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Abstract

The aim of this paper is to study the symmetry properties of positive solutions of nonlinear elliptic bound-
ary value problems of type
Au—+ f(|x|,u,Vu) =0 in R".
u(x) - 0as |x| — o0

We employ the moving plane method based on maximum principle on unbounded domains to obtain the
result on symmetry.
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1 Introduction

The moving plane method is a clever way of using the maximum principle to obtain the qualitative prop-
erties of positive solutions of some elliptic equations, notably the symmetry of solutions. It was introduced
by Alexandroff [6] in his study of surfaces of constant mean curvature. In 1971, Serrin [13] first proved the
symmetry properties of some overdetermined elliptic problems. It has become welknown through the work of
Gidas, Ni and Nirenberg [3]],[4] where it was used to obtain the symmetry results for positive solutions of non-
linear elliptic equations. Since then, this method has been further developed and used in variety of problems
by many researchers. Pucci, Sciunzi and Serrin [12] studied symmetry of solutions of degenerate quasilin-
ear elliptic problems by applying comparison principle. Farina, Montoro and Sciunzi [2] obtained symmetry
results for semilinear p-Laplacian equation. In this paper we present an approach based on the maximum
principle in unbounded domains together with the method of moving planes. Recently Dhaigude and Patil
[1] proved the symmetry result for same equation in unit ball. Naito [10] obtained symmetry result for semi-
linear elliptic equations in R?. Further Naito [9] studied the semilinear elliptic problem Au + f(|x|,u) = 0 in
R"™ where u(x) — 0 as |x| — oc.

In this paper we study the radial symmetry of positive solutions for nonlinear elliptic boundary value
problems for second order elliptic equations in R". We consider the problem of the form

Au+ f(|x|,u,Vu) =0 in R" (1.1)

u(x) — 0as |x| = o0

where n > 3. We organise the paper as follows: In section 2 the preliminary results and some useful lemmas
are proved. The symmetry result and corollaries are proved in the last section.
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2 Preliminaries

In this section, first we state some lemmas and theorem which are useful to prove our main result.

Lemma 2.1. Hopf Boundary lemmal]] : Let () be closed subset of R". Suppose that ) satisfies the interior sphere
condition at xg € 00). Let L be strictly elliptic with ¢ < 0 where

3 ay(x) 505 + b Y
L= a;i(x)=—=— +b;j(x) } — +c(x)
ij=1 P00y 3 9%;

Ifu € C2(Q) N C(Q) satisfies L(u) > 0 and maxg u(x) = u(xo) then either u = u(xg) on Q or

(x) —u(xg+tv) 50

.. u
liminf
t—0

for every direction v, pointing into an interior sphere. If u € C' € QU {0} then

%(XO) <0,
where % is any outward directional derivative.
Lemma 2.2. [8] Let Q) be unbounded domain in R" . Suppose that u # 0 satisfies
Lu)<0 in Q and u>0 on 9O.
Suppose furthermore that there exist a function w such that w > 0on QUOQ and L(w) <0 in Q. If

u(x)
w(x)

—0 as |x| o200, x€Q

thenu >0 in Q.
Theorem 2.1. [11] Let u(x) satisfies differential inequality
(L)(u) =0,
in a domain Q) where L is uniformly elliptic. If there exist a function w(x) such that, w(x) >0 on QUIQ
(L)(w) <0 in Q

then Z)((J;) can not attain a non negative maximum at a point p on 0Q), which lies on the boundary of a ball in QY and if

is not constant then,

2 (M soar

where % is any outward directional derivative.

