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Abstract

We investigate in this paper the existence of mild solutions for the fractional differential equations of
neutral type with nonlocal conditions and infinite delay in Hilbert spaces by employing fractional calculus
and Krasnoselski-Schaefer fixed point theorem. Finally an example is provided to illustrate the application of
the obtained results.

Keywords: Infinite delay, Stochastic fractional differential equations, mild solution, fixed point theorem.

2010 MSC: 35G20. c©2012 MJM. All rights reserved.

1 Introduction

The main purpose of this paper is to prove the Existence of the mild solution for fractional differential
equations of neutral type with infinite delay in Hilbert spaces of the form.

cDα
t [x(t)− h(t, xt)] = A[x(t)− h(t, xt)] + f(t, xt) +

∫ t

−∞ σ(t, s, xs)dW (s) t ∈ J = [0, b]

x(0) + µ(x) = x0 = φ(t) t ∈ (−∞, 0],
(1.1)

Here, x(.) takes value in a real separable Hilbert space H with inner product (·, ·)H and the norm ‖·‖H. The
fractional derivative cDα, α ∈ (0, 1), is understood in the Caputo sense. The operator A generates a strongly
continuous semigroup of bounded linear operators S(t), t ≥ 0, on H. Let K be another separable Hilbert space
with inner product (., .)K and the norm ‖·‖K. W is a given K-valued Wiener process with a finite trace nuclear
covariance operator Q ≥ 0 defined on a filtered complete probability space (Ω,F , (Ft)t≥0, P). The histories
xt : Ω → Cυ defined by xt = {x(t + θ), θ ∈ (−∞, 0]} belong to the phase space Cυ , which will be defined in
section 2. The initial data φ = {φ(t), t ∈ (−∞, 0]} is an F0- measurable, Cυ-valued random variable indepen-
dent of W with finite second moments, and h : J × Cϑ → H, h : J × Cυ → H, σ : J × J1 × Cυ → L0

2(K, H) are
appropriate functions, where J1 = (−∞, b] and L0

2(K, H) denotes the space of all Q-Hilbert Schmidt operators
from K. into H. µ : C(J, H) → H is bounded and the initial data x0 is an F adapted H-valued random variable
independent of Wiener process W.

The fractional differential equations arise in many engineering and scientific disciplines as the mathemat-
ica modeling of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of a complex medium, polymer rheology,etc.,
involves derivatives of fractional order. It is worthwhile mentioning that several important problems of the
theory of ordinary and delay differential equations lead to investigations of functional differential equations
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of various types (see the books by Hale and Verduyn Lunel [16] , Wu [31] , Liang et al [17], Liang and Xiao
[18], and the references therein).

In particular the nonlocal condition problems for some fractional differential equations have been attrac-
tive to many researchers Mophou et al [23] studied existence of mild solution for some fractional differential
equations with nonlocal condition. Chang et al [7] investigate the fractional order integro-differential equa-
tions with nonlocal conditions in the Riemann-Liouville fractional derivative sense.

In this paper, we prove the existence theorem of mild solution for neutral differential equation with non-
local conditions and infinite delay by using the Krasnoselski-Schaefer fixed point theorem. An example is
provided to illustrate the application of the obtained results.

2 Preliminaries

Next we mention a few results and notations needed to establish our results.
Let (H, ‖·‖H) and (K, ‖·‖K) be two real separable Hilbert spaces. We denote by L(K, H) the set of all linear
bounded operators from K into H, equipped with the usual operator norm ‖.‖. In this article, we use the
symbol ‖.‖ to denote norms of operators regardless of the spaces involved when no confusion possibly arises.

Let (Ω,F , (Ft)t≥0, P) be a filtered complete probability space satisfying the usual condition, which means
that the filtration is a right continuous increasing family and F0 contains all P-null sets. W = (Wt)t≥0 be
a Q-Wiener process defined on (Ω,F , (Ft)t≥0, P) with the covariance operator Q such that trQ < ∞. We
assume that there exists a complete orthonormal system {ek}k≥1 in K, a bounded sequence of nonnegative
real numbers λk such that Qek = λkek, k = 1, 2, ..., and a sequence of independent Brownian motions {βk}k≥1

such that

(W (t), e)K =
∞∑

k=1

√
λk(ek, e)Kβk(t) e ∈ K t ≥ 0

Let L0
2 = L2(Q

1
2 K, H) be the space of all Hilbert Schmidt operators from Q

1
2 K to H with the inner product

〈ϕ, φ〉L0
2

= tr[ϕQφ∗].

