ -compact set is * δ -compact.

Proof. If $\lambda = 0$, we are nothing to prove. Assume that λ is non-zero. Let *A* be a * δ -compact subset of *X* and let $\{U_{\alpha} : \alpha \in I\}$ be a * δ -open cover of λA for some non-zero $\lambda \in F$, then $\lambda A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$. Then $A \subseteq (\frac{1}{\lambda}) \bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I_0} ((\frac{1}{\lambda})U_{\alpha})$. Since U_{α} is * δ -open subset of * δ -topological vector space $(X_{(F)}, \tau)$, $(\frac{1}{\lambda})U_{\alpha}$ is * δ -open subset of *X* for each $\alpha \in I$. Since *A* is * δ -compact, there exists a finite subset I_0 of *I* such that $A \subseteq \bigcup_{\alpha \in I_0} ((\frac{1}{\lambda})U_{\alpha})$. this implies that $\lambda A \subseteq \bigcup_{\alpha \in I_0} (U_{\alpha})$. Thus λA is * δ -compact in $(X_{(F)}, \tau)$.

Theorem 6.6. Let $(X_{(F)}, \tau)$ be an * δ -TVS. If *K* is a * δ -compact set of *X* and *G* is * δ -closed subset of *X* such that $K \cap G = \phi$, then \exists a * δ -open set *U* containing 0 such that $(K+U) \cap (G+U) = \phi$.

Proof. If $K = \phi$, then the proof is trivial. Otherwise, let $0 = x \in K$, where K is * δ -compact. Given that G is * δ closed set. So G^c is an δ -open subset of X containing 0 = x. Since the addition mapping is * δ -continuous and 0 =0+0+0, therefore there is an * δ -open set U containing 0 satisfy $3U = U + U + U \subset G^c$. Define $U_x = U \cap (-U)$ which is * δ -open set, symmetric and $3U_x = U_x + U_x + U_x \subset G^c$. Hence $\{x + x + x, x \in U_x\} \cap G = \phi$. Since U_x is symmetric, $(x+U_x+U_x)\cap (G+U_x)=\phi$. By hypothesis, for each $x\in K$ and K is δ -compact, then by the above argument, we have a symmetric * δ -open set V_x such that $(x+2V_x) \cap (G+V_x) =$ ϕ . The sets $\{V_x : x \in K\}$ are a $\star \delta$ -open that covers K and since *K* is * δ -compact, for finitely number of points $x_i \in K$ where i = 1, 2, ..., n, we have $K \subset \bigcup_{i=1, 2, ..., n} (x_i + V_{x_i})$. Define the * δ -open set containing 0 by $V = \bigcap_{i=1,2,\dots,n} V_{x_i}$. Therefore $(K+V) \cap (G+V) \subset \bigcup_{i=1,2,\dots,n} (x_i + V_{xi} + V) \cap (G+V) \subset$ $\bigcup_{i=1,2,\dots,n} (x_i + 2V_{xi}) \cap (G + V_{xi}) = \phi. \text{ Hence } (K + U) \cap (G + V_{xi}) = \phi.$ $U) = \phi$.

Lemma 6.7. Let $(X_{(F)}, \tau)$ be a * δ -TVS, let U be * δ -open subset of X. If A is any subset of X such that $U \cap A = \phi$ then $U \cap cl_{\star\delta}(A) = \phi$

Proof. Suppose $U \cap cl_{*\delta}(A) \neq \phi$. Let $x \in U \cap cl_{*\delta}(A) = \phi$. Then $x \in cl_{*\delta}(A)$ and $x \in U$. Since U is $*\delta$ -open subset of X, X - U is $*\delta$ -closed subset that contain A. Therefore $cl_{*\delta}(A) \subseteq X - U$, so $x \notin cl_{*\delta}(A)$ which implies a contradiction. Hence $U \cap cl_{*\delta}(A) = \phi$.

Corollary 6.8. Let $(X_{(F)}, \tau)$ be * δ -TVS. If * δ -closed set *G* and * δ -compact set *K* are disjoint then there is * δ -open set *U* containing 0 such that $cl_{*\delta}(K+U) \cap (G+U) = \phi$.

Proof. Given that *G* is * δ -closed and *K* is * δ -compact and $G \cap K = \phi$. By Theorem 6.6, there exists * δ -open set *U* containing 0 satisfy $(K + U) \cap (G + U) = \phi$. The set $G + U = \{y + U : y \in G\}$ is an * δ -open set then by Lemma 6.7, $cl_{*\delta}(K+U) \cap (G+U) = \phi$.

References

- ^[1] A. Kolmogroff, Zur Normierbarkeit eines topologischen linearen Raumes, *Studia Mathematica*, 5(1934), 29-33.
- [2] M. D. Khan, S. Azam and M. S. Bosan, *s*-topological vector spaces, *Journal of Linear and Topological Algebra*, 4(2015), 153-158.
- [3] M. D. Khan and M. I. Iqbal, On irresolute topological vector spaces, *Advances in Pure Mathematics*, 6(2016), 105-112
- [4] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphisms in topological spaces, *Bull.Fukuoka Uni.of Ed part III*, 40(1991), 13-21.
- [5] B. Meera Devi and T. R. Dinakaran, New Sort of Mappings Via *δ- Set in Topological Spaces, *International Conference on Materials and Mathematical Sciences (ICMMS-2020), Kalasalingam Academy of Research and Education*, June 19 and 20, 2020.
- [6] B. Meera Devi and T.R. Dinakaran, *δ- Topological Vector Spaces International Conference on Algebra and Discrete Mathematics, 8(2)(1)(2020), 2459-2465.
- [7] S. Pious Missier, M. Annalakshmi and G. Mahadevan, On Regular*-open sets, *Global Journal of Pure and Applied Mathematics*, 13(9)(2017), 5717-5726.
- [8] S. Sharma and M. Ram, On β-topological vector spaces, Journal of Linear and Topological Algebra, 8(2019), 63-70.
- [9] S. Sharma, S. Billawria, M. Ram and T. Landol, On almost β-topological vector spaces, *Open Access Library Journal*, 6(2019): e5408.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