3 Main Results

We define following,

Let A > 0 a real number. Define the plane T) = {x : x = (x1, X2, X3, ...... ,Xn), X1 = A}, which is the plane
perpendicular to x;-axis. We will move this plane continuously normal to itself to new position till it begins
to intersect ). After that point the plane advances in () along x;- axis and cut of cap X,; which is the portion
of () and lies in the same side of the plane T as the original plane T.
Ta={x:x <AxeQ}.
Let x* = (2A = x1,x, X3, ......x ) be the reflection of the point x = (x1, xp, X3, ..., X, ), about the plane T}.
Define V; (x) = u(x) — u(x*). We have |x*| > |x| and u(x}) = u(2A — x1,x2, x3, ..., Xp).
Define A = {A € (0,00) : V) (x) > 0} for x € X,.
In (T.T), we assume that f(|x|, u(x), Vu(x)) is continuous and C! in u > 0. Also assume that f(|x|, u(x), Vu(x))
is nonincreasing in |x| = r > 0, for each fixed u > 0.

Our main result is the following
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Theorem 3.2. Let u € C2(R") be a positive solution of with following conditions
1. fis continuous in all of its variables and Lipschitz in u
2. f(lxl,u, (p1, P2, 3/ s Pi-1, = Pis Pi1s - Pn)) = f(IX|, 10, (p1, P2, P3, s Pn)) forall 1 <i<n
3. fis nonincreasing in |x| = r > 0, for each fixed u > 0.

Define U and ¢ as

U(r) = Sup{u(x) : x| = r} (3.1)
of : 2
&(r) = Supy 5 (Ix],ulx), Vu(x)) : 0 < u(x) < U(r) (3-2)

respectively. Assume that there exist a positive function w on |x| > Ry for some Ry > 0 satisfying
Aw+ ¢(|x))w < 0in |x| > Ry (3.3)

u(lx|)

—= =0, 34
x| =00 Ww(X) G4

then u must be radially symmetric about some point xo € R" and u, < 0 forr > 0.
Before proceeding to the proof of main result we shall state and prove some lemmas.

Lemma 3.1. Let A > 0 then

AVy(x) + Cy(x)Vy(x) <0in Xy, (3.5)
where .
= /0 Fullx), u(x) + t(u(xd) — u(x)), Vu(x))dt.
Proof. Let u be the positive solution of (1.1), u(x") satisfies the same equation that u does.
Au(x) + F(|xM, u(xY), Vu(x*)) = 0 in R". (3.6)
Since u(x) = u(x1,x2,x3, ..., X5)
Vu(x) —iAa—u+[ ou + 13 ou + .. +z’a—u
Yox; T Poxy  Coxs T Moy

= (plr pZ/ p3,..., pn)
Since u(x/\) = u(2A — x1, X0, X3, ..., Xp)

—z‘au( 1)+za ey
19x, 29x; | Coxs " ox,

= (_pl/ PZ/ PB/ weey p}’l)

Vu(xt)

Subtracting equation from equation we get
0 = [Au(x) + f(|x], u(x), Vu(x)] = [Au(a?) + f(|x*], u(xh), Vu(xh))]

|
= Au(x) — Au(x*) + f(|x], u(x), Vu(x)) — f(|x*], u(x?), Vu(x*))
= AV (x) + f(|x], u(x), (p1, P2, P3, s Pn)) — F(IXM], (), (=1, P2, D3 oos D))
= AV (x) + f(Ix], u(x), (p1, P2, P3s s Pn)) — FXM | u(xY), (P1s P2, P3s s 1))
> AVy(x) + f(|x], u(x), Vu(x)) — f(|x|,u(x*), Vu(x))
>AV/\( ) f(|X|,M(X) i(i;_igjﬁ\'; ( ) ( ))( ( ) u(x)x))

> AV) (x) + Cy(x) Vi (x))
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where

_ Sl u(x), Vu(x)) — f(lx|, u(x*), Vu(x))
Crlo) = u(x) —u(x?)

= /01 Fullx],u(x) + t(u(x*) —u(x)), Vu(x))dt.