The semigroup S(·) is uniformly bounded. That is to say, ‖S(t)‖ ≤ M for some constant M ≥ 1 and every
t ≥ 0.

Assume that υ : (−∞, 0] → (0,+∞) with l =
∫ 0

−∞ υ(t)dt < +∞ a continuous function.
Recall that the abstract phase space Cυ is defined by

Cυ = {ϕ : (−∞, 0] → H, for any a > 0, (E |ϕ(θ)|2)1/2 is bounded and measurable

function on [−a, 0] and
∫ 0

−∞ υ(s) sup
s≤θ≤0

(E |ϕ(θ)|2)1/2ds < +∞}.

If Cυ is endowed with the norm

‖ϕ‖Cυ
=
∫ 0

−∞
υ(s) sup

s≤θ≤0
(E |ϕ(θ)|2) 1

2 ds, ϕ ∈ Cυ

then (Cυ, ‖.‖Cυ
) is a Banach space (see [20]).

Let us now recall some basic definitions and results of fractional calculus.

Definition 2.1. [21] The fractional integral of order α with the lower limit 0 for a function f is defined as

Iαf =
1

Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds t > 0 α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ(.) is the gamma function.

Definition 2.2. The Caputo derivative of order α with the lower limit 0 for a function f can be written as

cDαf(t) =
1

Γ(n− α)

∫ t

0

fn(s)
(t− s)α+1−n

ds = In−αf (n)(t), t > 0, 0 ≤ n− 1 < α < n
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The Caputo derivative of a constant equal to zero. If f is an abstract function with values in H, then the
integrals appearing in the above definitions are taken in Bochner’s sense (see [21]).

Lemma 2.1. 5 Let H be a Hilbert space and Φ1, Φ2 two operators on H such that

i) Φ1 is a contraction and

ii) Φ2 is completely continuous.

Then either

a) the operator equation Φ1x + Φ2x = x has a solution or

b) G = {x ∈ H : λΦ1(x
λ ) + λΦ2x = x} is unbounded for λ ∈ (0, 1) .

Lemma 2.2. [15] Let v(.), w(.) : [0, b] → [0,∞) be continuous function. If w(.) is nondecreasing and there exist two
constants θ ≥ 0 and 0 < α < 1 such that

v(t) ≤ w(t) + θ

∫ t

0

v(s)
(t− s)1−α

ds, t ∈ J

then

v(t) ≤ eθn(Γ(α))ntnα/Γ(nα)
n−1∑
j=0

(
θbα

α

)j

w(t),

for every t ∈ [0, b] and every n ∈ N such that nα > 1.

3 Existence results

Definition 3.3. An H- valued stochastic process {x(t), t ∈ (−∞, b]} is a mild solution of the system 1.1 if x(0)+µ(x) =
x0 = φ(t) on (−∞, 0] satisfying ‖φ‖2

Cυ
< +∞, the process x satisfies the following integral equation

x(t) = Sα(t)[φ(0)− µ(x)− h(0, φ)] + h(t, xt) +
∫ t

0

(t− s)α−1Tα(t− s)f(s, xs)ds

+
∫ t

0

(t− s)α−1Tα(t− s)
[∫ s

−∞
σ(s, τ, xτ )dW (τ)

]
ds

where
Sα(t)x =

∫ ∞

0

ζα(θ)S(tαθ)xdθ, Tα(t)x = α

∫ ∞

0

θζα(θ)S(tαθ)xdθ

and ζα is a probability density function defined on (0,∞)

The following properties of Sα(t) and Tα(t) appeared in [34] are useful.

Lemma 3.3. The operators Sα(t) and Tα(t) have the following properties

i) For any fixed t ≥ 0, Sα(t) and Tα(t) are linear and bounded operators such that for any x ∈ H

‖Sα(t)x‖H ≤ M ‖x‖H and ‖Tα(t)x‖H ≤ Mα

Γ(1 + α)
‖x‖H

ii) Sα(t) and Tα(t) are strongly continuous and compact.

To study existence of mild solutions of 1.1, we introduce the following hypotheses.

