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Abstract

The aim of this paper is to study the symmetry properties of positive solutions of nonlinear elliptic bound-
ary value problems of type

∆u + f (|x|, u,∇u) = 0 in Rn.

u(x) → 0 as |x| → ∞

We employ the moving plane method based on maximum principle on unbounded domains to obtain the
result on symmetry.
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1 Introduction

The moving plane method is a clever way of using the maximum principle to obtain the qualitative prop-
erties of positive solutions of some elliptic equations, notably the symmetry of solutions. It was introduced
by Alexandroff [6] in his study of surfaces of constant mean curvature. In 1971, Serrin [13] first proved the
symmetry properties of some overdetermined elliptic problems. It has become welknown through the work of
Gidas, Ni and Nirenberg [3],[4] where it was used to obtain the symmetry results for positive solutions of non-
linear elliptic equations. Since then, this method has been further developed and used in variety of problems
by many researchers. Pucci, Sciunzi and Serrin [12] studied symmetry of solutions of degenerate quasilin-
ear elliptic problems by applying comparison principle. Farina, Montoro and Sciunzi [2] obtained symmetry
results for semilinear p-Laplacian equation. In this paper we present an approach based on the maximum
principle in unbounded domains together with the method of moving planes. Recently Dhaigude and Patil
[1] proved the symmetry result for same equation in unit ball. Naito [10] obtained symmetry result for semi-
linear elliptic equations in R2. Further Naito [9] studied the semilinear elliptic problem ∆u + f (|x|, u) = 0 in
Rn where u(x) → 0 as |x| → ∞.

In this paper we study the radial symmetry of positive solutions for nonlinear elliptic boundary value
problems for second order elliptic equations in Rn. We consider the problem of the form

∆u + f (|x|, u,∇u) = 0 in Rn (1.1)

u(x) → 0 as |x| → ∞

where n ≥ 3. We organise the paper as follows: In section 2 the preliminary results and some useful lemmas
are proved. The symmetry result and corollaries are proved in the last section.

∗Corresponding author.
E-mail address:dnyanraja@gmail.com(D.B.Dhaigude ) sdinkarpatil95@gmail.com (D.P. Patil ).



24 D.B. Dhaigude, D.P.Patil / Radial Symmetry ... elliptic BVP

2 Preliminaries

In this section, first we state some lemmas and theorem which are useful to prove our main result.

Lemma 2.1. Hopf Boundary lemma[5] : Let Ω be closed subset of Rn. Suppose that Ω satisfies the interior sphere
condition at x0 ∈ ∂Ω. Let L be strictly elliptic with c ≤ 0 where

L ≡
n

∑
i,j=1

aij(x)
∂2

∂xi ∂xj

+ bi(x)
n

∑
j=1

∂

∂xj
+ c(x)

If u ∈ C2(Ω) ∩ C(Ω̄) satisfies L(u) ≥ 0 and maxΩ̄ u(x) = u(x0) then either u = u(x0) on Ω or

lim inf
t→0

u(x)− u(x0 + tν)
t

> 0

for every direction ν, pointing into an interior sphere. If u ∈ C1 ⊂ Ω ∪ {0} then

∂u
∂ν

(x0) < 0,

where ∂
∂ν is any outward directional derivative.

Lemma 2.2. [8] Let Ω be unbounded domain in Rn . Suppose that u 6= 0 satisfies

L(u) ≤ 0 in Ω and u ≥ 0 on ∂Ω.

Suppose furthermore that there exist a function w such that w > 0 on Ω ∪ ∂Ω and L(w) ≤ 0 in Ω. If

u(x)
w(x)

→ 0 as |x| → ∞, x ∈ Ω

then u > 0 in Ω.

Theorem 2.1. [11] Let u(x) satisfies differential inequality

(L)(u) ≥ 0,

in a domain Ω where L is uniformly elliptic. If there exist a function w(x) such that, w(x) > 0 on Ω ∪ ∂Ω

(L)(w) ≤ 0 in Ω

then u(x)
w(x) can not attain a non negative maximum at a point p on ∂Ω, which lies on the boundary of a ball in Ω and if u

w
is not constant then,

∂

∂ν

(u
v

)
> 0 at P

where ∂
∂ν is any outward directional derivative.