Before the next lemma we shall define, By = {x € R" : |[x| < Ro} and By = {x € R" : |x| < Ro}.
Lemma 3.2. Let A > 0,If V) > 00n dX, N By then A € A.
Proof. Let A > 0. Suppose V) > 0 on 9%, N By then from lemma3.1]and assumption we have
AV)(x) + Cp(x)Vy(x) <0in X, \ By
Vi(x) >0 on 9(Zy \ Bo)

As U(r) = sup{u(x) : |x| > r} and ®(r) = sup{fu (x|, u(x), Vu(x))}
U(r) is nonincreasing,
0 < u(x)+t(u(x") —u(x)) <u(lx]), 0<t<1.

Then by lemma
1
Ca(x) = /0 Fullxlu(x) + Hu(ed) - u(x), Vu(x))dt
1
< /0 Fullx], U(x), Vu(x))dt
1
< [ #(xhdr < a(x)) in %,
0
From

Aw + ¢(|x|)w > 0 in |x| > Ry
u(lx[)

x| =00 w(x)
The positive function w satisfies
Aw+ ¢(|x])w < 0in ) \ By

and
Vi) _ U(la)

w(x) ~ w(x)

—0inx € X, \ By as |x| — oo.

Hence by maximum principle, V, (x) > 0 in X, \ Bo.
By assumption V) (x) > 0 in X,. Therefore A € A.

Lemma 3.3. If A € A then 387”1 <0on Ty
Proof. Let A € A. Hence A > 0. By lemma[3.]]

AVy(x) + Cr(x)V)(x) <0in Xy
Vi(x) > 0on d(X,).

On T, we have,

Hence V) (x) =0on T).
By Hopf boundary lemma, aa% < 0on T). Therefore 337”1 = %aa% <0onT,

Now we shall prove the main theorem 3.2]
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Proof. Since u(x) is positive solution of (1.1) such that

lim u(x) =0,
|x| —00

then we can find Ry > Ry such that
max{u(x) : |x| > Ry} < min{u(x) : |x| < Ro}

where Ry is constant. We shall prove the theorem in following three steps.

Step-I: Define By = {x € R" : |x| < Ro}. Clearly By C £; . Let A > R;. Also V,(x) > 0in By. Therefore
Vi(x) > 0in X, N By. Hence A € A. Thus we can conclude that [Ry, %) C A.

Step-1I: To prove,If Ag € A then there exist € > 0 such that (1g — €, A9) C A. We use contradiction method
to prove this. Suppose there exist increasing sequence {A;},i = 1,2,3,... such that A; ¢ A and A; — Ag as
i — oo then by contradiction to lemmawe have a sequence {x;},i = 1,2,3, ... such that x; € ¥, N By and
V), (xi) < 0. It has a subsequence which converges to xo € Z_Ao N By. Then Vy,(x0) < 0butin X, we have
Vo (x0) > 0, therefore xg € T),.

Using mean value theorem we can find y; satisfying

ou
—(y;) >
axi(yl)—o

on the line segment joining x; — x;\f foreachi = 1,2,3,... also y; — xp asi — oo. So 837”1(9(0) > 0. But by

lemma[3.3]we have
ou

ox;
This is a contradiction.Hence the step-II is proved.
Thus if Ay € A then there exist € > 0 such that (Ag — €, Ag) C A.
Step-III: In this step we shall prove that either statement (A) or statement (B) happens.
(A)V), (x) = 0 for some A1 > 0 and 5’7”1 <0onT,forA > Aq
or
(B)V),(x) > 0in X, and 5?7”1 <0on T, for A > Ay
We have A1 = inf{A > 0](A,00) C A}. Therefore A1 > 0 or A; = 0 be the two distinct cases.
Case - 1: If A1 > 0, since u is continuous function, V), > 0in ¥, . Therefore by lemma

(x0) <0.

AV (x) + Cyr(x)Vy(x) <0 in Y

By strong maximum principle we have either V) (x) > 0 or V) (x) = 0in X, . If V) (x) = 0, then statement (A)
occurs, i.e. u(x) = u(x*1) holds and by lemmaﬁ 887“1 < 0on Ty for A > A;. Now suppose V) (x) > 0in X, ,
then Ay € A As we have already proved, there exist € > 0 such that (A1 —€,A1) C A. This contradicts to the
fact that A is infimum. Therefore V), (x) = 0in X. This implies (A) holds.