(H1) : The function h, f : J × Cυ → H are continuous and there exist some constants Mh,Mf , such that

E ‖h(t, x)− h(t, y)‖2
H ≤ Mh ‖x− y‖2

Cυ
, x, y ∈ Cυ, t ∈ J

E ‖h(t, x)‖2
H ≤ Mh(1 + ‖x‖2

Cυ
)

E ‖f(t, x)− f(t, y)‖2
H ≤ Mf ‖x− y‖2

Cυ
, x, y ∈ Cυ, t ∈ J

E ‖f(t, x)‖2
H ≤ Mf (1 + ‖x‖2

Cυ
)
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(H2) : µ is continuous and there exists some positive constants Mµ such that

E ‖µ(x)− µ(y)‖2
H ≤ Mµ ‖x− y‖2

Cυ
, x, y ∈ Cυ, t ∈ J

E ‖µ(x)‖2
H ≤ Mµ(1 + ‖x‖2

Cυ
)

(H3) : For each ϕ ∈ Cυ ,

k(t) = lim
a→∞

∫ 0

−a

σ(t, s, ϕ)dW (s)

exists and is continuous. Further, there exists a positive constant Mk such that

E ‖k(t)‖2
H ≤ Mk

(H4) The function σ : J × J1 × Cυ → L(K, H) satisfies the following:

i) for each (t, s) ∈ J×J×, σ(t, s, .) : Cυ → L(K, H) is continuous and for each x ∈ Cυ , σ(., ., x) : J×J → L(K, H)
is strongly measurable;

ii) there is a positive integrable function m ∈ L1([0, b]) and a continuous nondecreasing function Mσ :
[0,∞) → (0,∞) such that for every (t, s, x) ∈ J × J × Cυ , we have∫ t

0

E ‖σ(t, s, x)‖2
L0

2
ds ≤ m(t)Mσ(‖x‖2

Cυ
), lim inf

r→∞

Mσ(r)
r

ds = ∆ < ∞

iii) For any x, y ∈ Cυ, t ≥ 0, there exists a positive constant Lσ such that∫ t

0

E ‖σ(t, s, x)− σ(t, s, y)‖2
L0

2
ds ≤ Lσ ‖x− y‖2

Cυ

(H5) :
N0 = 2l2{12M2Mµ + 4Mh} (3.1)

N1 = 2 ‖φ‖2
Cυ

+ 2l2F̄ (3.2)

N2 = 8l2
(

Mα

Γ(1 + α)

)2
bα

α
Mf (3.3)

N3 = 16bl2
(

Mα

Γ(1 + α)

)2
bα

α
Tr(Q) (3.4)

K1 =
N1

1−N0
, K2 =

N2

1−N0
, K3 =

N3

1−N0
(3.5)

F̄ = 12M2(C1 + C2) + 12M2Mµ + 4Mh + 4
(

Mα

Γ(1+α)

)2
b2α

α2 Mf + 8b
(

Mα

Γ(1+α)

)2
b2α

α2 Mk (3.6)

Now, we consider the space,

C
′

υ = {x : (−∞, b] → H, x0 = φ ∈ Cυ}

Set ‖.‖b be a seminorm defined by

‖x‖b = ‖x0‖Cυ
+ sup

s∈[0,b]

(E |x(s)|2) 1
2 , x ∈ C

′

υ

We have the following useful lemma appeared in [20].
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Lemma 3.4. [6] Assume that x ∈ C′

υ , then for all t ∈ J , xt ∈ Cυ , Moreover,

l(E |x(t)|2) 1
2 ≤ ‖xt‖Cυ

≤ l sup
s∈[0,t]

(E |x(s)|2) 1
2 + ‖x0‖Cυ

where l =
∫ 0

−∞ υ(s)ds < ∞

The main object of this paper is to explain and prove the following theorem.

Theorem 3.1. Assume that assumptions (H0)− (H5) hold.Then there exists a mild solution

Proof Consider the map Π : C′

υ → C′

υ defined by

(Πx)(t) =


φ(t) t ∈ (−∞, 0]

Sα(t)[φ(0)− µ(x)− h(0, φ)] + h(t, xt) +
∫ t

0
(t− s)α−1Tα(t− s)f(s, xs)ds

+
∫ t

0
(t− s)α−1Tα(t− s)

[∫ s

−∞ σ(s, τ, xτ )dW (τ)
]
ds t ∈ J

(3.7)

In what follows, we shall show that the operator Π has a fixed point, which is then a mild solution for
system 1.1.
For φ ∈ Cυ , define

φ̃(t) =


φ(t) t ∈ (−∞, 0]

Sα(t)φ(0) t ∈ J

(3.8)

Then φ̃ ∈ C′

υ . Let x(t) = φ̃(t) + z(t), −∞ < t ≤ b. It is easy to see that x satisfies 1.1 if and only if z satisfies
z0 = 0 and

z(t) = Sα(t)
[
−µ(φ̃ + z)− h(0, φ)

]
+ h(t, φ̃t + zt) +

∫ t

0

(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

+
∫ t

0

(t− s)α−1Tα(t− s)
[∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)

