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Abstract

Motivated by the problem (1.1) in [5], in this paper, we prove the existence and uniqueness of solutions for

the following system of fractional differential equations with four point boundary conditions:

D*x(t)+ f (ty (t),D°y (t)) =0,t €],

DPy (1) +g (t, () Tx(t)) =0,t €],
x(0) =y (0) = ( ) =Mx () =0,y (1) — Ay () =0,
x"(0) =y" (0) 2 (1) = Ax (§) = 0,y (1) = Azy” (§) =0,

where3 < a,<4a-2<0c<a-1-2<6<B-10<§y <1 and D%, DB, D? and DY, are the
Caputo fractional derivatives, ] = [0,1], A1, A are real constants with A1y # 1,A,§ # 1 and f, ¢ continuous

functions on [0,1] x R?.
Keywords: Caputo derivative; Boundary Value Problem; fixed point theorem.
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1 Introduction

Differential equations of fractional order have been shown to be very useful in the study of models of
many phenomena in various fields of science and engineering, such as electrochemistry, physics, chemistry,
viscoelasticity, control, image and signal processing, biophysics. For more details, we refer the reader to
[4,17,110,12][13}[15] 17} [18] and references therein. There has been a significant progress in the investigation of
these equations in recent years, see [6,[8} 9} [15] 16| 27]. More recently, some basic theory for the initial bound-

ary value problems of fractional differential equations has been discussed in [I} 14} [15]. Recently, existence
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and uniqueness of solutions to boundary value problems for fractional differential equations had attracted
the attention of many authors, see for example, [4] 6} 8, 9} 15, 16} 19, 27] and the references therein. The study
of coupled system of fractional order is also important as such systems occur in various problems of applied
science [3} [11} 20} 21} 24, [26]). In the last decade, many authors have established the existence and uniqueness
for solutions of some systems of nonlinear fractional differential equations, one can see [20, 23 24, 25] and
references cited therein. For example in [2} 5,21} 26] the authors established sufficient conditions for the exis-
tence of solutions for a two-point and three-point boundary value problem for a coupled system of fractional
differential equations.

In [2, 5, 21], 22, 26], the existence and uniqueness of solutions was investigated for a nonlinear coupled
system for fractional differential equations with two-point and three-point boundary conditions by using
Schauder’s fixed point theorem.

Motivated by the problem (1.1) in [5], this paper deals with the existence of solution for the following

fractional differential problem:

D*x(t)+ f (ty(t), D’y (t)) =0,t €],

Dlgy(t)Jrg(t,x(t),D‘Tx(t)) =0,te], (L.1)

x(0) = (0) = 0,x (1) = Ayx () = 0,y (1) — Ay () =0, '
(

X
x"(0) =" (0) = 0,x" (1) = Aax" (§) = 0,y" (1) = A2y" (§) =0,

where3 < o, < 4a-2<c<a-1,-2<d06<B-10<§n <1 and D*,DP,D?® and D7, are
the Caputo fractional derivatives, ] = [0,1],Aq, Ay are real constants with A7 # 1,125 # 1 and f, g are
continuous functions on [0,1] x R2.

The rest of this paper is organized as follows. In section 2, we present some preliminaries and lemmas.
Section 3 is devoted to existence of solution of problem (1.1). In section 4 examples are treated illustrating our

results.

2 Preliminaries

The following notations, definitions, and preliminary facts will be used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator of order &« > 0, for a continuous function f on

[0, oo] is defined as:

t
Jf(6) = ¢ (1“) /O (t—1)* 1 f(T)dT,a >0, (2.2)

If(4) = f(#),

where T () := [° e "u®"1du.
Definition 2.2. The fractional derivative of f € C" ([0, 0o[) in the Caputo’s sense is defined as:

Df(t) = ﬁ /Ot (t—7)" 1 (r)ydT,n —1 < a,n € N*. (2.3)

n—uow
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For more details about fractional calculus, we refer the reader to [[15} [18].

We will consider the following spaces:
X={x:xe€C([0,1]),D%x € C([0,1])},
and

Y={y:yeC(01]),D% e C([0,1])},

endowed with the norms:

lxllx = X[l + [IDx]l, [|lx| = sup |x (£)], [|Dx]| = SUJJDID‘TX(f)II
te

te]

and

4| = sup Dy ).