Case-2: A1 =0

Since u(x) is continuous we have V), (x) >0 in .

Therefore Vy, (x) = u(x) — u(x?) > 0in Zg. Therefore u(x) > u(x) in Z.

By lemma 687”1 < 0on T forA > 0. Thus (B) holds. If statement (B) occurs in step- 1II, we can repeat the
previous steps I-III for the negative x; — direction to conclude that either u is symmetric in the x;— direction
about some plane x; = A; < 0or u(x) < u(x?) in . Thus u(x) = u(x?) in Zg. Thus u must be radially
symmetric in x; — direction about some plane and strictly decreasing away from the plane. Since we can place
x1— axis along any direction we conclude that u(x) is radially symmetric in every direction about some plane.
Therefore u is radially symmetric about some point xy € R” and u, < 0. O

Corollary 3.1. Assume that f,(r,u,Vu) < 0 forr > r9,0 < u < ug with some constants ro > 0 and ug > 0.
Let u be the positive solution of (1.1). Then u must be radially symmetric about some point xq € R" and u, < 0 for
r=|x —xp| > 0.

Remark 3.1. . If gradient term is absent in f, related results have been obtained in [4,[7, [9].
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Proof. We see that the function U defined by satisfies U(r) — 0 as |x| — oo.

Take Ry > rg so large that U(r) < ug for r > Ry. Define w as w(x) = 1 on |x| > Ry, then w satisfies (3.4).
Since ¢(r) = max{%(|x|, u(x), Vu(x))|0 < u(x) < U(r)} < 0forr > Ry we have (8.3). Thus all the conditions
of theorem are satisfied so we can apply the theorem for conclusion. O

For simplicity we consider the equation of the form
Au+ ¢(|x])f(u(x), Vu(x)) =0 in R" (3.7)

with the assumption that ¢ € CJ0, o0) satisfies ¢(r) > 0 for r > 0 and ¢(r) is nonincreasing in * > 0, and that
f € C10,00) with f(u, Vu)) > 0 for u > 0.

Corollary 3.2. In equation (3.7),suppose that
1. fis continuous in all of its variables and Lipschitz in u
2. f(lx[,u, p1, P2, 3y s Picts = Pis Pigds oo Pu) = f(X| 14, 1, P2, P3, ooy ) forall 1 < i<
3. fis nonincreasing in |x|, for each fixed u > 0
we furthermore assume that ¢ # 0 and
/0oo r¢(r)dr < oo. (3.8)

Let u be positive solution of (3.7) , satisfying u(x) — c as |x| — oo for some constant C > 0, then u must be radially
symmetric about the origin and u, < 0 for r > 0.

Remark 3.2. . If gradient term is absent in f, related results have been obtained by [4, 7, [9].

Proof. Consider V(x) = u(x) — C. Then we have VV(x) = Vu(x) and hence AV (x) = Au(x). Then V satisfies

AV (x) + ¢(|x)h(V) = 0 in R"

V(x) -0 as |x] — o0

where h(V) = f(V+C,VV)

Since —AV = ¢h > 0, we have V > 0 in R", by the maximum principle. We apply theorem [3.2] to the
problem (3.7). We define U and ® as U(r) = sup{V(x) : |x| > r} and &(r) = sup{p(r)h'(s) : 0 < s < U(r)}
respectively. Since ®(r) < Mg¢(r) for some constant M > 0. and holds. Then there exist a positive
function w on |x| > R for some Ry > 0 satisfying

Aw(x) + ¢(|x])w(x) =0 and

w(x) — 0 as |x| — o

Then w satisfies the conditions of the theorem Therefore theorem [3.2] can be applied to conclude the
assertion. O
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