]
ds

Let
C

′′

υ = {z ∈ C
′

υ, z0 = 0 ∈ Cυ}

For any z ∈ C′′

υ , we have

‖z‖b = ‖z0‖Cυ
+ sup

s∈[0,b]

(E ‖z(s)‖2)
1
2 = sup

s∈[0,b]

(E ‖z(s)‖2)
1
2

Thus (C′′

υ , ‖.‖b) is a Banach space, set

Bq = {z ∈ C
′′

υ , ‖z‖2
b ≤ q}, for some q ≥ 0

then, Bq ⊂ C′′

υ is uniformly bounded.

then, for each q, Bq is clearly a bounded closed convex set in C′′
. For z ∈ Bq, from Lemma 3.3, we have∥∥∥zt + φ̃t

∥∥∥2

Cυ

≤ 2(‖zt‖2
Cυ

+
∥∥∥φ̃t

∥∥∥2

Cυ

)

≤ 4(l2 sup
s∈[0,t]

E ‖z(s)‖2 + ‖z0‖2
Cυ

+ l2 sup
s∈[0,t]

E
∥∥∥φ̃(s)

∥∥∥2

+
∥∥∥φ̃0

∥∥∥2

Cυ

)

≤ 4l2(q + M2E ‖φ(0)‖2
H) + 4 ‖φ‖2

Cυ

= q̀

Define the operator Φ : C
′′

υ → C
′′

υ by
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(Φz)(t) =


0 t ∈ (−∞, 0]

Sα(t)[−µ(φ̃ + z)− h(0, φ)] + h(t, φ̃t + zt) +
∫ t

0
(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

+
∫ t

0
(t− s)α−1Tα(t− s)

[∫ s

−∞ σ(s, τ, φ̃τ + zτ )dW (τ)
]
ds t ∈ J

Observe that Φ is well defined on Bq for each q > 0.

Now we will show that the operator Φ has a fixed point on Bq, which implies that E.q 1.1 has a mild
solution. To this end, we decompose Φ as Φ = Φ1 + Φ2, where the operators Φ1 and Φ2 are defined on Bq,
respectively, by

(Φ1z)(t) = Sα(t)[−µ(φ̃ + z)− h(0, φ)] + h(t, φ̃t + zt)

(Φ2z)(t) =
∫ t

0

(t− s)α−1Tα(t− s)f(s, φ̃s + zs)ds

+
∫ t

0

(t− s)α−1Tα(t− s)
[∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)

]
ds

Thus, the theorem follows from the next theorem

Theorem 3.2. If assumption (H1)− (H5) hold, then Φ1 is a contraction and Φ2 is completely continuous.

Proof To prove that Φ1 is a contraction on C′′

υ , we take u, v ∈ C′′

υ . Then for each t ∈ J we have

E ‖Φ1u(t)− Φ1v(t)‖2
H ≤ 2E

∥∥∥Sα(t)(µ(φ̃ + u)− µ(φ̃ + v))
∥∥∥2

H

+ 2E
∥∥∥h(t, φ̃t + ut)− h(t, φ̃t + vt)

∥∥∥2

H

≤ 2M2Mµ ‖u− v‖2
Cυ

+ 2Mh ‖ut − vt‖2
Cυ

≤ 2(M2Mµ + Mh) ‖ut − vt‖2
Cυ

≤ 2(M2Mµ + Mh)

[2l2 sup
s∈[0,t]

E ‖u(s)− v(s)‖2 + 2 ‖u0‖2
Cυ

+ 2 ‖v0‖2
Cυ

]

≤ 4l2(M2Mµ + Mh)E ‖u(s)− v(s)‖2

≤ sup
s∈[0,b]

L0E ‖u(s)− v(s)‖2

where we have used the fact that ‖u0‖2
Cυ

= 0, ‖v0‖2
Cυ

= 0.
Thus,

‖Φ1u− Φ1v‖ ≤ L0 ‖u− v‖

and by assumption 0 ≤ L0 ≤ 1 it is clear that Φ1 is contraction.

Now, we show that the operator Φ2 is completely continuous, firstly we prove that Φ2 : C′′

h → C′′

h is contin-
uous.