3 Main Results

We define following,
Let λ > 0 a real number. Define the plane Tλ = {x : x = (x1, x2, x3, ......., xn), x1 = λ}, which is the plane

perpendicular to x1-axis. We will move this plane continuously normal to itself to new position till it begins
to intersect Ω. After that point the plane advances in Ω along x1- axis and cut of cap Σλ; which is the portion
of Ω and lies in the same side of the plane Tλ as the original plane T.
Σλ = {x : x1 < λ, x ∈ Ω}.
Let xλ = (2λ− x1, x2, x3, ......xn) be the reflection of the point x = (x1, x2, x3, ..., xn), about the plane Tλ.
Define Vλ(x) = u(x)− u(xλ). We have |xλ| ≥ |x| and u(xλ) = u(2λ− x1, x2, x3, ..., xn).
Define Λ = {λ ∈ (0, ∞) : Vλ(x) > 0} for x ∈ Σλ.
In (1.1), we assume that f (|x|, u(x),∇u(x)) is continuous and C1 in u ≥ 0. Also assume that f (|x|, u(x),∇u(x))
is nonincreasing in |x| = r > 0, for each fixed u ≥ 0.

Our main result is the following
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Theorem 3.2. Let u ∈ C2(Rn) be a positive solution of (1.1) with following conditions

1. f is continuous in all of its variables and Lipschitz in u

2. f (|x|, u, (p1, p2, p3, ..., pi−1,−pi, pi+1, ..., pn)) = f (|x|, u, (p1, p2, p3, ..., pn)) for all 1 ≤ i ≤ n

3. f is nonincreasing in |x| = r > 0, for each fixed u ≥ 0.

Define U and Φ as
U(r) = Sup{u(x) : |x| ≥ r} (3.1)

Φ(r) = Sup
{ ∂ f

∂u
(|x|, u(x),∇u(x)) : 0 ≤ u(x) ≤ U(r)

}
(3.2)

respectively. Assume that there exist a positive function w on |x| ≥ R0 for some R0 > 0 satisfying

∆w + φ(|x|)w ≤ 0 in |x| > R0 (3.3)

lim
|x|→∞

u(|x|)
w(x)

= 0, (3.4)

then u must be radially symmetric about some point x0 ∈ Rn and ur < 0 for r > 0.

Before proceeding to the proof of main result we shall state and prove some lemmas.

Lemma 3.1. Let λ ≥ 0 then
∆Vλ(x) + Cλ(x)Vλ(x) ≤ 0 in Σλ, (3.5)

where

Cλ(x) =
∫ 1

0
fu(|x|, u(x) + t(u(xλ)− u(x)),∇u(x))dt.

Proof. Let u be the positive solution of (1.1), u(xλ) satisfies the same equation that u does.

∆u(xλ) + f (|xλ|, u(xλ),∇u(xλ)) = 0 in Rn. (3.6)

Since u(x) = u(x1, x2, x3, ..., xn)

∇u(x) = î1
∂u
∂x1

+ î2
∂u
∂x2

+ î3
∂u
∂x3

+ ... + în
∂u
∂xn

= (p1, p2, p3, ..., pn).

Since u(xλ) = u(2λ− x1, x2, x3, ..., xn)

∇u(xλ) = î1
∂u
∂x1

(−1) + î2
∂u
∂x2

+ î3
∂u
∂x3

+ ... + în
∂u
∂xn

= (−p1, p2, p3, ..., pn).

Subtracting equation (3.6) from equation (1.1) we get

0 = [∆u(x) + f (|x|, u(x),∇u(x))]− [∆u(xλ) + f (|xλ|, u(xλ),∇u(xλ))]

= ∆u(x)− ∆u(xλ) + f (|x|, u(x),∇u(x))− f (|xλ|, u(xλ),∇u(xλ))

= ∆Vλ(x) + f (|x|, u(x), (p1, p2, p3, ..., pn))− f (|xλ|, u(xλ), (−p1, p2, p3, ..., pn))

= ∆Vλ(x) + f (|x|, u(x), (p1, p2, p3, ..., pn))− f (|xλ|, u(xλ), (p1, p2, p3, ..., pn))

≥ ∆Vλ(x) + f (|x|, u(x),∇u(x))− f (|x|, u(xλ),∇u(x))

≥ ∆Vλ(x) +
f (|x|, u(x),∇u(x))− f (|x|, u(xλ),∇u(x))

u(x)− u(xλ)
(u(x)− u(xλ))

≥ ∆Vλ(x) + Cλ(x)Vλ(x))
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where

Cλ(x) =
f (|x|, u(x),∇u(x))− f (|x|, u(xλ),∇u(x))

u(x)− u(xλ)

=
∫ 1

0
fu(|x|, u(x) + t(u(xλ)− u(x)),∇u(x))dt.

Before the next lemma we shall define, B0 = {x ∈ Rn : |x| < R0} and B̄0 = {x ∈ Rn : |x| ≤ R0}.

Lemma 3.2. Let λ > 0, If Vλ > 0 on ∂Σλ ∩ B̄0 then λ ∈ Λ.