Iylly = Iyl + | D
te]

Nyl =suply(t)],
te]

We know that (X, | . [|x) and (Y, || . |ly),is a Banach space. The product space (X x Y, [|(x,y)| x,y) is also a
Banach space, with norm [|(x,y) [y = [1xl1x + [yl -

We recall the following important lemmas [13]:
Lemma 2.1. For a > 0, the general solution of the fractional differential equation D*x (t) = 0 is given by
x(t) = co+cit+ cot? 4+ .4 cy1t" 1, (2.4)
wherec; € R,i=0,1,2,.,n—1,n=[a] + 1.
Lemma 2.2. Let « > 0. Then
JED%x (t) = x (t) + co+ c1t + ot + ..+ ¢ t"71, (2.5)
forsomec; € R,i=0,1,2,..,n—1,n=[a] +1.
We prove the following result:
Lemma 2.3. Let g € C([0,1]), the solution of the equation
D*x(t)+g(t)=0,te], 3<a<4, (2.6)
subject to the conditions
x(0)=0,x(1)—AMx(y) =0, (2.7)
x"(0) =0, x" (1) — Ax" (§) =0,

is given by:
t
x(t) = —r(la) /0 (£ o g (0 ds N
Aqt U .
+(?\117—1)F(u<)/0 (7 —)" "' g (s)ds

t 1 .
- @ , 9 e
(AZ - /\2/\1773) t+ (Ao — Ap) t 3 .
6(Mn—1)(A5—1T (a—2) /0 (E—9)" g (s)ds
(1-Mp’) b+ /\177—1.‘.3 1
6 (A —1)(A5-1)T /0 (s)ds.
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Proof. We use the same technics as in [5]. For c; € R,i =0,1,2,3, and by Lemmas 2.1,2.2, we have

— 1 ' x—1 2 3
x(t‘)——m/0 (t—s)"""g(s)ds —co—c1t — cat” —c3t

Using (2.7), we get cop = ¢ = 0, and

A i .
Cl:_mfo (n—s)""g(s)ds
1 1 .
T, 9 s

Az (1= A7) § o
_6(A117—1)(Az§—1)r(a—2)/0 (§—9)"7g(s)ds

(1-My) 1 o
+6(/\1’7—1)()\2§1—1)l"(¢x—2)/0 (1-s9) Sg(s)ds

and

A g .
C36(/\2§_1)r(,x_2)/0 (§—9)" " g(s)ds

1 1 .
+6<A2§—1>r<a—2>/o (1=9)"g(s)ds

Substituting the value of ¢; and c3 in (2.9), we obtain the desired quantity in Lemma.

3 Main Results

Let us set:

a1
My = 351wt D)

(JA2=2A2A 3 |+1A2A =22 )8 2+ 1= A1 |+ Ay 1]

+ 8117 1Aa8 1T (a—1) ’
_ 1 [A1]7*+1
Mz = ey t AT T2 =0)
[A2 =223 |8 24 1=y [AaA1n=Aa |82+ | A1y 1]

T ST @-1T2=0) T My—1[Ag—1T(@—T)I (G—a)”

My = A=ttt (Pa-Aabir [ haday— 22§24 1| i 1|

[A1n—1T(B+1) 6[A1n—1[]A25-1T (1)
_ 1 AP 41
My = =5y T AT BT R=0)
[A2=A2A1 73|82+ |1- Ay [A2A11 =g 824 Ay —1|

F A —TE-TT(E-DT2=0) T Ty —11A25-1T(B-1I (33’
(|Aa=A2n? |+ =A2])8* 2+ |1-Ar | +| Ay =1

L= 87 1TA281(a—T) :

L, = M2 IApR] L (dahg—AglE A1
2 = G-I a—TT2—0)  My—1[E—1Ta—1)I(4—a)
[n— ([A2=2Ao A3 | +1A2A 1 —A | ) 8P 24| 1Ay np® |+ Ay -1

3 6[A7—1[[A3—1[T(B—1) ’

Ly — [A2=AA1 3 |82+ 1A% + |A2A17—Ag 8P4 Ay —1]
4 = A A IT(B-DI2—0) | Thy—1]A8 1T(B-DIE-3)"

Let us also consider the following hypotheses:

33

(2.9)

(2.10)

(2.11)

(3.12)

(H1) : There exist two constants k; and k, such that for all t € [0,1] and (x1,1), (x2,y2) € R?, we have
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|f (t,x1,y1) — f (£ x2,y2)] < Ky (Jx1 — 22| + [y1 — y2l),
1§ (t,x1,y1) — & (£, x2,y2)| < ko (Jx1 — x2| + [y1 — v2|) -

(H2)) : The functions f , g : [0,1] x R? — R are continuous

(H3) : There exists positive constants Ny and N; such that

If (t,x,y)| < N1, |g(t,x,y)] < Npforeacht € Jandall x,y € R.