Let {zn(t)}∞n=0,with zn → z in C′′

h . Then, there is a number q ≥ 0 such that |zn(t)| ≤ q, for all n and a.e.
t ∈ J . So z(n) ∈ Bq and z ∈ Bq.

f(t, z(n)
t + φ̃t) → f(t, zt + φ̃t)

σ(s, τ, z(n)
τ + φ̃τ ) → σ(s, τ, zτ + φ̃τ )
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for t ∈ J , and since

E
∥∥∥[f(t, z(n)

t + φ̃t)− f(t, zt + φ̃t)]
∥∥∥2

≤ 2Mq′ (t)

E
∥∥∥[σ(s, τ, z(n)

τ + φ̃τ )− σ(s, τ, z(n)
τ + φ̃τ )]

∥∥∥2

≤ 2m(t)Mσ(q
′
)

By the dominated convergence theorem we obtain continuity of Φ2

E
∥∥∥Φz

(n)
t − Φtz

∥∥∥2

≤2 sup
t∈J

E

∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)[f(t, z(n)
s )− f(t, zs)]ds

∥∥∥∥2

+ 2b sup
t∈J

E

∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)
[∫ s

−∞
[σ(s, τ, z(n)

τ )− σ(s, τ, zτ )]dw(τ)
]

ds

∥∥∥∥2

≤ 2
(

Mα

Γ(1 + α)

)2
b2α

α2

∫ t

0

E
∥∥∥[f(t, z(n)

s )− f(t, zs)]
∥∥∥2

ds

+ 2b

(
Mα

Γ(1 + α)

)2
b2α

α2

∫ t

0

E

∥∥∥∥[∫ s

−∞
[σ(s, τ, z(n)

τ )− σ(s, τ, zτ )]dw(τ)
]

ds

∥∥∥∥2

→ 0 as n →∞

Next, we prove that Φ2 maps bounded sets into bounded sets in C′′

υ .
For each z ∈ Bq from [3.4], we have

∥∥∥zt + φ̃t

∥∥∥2

Cυ

≤ 4l2(q + M2E ‖φ(0)‖2
H) + 4 ‖φ‖2

Cυ
= q

′

E ‖Φ2z(t)‖2
H ≤ 2E

∥∥∥(t− s)α−1Tα(t− s)f(s, φ̃s + zs)
∥∥∥2

H

+ 2E

∥∥∥∥(t− s)α−1Tα(t− s)[
∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)]ds

∥∥∥∥2

H

≤ 2
{

Mα

Γ(1 + α)

}2
bα

α

∫ t

0

(t− s)α−1Mf (1 +
∥∥∥φ̃s + zs

∥∥∥2

Cυ

)ds

+
{

Mα

Γ(1 + α)

}2
bα

α

∫ t

0

(t− s)α−1(2Mk + 2Tr(Q)m(s)Mσ(
∥∥∥φ̃s + zs

∥∥∥2

Cυ

)ds.

≤ 2
{

Mα

Γ(1 + α)

}2
b2α

α2
Mf (1 + q

′
)

+ 2
{

Mα

Γ(1 + α)

}2
b2α

α2
(Mk + Tr(Q)Mσ(q

′
) sup

t∈J
m(s))

≤ r

Which implies that for each z ∈ Bq, |Φ2z‖2
b ≤ r.

Next, we establish the compactness of Φ2. We employ the Arzela-Ascoli theorem to show the set V (t) =
{(Φ2z)(t), z ∈ Bq} is relatively compact in H. Le 0 < t ≤ b be fixed and ε be a real number satisfying 0 < ε ≤ t.
For δ > 0, for z ∈ Bq, We define
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(Φε,δ
2 z)(t) = α

∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ))S((t− s)αθ)f(s, φ̃s + zs)ds

+ α

∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ))S((t− s)αθ)[
∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)]ds

= S(εαδ)α
∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ))S((t− s)θ − εαδ)f(s, φ̃s + zs)ds

+ S(εαδ)α
∫ t−ε

0

∫ ∞

δ

θ(t− s)α−1ηα(θ))S((t− s)θ − εαδ)[
∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)]ds

Since S(t), t > 0, is a compact operator, the set Vε,δ = {Φε,δ
2 (t), z ∈ Bq} is relatively compact in H for every

ε ∈ (0, t), δ > 0. Moreover, for each z ∈ Bq, we have

E
∥∥∥(Φ2z)(t)− (Φε,δ

2 z)(t)
∥∥∥2

H

≤ 4α2E

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)α−1ηα(θ)S((t− s)αθ)f(s, zs + φ̃s)dtθds

∥∥∥∥∥
2

H

+ 4α2E

∥∥∥∥∫ t

t−ε

∫ ∞

δ

θ(t− s)α−1ηα(θ)S((t− s)αθ)f(s, zs + φ̃s)dθds

∥∥∥∥2

H

+ 4α2E

∥∥∥∥∥
∫ t

0

∫ δ

0

θ(t− s)α−1ηα(θ)S((t− s)αθ)
[∫ s

−∞
σ(s, τ, zτ + φ̃τ )dW (τ)