Proof. Let λ > 0. Suppose Vλ > 0 on ∂Σλ ∩ B̄0 then from lemma 3.1 and assumption we have

∆Vλ(x) + Cλ(x)Vλ(x) ≤ 0 in Σλ \ B̄0

Vλ(x) ≥ 0 on ∂(Σλ \ B̄0)

As U(r) = sup{u(x) : |x| ≥ r} and Φ(r) = sup{ fu(|x|, u(x),∇u(x))}
U(r) is nonincreasing,
0 < u(x) + t(u(xλ)− u(x)) ≤ u(|x|), 0 ≤ t ≤ 1.
Then by lemma 3.1,

Cλ(x) =
∫ 1

0
fu(|x|, u(x) + t(u(xλ)− u(x)),∇u(x))dt

≤
∫ 1

0
fu(|x|, U(x),∇u(x))dt

≤
∫ 1

0
Φ(|x|)dt ≤ Φ(|x|) in Σλ.

From

∆w + φ(|x|)w ≥ 0 in |x| ≥ R0

lim
|x|→∞

u(|x|)
w(x)

= 0.

The positive function w satisfies
∆w + φ(|x|)w ≤ 0 in Σλ \ B̄0

and
Vλ(x)
w(x)

≤ U(|x|)
w(x)

→ 0 in x ∈ Σλ \ B̄0 as |x| → ∞.

Hence by maximum principle, Vλ(x) > 0 in Σλ \ B̄0.
By assumption Vλ(x) > 0 in Σλ. Therefore λ ∈ Λ.

Lemma 3.3. If λ ∈ Λ then ∂u
∂x1

< 0 on Tλ

Proof. Let λ ∈ Λ. Hence λ > 0. By lemma 3.1

∆Vλ(x) + Cλ(x)Vλ(x) ≤ 0 in Σλ

Vλ(x) ≥ 0 on ∂(Σλ).

On Tλ we have,
u(x) = u(xλ).

Hence Vλ(x) = 0 on Tλ.
By Hopf boundary lemma, ∂Vλ

∂x1
< 0 on Tλ. Therefore ∂u

∂x1
= 1

2
∂Vλ
∂x1

< 0 on Tλ

Now we shall prove the main theorem 3.2
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Proof. Since u(x) is positive solution of (1.1) such that

lim
|x|→∞

u(x) = 0,

then we can find R1 > R0 such that

max{u(x) : |x| > R1} < min{u(x) : |x| ≤ R0}

where R0 is constant. We shall prove the theorem in following three steps.
Step-I: Define B̄0 = {x ∈ Rn : |x| < R0}. Clearly B̄0 ⊂ Σλ̄ . Let λ ≥ R1. Also Vλ(x) ≥ 0 in B̄0. Therefore
Vλ(x) ≥ 0 in Σλ ∩ B̄0. Hence λ ∈ Λ. Thus we can conclude that [R1, ∞) ⊂ Λ.
Step-II: To prove,If λ0 ∈ Λ then there exist ε > 0 such that (λ0 − ε, λ0) ⊂ Λ. We use contradiction method

to prove this. Suppose there exist increasing sequence {λi}, i = 1, 2, 3, ... such that λi /∈ Λ and λi → λ0 as
i → ∞ then by contradiction to lemma 3.2 we have a sequence {xi}, i = 1, 2, 3, ... such that xi ∈ Σλi ∩ B̄0 and
Vλi (xi) ≤ 0 . It has a subsequence which converges to x0 ∈ ¯Σλ0 ∩ B̄0. Then Vλ0(x0) ≤ 0 but in Σλ0 we have
Vλ0(x0) > 0, therefore x0 ∈ Tλ0 .
Using mean value theorem we can find yi satisfying

∂u
∂xi

(yi) ≥ 0

on the line segment joining xi → xλi
i for each i = 1, 2, 3, ... also yi → x0 as i → ∞. So ∂u

∂x1
(x0) ≥ 0. But by

lemma 3.3 we have
∂u
∂xi

(x0) ≤ 0.

This is a contradiction.Hence the step-II is proved.
Thus if λ0 ∈ Λ then there exist ε > 0 such that (λ0 − ε, λ0) ⊂ Λ.
Step-III: In this step we shall prove that either statement (A) or statement (B) happens.
(A)Vλ1(x) = 0 for some λ1 > 0 and ∂u

∂x1
< 0 on Tλ for λ > λ1

or
(B)Vλ1(x) > 0 in Σλ0 and ∂u

∂x1
< 0 on Tλ for λ > λ0

We have λ1 = inf{λ > 0|(λ, ∞) ⊂ Λ}. Therefore λ1 > 0 or λ1 = 0 be the two distinct cases.
Case - 1: If λ1 > 0, since u is continuous function, Vλ1 ≥ 0 in Σλ1 . Therefore by lemma 3.1