We prove the following theorem:

Theorem 3.1. Assume that (H1) holds.

If
k1 (M] + Mz) + ko (M3 + M4) <1,

then the problem (1.1) has a unigue solution.

Proof. The proof is similarly to that of Theorem 3.1 in [5] by taking k1 = wq + w; and ky = @1 + @>.

Now, we prove the following result:

Theorem 3.2. Assume that the hypotheses (H1) — (H2) and (H3) are satisfied, such that

k161 + ko6, < 1,

where

g, = Mn—ttlh 1 1 n M7t +1
1= A =1 (a+1) Tla—o+1) " Ay—1T(a+D)T(2—0)’
g, — An—tlP+r 1 [MlrPi

[\ —1|T(B+1) I(p—o+1) * [Ay—1L(B+1)I(2-0)"

If there exists yu € R such that
N1 (M1 + M) + Np (M3 + My) <,

then, the problem (1.1) has at least a solution.

(3.13)

(3.14)

(3.15)

(3.16)

Proof. We shall use Krasnselskii’s fixed point theorem to prove that ¢ has at least a fixed point on X x Y.

Suppose that (3.16) holds and let us take

¢ (x,y) (1) :==T (x,y) (£) + R (x,y) (1),
where

T (x,y) () = (Tiy (t), Tax (t)),

t
Tiy () =~y [ (=517 (s.3(5), Dy (5)) ds

U
s o [ -9 (39, D (9) s

(3.17)

(3.18)

(3.19)
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t
Tox (t) = _%ﬁ)/o (t—s)PLg(s,x(s),D%x (s))ds
Aqt U a—1 o
+ Gar=1T B ; (—s)"""g(s,x(s),Dx(s))ds
1
- T | (=9 e x(s), D (s)) s

and
R(x,y) (t) == (Ray (t) , Rox (t)),

where,

A=A ) - (Aadg—A) e 2 _
Rly (t) = ( 2(/\12,7,1;7)2/\25(,12)1}&,22)) /() (5 - S)a 3f (S/y (S)/Dtsy (5)) ds

)t - 1 e
- 6<(A1;7—1Y)()A2§(—i;7r(a)—2)/0 (1—s) 3f(s,y(s),D‘5y (S)> ds,

Ag—AaAy )+ (Mg A p—Ag) 2 _
Rax (1) = Uit it [0 (5 =5 25 (5,x(5), D7 (5)

1) A -18 1 _
- 6(()\1177117)()/\29711;71“(/3)72)/0 (1-5)"g(s,x(s),Dx (s)) ds.

The proof will be given in several steps.

35

(3.20)

(3.21)

(3.22)

(3.23)

Step1: We shall prove that for any (x,y),(x1,y1) € By, then T (x,y) + R(x1,y1) € By, Such that B, =

{(xy) € XY [(x, Y)llxy < B}
For any (x,y),(x1,y1) € By and for each t € | we have:

i 1
Ty (0)+ R (0] =]~y [ (t=9"f (5,99, Dy (5)) ds
+ W /077 (7—s)""'f (S,y (s), D% (S)) ds

1
-t ) =9 (55,0 ) s

(A=A ) i+ (Ap Ay —Ag) P

§ a—3 ) d
T s T 2) (§—s) f(s,y(s),D J/(S)) s

TEDT) PING IR IR 3
_6((/\177_11)())\2§—11)1“(ﬂ—2) /0 (1=s)""f (Sry (s), D% (S)) ds |
then,
t N
Ty )+ Ruys (0] < el [ (=917 |f (s.5(5), Dy (5)) | s
U
+ it [ =9 [ (5w (0, Dy ) a5
1 ! a—1 )
+W/o (1—5) ‘f(s,y(s),Dy(s))’ds

+|)\2—/\2)L1773‘+\/\2?\1’7—)\2| §
6lMy—1[[A25 1T («=2) ~ [,

=" |f (5.1 (), D1 (9)) | s

1-AP |+ A 1] ! -3 5
+ /O (=92 (5,31 (), Dy (5)) | ds.
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Using (H3), we obtain