]
dθds

∥∥∥∥∥
2

H

+ 4α2E

∥∥∥∥∥
∫ t

t−ε

∫ δ

∞
θ(t− s)α−1ηα(θ)S((t− s)αθ)

[∫ s

−∞
σ(s, τ, zτ + φ̃τ )dW (τ)

]
dθds

∥∥∥∥∥
2

H

≤ 4M2b2αMf (1 + q
′
)

(∫ δ

0

θηα(θ)dθ

)2

+
4M2ε2αMf (1 + q

′
)

Γ2(1 + α)

+ 4αM2bα

∫ t

0

(t− s)α−1(2Mk + 2Tr(Q)Mσ(q
′
)m(s))ds

(∫ δ

0

θηα(θ)dθ

)2

+
4αM2εα

Γ2(1 + α)

∫ t

t−ε

(t− s)α−1(2Mk + 2Tr(Q)Mσ(q
′
)m(s))ds

where we have used the equality (see [22, 29])

∫ ∞

0

θςηα(θ) =
Γ(1 + ς)
Γ(1 + ας)

We see that for each z ∈ Bq

E
∥∥∥(Φ2z)(t)− (Φε,δ

2 )
∥∥∥2

H
→ 0 as ε+ → 0, δ −→ 0.

Since the right-hand side of the above inequality can be made arbitrarily small, there is relatively compact
Vε,δ arbitrarily close to the set V (t). Hence, the set V (t) is relatively compact in Bq. It remains to showt hat Φ2

maps is bounded set into equicontinuous sets of C′′

υ .
Let 0 < ε < t < b and δ > 0 such that ‖Tα(s1)− Tα(s2)‖ ≤ ε, for every s1, s2 ∈ J .
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with |s1 − s2| < δ. For z ∈ Bq, we have

E ‖Φ2z(t + h)− Φ2z(t)‖2
H

≤ 6E

∥∥∥∥∫ t

0

[(t + h− s)α−1 − (t− s)α−1]Tα(t + h− s)f(s, φ̃s + zs)ds

∥∥∥∥2

H

+ 6E

∥∥∥∥∥
∫ t+h

t

(t + h− s)α−1Tα(t + h− s)f(s, φ̃s + zs)ds

∥∥∥∥∥
2

H

+ 6E

∥∥∥∥∫ t

0

(t− s)α−1[Tα(t + h− s)− Tα(t− s)]f(s, φ̃s + zs)ds

∥∥∥∥2

H

+ 6E

∥∥∥∥∫ t

0

[(t + h− s)α−1 − (t− s)α−1]Tα(t + h− s)[
∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)ds]

∥∥∥∥2

H

+ 6E

∥∥∥∥∥
∫ t+h

t

(t + h− s)α−1Tα(t + h− s)[
∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)ds]

∥∥∥∥∥
2

H

.

+ 6E

∥∥∥∥∫ t

0

(t− s)α−1[Tα(t + h− s)− Tα(t− s)][
∫ s

−∞
σ(s, τ, φ̃τ + zτ )dW (τ)ds]

∥∥∥∥2

H

≤ 6
{

Mα

Γ(1 + α)

}2 ∫ t

0

∣∣(t + h− s)α−1 − (t− s)α−1
∣∣2 Mf (1 + q

′
)ds

+ 6
{

Mα

Γ(1 + α)

}2 ∫ t+h

t

∣∣(t + h− s)α−1
∣∣2 Mf (1 + q

′
)ds

+ 6ε2
∫ t

0

∣∣(t− s)α−1
∣∣2 Mf (1 + q

′
)ds + 6

{
Mα

Γ(1 + α)

}2 ∫ t

0

∣∣(t + h− s)α−1 − (t− s)α−1
∣∣2

× (2Mk + 2Tr(Q)m(s)Mσ(q
′
))ds

+ 6
{

Mα

Γ(1 + α)

}2 ∫ t

0

∣∣(t + h− s)α−1
∣∣2 (2Mk + 2Tr(Q)m(s)Mσ(q

′
))ds

+ 6ε2
∫ t

0

∣∣(t− s)α−1
∣∣ (2Mk + 2Tr(Q)m(s)Mσ(q

′
))ds

It is known that the compactness of Tα(t), t > 0 implies the continuity in the uniform operator topology.
Therefore, for ε sufficiently small, the right-hand side of the above inequality tends to zero as h → 0. Thus,
the set {Φ2z, z ∈ Bq} is equicontinuous.
This completes the proof that Φ2 is completely continuous.