∆Vλ(x) + Cλ(x)Vλ(x) ≤ 0 in Σλ1

By strong maximum principle we have either Vλ(x) ≥ 0 or Vλ(x) = 0 in Σλ1 . If Vλ(x) = 0 , then statement (A)
occurs, i.e. u(x) = u(xλ1) holds and by lemma 3.3 ∂u

∂x1
< 0 on Tλ for λ > λ1. Now suppose Vλ1(x) > 0 in Σλ1 ,

then λ1 ∈ Λ As we have already proved, there exist ε > 0 such that (λ1 − ε, λ1) ⊂ Λ. This contradicts to the
fact that λ1 is infimum. Therefore Vλ1(x) = 0 in Σλ. This implies (A) holds.
Case - 2: λ1 = 0
Since u(x) is continuous we have Vλ1(x) > 0 in Σ0.
Therefore Vλ1(x) = u(x)− u(x0) ≥ 0 in Σ0. Therefore u(x) ≥ u(x0) in Σ0.
By lemma 3.3 ∂u

∂x1
< 0 on Tλ forλ > 0. Thus (B) holds. If statement (B) occurs in step- III, we can repeat the

previous steps I-III for the negative x1− direction to conclude that either u is symmetric in the x1− direction
about some plane x1 = λ1 < 0 or u(x) ≤ u(x0) in Σ0. Thus u(x) = u(x0) in Σ0. Thus u must be radially
symmetric in x1− direction about some plane and strictly decreasing away from the plane. Since we can place
x1− axis along any direction we conclude that u(x) is radially symmetric in every direction about some plane.
Therefore u is radially symmetric about some point x0 ∈ Rn and ur < 0.

Corollary 3.1. Assume that fu(r, u,∇u) ≤ 0 for r ≥ r0, 0 ≤ u ≤ u0 with some constants r0 ≥ 0 and u0 ≥ 0.
Let u be the positive solution of (1.1). Then u must be radially symmetric about some point x0 ∈ Rn and ur < 0 for
r = |x − x0| > 0.

Remark 3.1. . If gradient term is absent in f , related results have been obtained in [4, 7, 9].
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Proof. We see that the function U defined by (3.1) satisfies U(r) → 0 as |x| → ∞.
Take R0 > r0 so large that U(r) < u0 for r ≥ R0. Define w as w(x) ≡ 1 on |x| > R0, then w satisfies (3.4).

Since Φ(r) = max{ ∂ f
∂u (|x|, u(x),∇u(x))|0 ≤ u(x) ≤ U(r)} ≤ 0 for r ≥ R0 we have (3.3). Thus all the conditions

of theorem are satisfied so we can apply the theorem for conclusion.

For simplicity we consider the equation of the form

∆u + φ(|x|) f (u(x),∇u(x)) = 0 in Rn (3.7)

with the assumption that φ ∈ C[0, ∞) satisfies φ(r) ≥ 0 for r ≥ 0 and φ(r) is nonincreasing in r > 0, and that
f ∈ C1[0, ∞) with f (u,∇u)) > 0 for u > 0.

Corollary 3.2. In equation (3.7),suppose that

1. f is continuous in all of its variables and Lipschitz in u

2. f (|x|, u, p1, p2, p3, ..., pi−1,−pi, pi+1, ..., pn) = f (|x|, u, p1, p2, p3, ..., pn) for all 1 ≤ i ≤ n

3. f is nonincreasing in |x|, for each fixed u ≥ 0

we furthermore assume that φ 6≡ 0 and ∫ ∞

0
rφ(r)dr < ∞. (3.8)

Let u be positive solution of (3.7) , satisfying u(x) → c as |x| → ∞ for some constant C ≥ 0, then u must be radially
symmetric about the origin and ur < 0 for r > 0.

Remark 3.2. . If gradient term is absent in f , related results have been obtained by [4, 7, 9].

Proof. Consider V(x) = u(x)− C. Then we have ∇V(x) = ∇u(x) and hence ∆V(x) = ∆u(x). Then V satisfies

∆V(x) + φ(|x|)h(V) = 0 in Rn

V(x) → 0 as |x| → ∞

where h(V) = f (V + C,∇V)
Since −∆V = φh ≥ 0, we have V > 0 in Rn, by the maximum principle. We apply theorem 3.2 to the

problem (3.7). We define U and Φ as U(r) = sup{V(x) : |x| ≥ r} and Φ(r) = sup{φ(r)h′(s) : 0 < s ≤ U(r)}
respectively. Since Φ(r) ≤ Mφ(r) for some constant M > 0. and (3.8) holds. Then there exist a positive
function w on |x| > R0 for some R0 > 0 satisfying

∆w(x) + φ(|x|)w(x) = 0 and

w(x) → 0 as |x| → ∞

Then w satisfies the conditions of the theorem 3.2. Therefore theorem 3.2 can be applied to conclude the
assertion.
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