To apply the Krasnoselski-Schaefer theorem, it remains to show that the set

G = {x ∈ H : λΦ1(
x

λ
) + λΦ2x = x} is bounded for λ ∈ (0, 1)

.
We consider the following nonlinear operator equation,

x(t) = λ (Sα(t)[φ(0)− µ(x)− h(0, φ)]) + λh(t, xt)

+ λ

∫ t

0

(t− s)α−1Tα(t− s)f(s, xs)ds

+ λ

∫ t

0

(t− s)α−1Tα(t− s)
[∫ s

−∞
σ(s, τ, xτ )dW (τ)

]
ds
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E ‖x(t)‖2 ≤ E ‖Sα(t)(φ(0)− µ(x)− h(0, φ))‖2
H + 4 ‖h(t, xt)‖2

H

+ 4E

∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)f(s, xs)ds

∥∥∥∥2

H

+ 4E

∥∥∥∥∫ t

0

(t− s)α−1Tα(t− s)
[∫ s

−∞
σ(s, τ, xτ )dW (τ)

]
ds

∥∥∥∥2

H

≤ 12M2(C1 + C2 + Mµ) + 12M2(1 + ‖x‖2
Cυ

)

+ 4
(

Mα

Γ(1 + α)

)2
b2α

α2
Mf (1 + ‖x‖2

Cυ
)

+ 4b

(
Mα

Γ(1 + α)

)2
bα

α

∫ t

0

(t− s)α−1(2Mk + 2Tr(Q)m(s)Mσ(‖xs‖2
Cυ

)ds

Now, we consider the function ν defined by

ϑ(t) = sup{E ‖x(s)‖2
, 0 ≤ s ≤ t}, 0 ≤ t ≤ b

From lemma [3.4] and the above inequality, we have

E ‖x(t)‖2 = 2 ‖φ‖2
Cυ

+ 2l2 sup
0≤s≤t

(E ‖x(s)‖2)

Therefore, we get

ϑ(t) ≤ 2 ‖φ‖2
Cυ

+ 2l2{F̄ + 12M2ϑ(t) + 4
(

Mα

Γ(1 + α)

)2
b2α

α2
Mfϑ(t)

+ 8b

(
Mα

Γ(1 + α)

)2
bα

α

∫ t

0

(t− s)α−1Tr(Q)m(s)Mσ(ϑ(s))ds}

where F̄ is given in (3.6). Thus, we have

ϑ(t) ≤ K1 + K2

∫ t

0

ϑ(s)
(t− s)1−α

ds + K3

∫ t

0

m(s)Mσ(ϑ(s))ds

where K1,K2,K3 are given in (3.5). By Lemma [2.2], we have

ϑ ≤ B0(K1 + K3

∫ t

0

m(s)Mσ(ϑ(s))ds)

Where

B0 = eKn
2 (Γ(α))nbnα/Γ(nα)

n−1∑
j=0

(
K2b

α

α

)j

Denoting by ν(t) the right hand side of the last inequality, we have ν(0) = B0K1

ν̀(t) ≤ B0K3m(t)Mσϑ(t)

ν̀(t) ≤ B0K3m(t)Mσ(ϑ(t))

This implies ∫ ν(t)

ν(0)

ds

Mσ(s)
≤
∫ b

0

π(s)ds <

∫ ∞

B0K1

ds

Mσ(s)

This inequality implies that there is a constant ρ such that ν(t) ≤ ρ, t ∈ J and hence ϑ(t) ≤ ρ, t ∈ J .
Furthermore, we get ‖xt‖2

Cυ
≤ ϑ(t) ≤ ν(t) ≤ ρ, t ∈ J , where ρ depends only on b and on the functions π(s)

and Mσ(s).

Theorem 3.3. Assume that the hypotheses (H1)− (H5) hold. Then problem has at least one mild solution on J.
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Proof. Let us take the set

D(Φ) = {z ∈ C
′′

υ : z = λΦ1(
z

x
) + λΦ2z for some λ ∈ [0, 1]} (3.9)

Then, for any z ∈ D(Φ), we have by theorem ... that ‖x‖2
Cυ
≤ K, t ∈ J , and hence

‖z‖2
b = ‖z0‖2

Cυ
+ sup{E ‖z(t)‖2 ; 0 ≤ t ≤ b}

= sup{E ‖z(t)‖2 : 0 ≤ t ≤ b}

≤ sup{E ‖x(t)‖2 : 0 ≤ t ≤ b}+ sup{E
∥∥∥φ̃(t)

∥∥∥2

: 0 ≤ t ≤ b}

≤ sup{l− ‖x(t)‖2
Cυ

: 0 ≤ t ≤ b}+ sup{‖sα(t)φ(0)‖ : 0 ≤ t ≤ b}

≤ l−ρ + M1 ‖φ(0)‖2

This implies that D is bounded on J. Consequently by Lemma 2.1 , the operator Φ has a fixed point z ∈ C′′

h .
So Eq.(1.1) has a mild solution.Theorem is proved.

Example 3.1. As an application of the above result,consider the following fractional order neutral stochastic partial
differential system with non local conditions and infinite delay in Hilbert space.

cDα
t [z(t, x)−

∫ t

−∞ e4(s−t)z(s, x)ds] = ∂2

∂x2 [z(t, x)−
∫ t

−∞ e4(s−t)z(s, x)ds] + η(t, x)

+
∫ 0

−∞ â(s) sin z(t + s, x)ds +
∫ t

−∞
∫ t

−∞ σ(t, x, s− t)dsdβ(s, x) t ∈ J = [0, b]

z(t, 0) = z(t, π) = 0 t ∈ J

z(0, x) +
∫ π

0
k1(x, y)z(t, y)dy = x0 = ϕ(t, x) t ∈ (−∞, 0],

(3.10)

Where cDα is a Caputo fractional partial derivative of order α ∈ (0, 1), and K1(x, y) ∈ H = L2([0, π] × [0, π]) and∫ 0

−∞ |â(s)| ds < +∞. β(t) is a one-dimensional standard Wiener process on filtered probability space (Ω,F , (Ft)t≥0, P).
To rewrite this system into the abstract form (1.1), let H = L2([0, π]) with the norm ‖.‖. Define A : H → H by
A(t)z = z

′′
with the domain

D(A) =
{

z ∈ H : z, z
′

are absolutely continuous , z
′′
∈ H, z(0) = z(π) = 0

}
It is well known that A generates a strongly continuous semigroup T(.),which is compact,analytic and self adjoint.
Then

Az =
∞∑

n=1

n2 〈z, zn〉 zn, z ∈ D(A)

where zn(s) =
√

2
π sin(ns), n = 1, 2, .... is the orthonormal set of eigenvector of A. It is well known that A is thein

infinitesimal generator of ananalytic semigroup T(t)in H and is given by

T (t)z =
∞∑

n=1

e−n2t 〈z, zn〉 zn

Then the operator A−
1
2 is given by

A−
1
2 z =

∞∑
n=1

n 〈z, zn〉 zn

on the space D(A−
1
2 ) = {z(.) ∈ H :

∞∑
n=1

n 〈ζ, zn〉 zn ∈ H}.

11



Now, we present a special Cυ space. Let ϑ(s) = e2s, s < 0, then l =
∫ 0

−∞ ϑ(s)ds = 1
2 .

Let

‖ϕ‖Cυ
=
∫ 0

−∞
h(s) sup

s≤θ≤0
E
(
‖ϕ(θ)‖2

) 1
2

ds

Then (Cυ, ‖.‖Cυ
) is a Banach space.

For (t, ϕ) ∈ J × Cυ where ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π], and define the Lipschitz continuous
functions h, f : J × Cυ → H , σ : J × Cυ → LQ(H), for the infinite delay as follows

h(t, ϕ)(x) =
∫ 0

−∞
e−4θϕ(θ)(x)dθ

f(t, ϕ)(x) =
∫ 0

−∞
â(θ) sin(ϕ(θ)(x))dθ

σ(t, ϕ)(x) =
∫ 0

−∞
ς(t, x, θ)σ(ϕ(θ)(x))dθ

Then, the equation (3.10) can be rewritten as the abstract form as the system 1.1. Thus, under the appropriate
condition so the functions h,f, and σ are satisfies the hypotheses (H1) − (H5). All conditions of the Theorem 3.2 are
satisfied, therefore the system (3.10) has a mild solution.
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[23] Mophou, G. M., N’Guérékata, G. M, Existence of the mild solution for some fractional differential equa-
tions with nonlocal conditions, Semigroup Forum, 79(2009), 315-322.

[24] Parthasarathy, C., Mallika Arjunan, M, Existence results for impulsive neutral stochastic functional
integro-differential systems with infinite delay, Malaya Journal of Matematik, (2012), 2641.

[25] Pazy, A, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathe-
matical Sciences, Vol 44, New York, Springer, 1983.

[26] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications,
1993.

[27] Sobczyk, K.: Stochastic Differential Equations with Applications to Physics and Engineering, Klüwer Academic
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