AMy—=1|+|A1 g%
ITay (6) + Rags (1)) < Ny [ Ayt lnt ]

+ N {[(IMAzAmﬂzml_nllxg)_;*lrzal_ll)m3|+m1|] .
Consequently,
[Tiy () + Raya (1) < NyMy.
Thus,
T2 (v) + Ry (y1)]] < NiMy,
and

t
DTy (1) + DR ()] < iy | (=9 [F (s.56), Dy (5)) | s
A T a—1 1)
ﬂm_ulr(%/o (7 —s) ’f(sr]/(S),D }/(S))’ds

1
* \Alv—ﬂrga)r(zfa)’/o (1-9)" f(s,y(s),D y(S))‘dS
[Aa—A2A17

;

b | TR AT 2T / (E—s)*3 ‘ f (531 (5), D1 (5)) ‘ ds
+ 111—A2 0

| -T2 o)

r |1-A1 7|

+ [A17-1]
L " Ay =1[[A28-1T(a=2)T (4~0)

By (H3), we have

1 Al +1
DTy (1) + D Raya ()] < Ny [r(aﬂml) + \Aqull\l"l(‘oizjtl)l"(Zfa)}

Ao—AoA 3 vc—2+17)\ 3 _ a—2 _
+N1[ e i | SOV IS PP S Y S VU

617 1oE 1@ I2—0)  Thy-1[8 1T 1)I{E-0)

Consequently, we obtain

|D"Tyy (t) + D Ryy; (t)] < NiM,.

Hence,

ID”Ty (y) + DRy (y1)[| < NiMa.

Combining (3.24) and (3.25) , yields
1Ty () + Ry (y1)llx < N1 (Mq + Ma).

Analogously, we have

IT2 (%) + Rz (x1)[ly < N2 (M3 + My).

Hence, it follows from (3.26) and (3.27) that

IT (x,y) + R(x1, y1)ll xxy < N1 (M1 + M) + Na (M3 + My) < p.

Step2: We shall prove that R is continuous and compact.

(3.24)

1
4| IR —2T(2=0) /O (1— )3 ’f (S,y1 (s), D’y (S)> ‘ ds.

(3.25)

(3.26)

(3.27)

(3.28)
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[1¥] : The continuity of f and g implies that the operator R is continuous.
[2*] : Now, we prove that R maps bounded sets into bounded sets of X x Y.

For (x,y) € By and for each t € |, we have:

A=A Pt oA —Ag B [ _
Ry ()] < Pttt [ 6= |7 (s 9, Dy (5))|

1Ayt Ay —11e [ 3 5
+ ST A (1-s9)" ‘f (Sry(s)/D y(S)) ‘ ds.
Using (H3), we obtain

[A2=AA1 73 |+ A2 A= A2] )8 2+ 1- AP [+ |Ar 1]
64 7 —1[[A28— T[T (a—T1)

<N (JA2= AP |+ A2 A= A2] )82+ 1= AP+ A =1
= 6[A17—1][A2§—1I'(a—1) )

Ryy ()] < Ml

Thus,
IRiy ()] < NiLy,t €],
Therefore,
Ry (y)|| < NiLy. (3.29)
On the other hand,

)\2—)\2)\]173 - + 3
< oy (T [0 e )
A —1[A5 1T (4-0)
[1-Aqp3 et + 1
ot | TR ) [0 o)
[A17=1]]A28 1T (4—0)

By (H3), we have

|A2—AoAa P [3* 2 +[1-A1p’) AaAq 7= A 8 2+ Ay 1|
D7y (6) 55bh[6M4n—1Azg—lrxa—lﬂwz—a>'*Aqn5f|Az§51I%a—1hx4—a>

<N [A2=A2A1 73|82+ |1-Aq 7 + [A2A =22 |82+ |A 1]
= N A =131 @a—1I(2—0) " Ay—1[[A23— 1T (a—D)I(4—0)

Consequently, we obtain

IDRyy ()| < NiLo,t € ].

Therefore,
DRy (y)| < N1Lo. (3.30)
Hence, from (3.29) and (3.30), we have
[R1 (¥)llx < Ni1(L1+La). (3.31)
Similarly, it can be shown that
[R2 (x)]ly < Nz (L3 + Ly). (3.32)

It follows from (3.31) and (3.32) that

IR (x,y)lxxy < N1(L1+La) + Na (L + Ly). (3.33)



38 M. Houas et al. / Some Results for a Four-Point...
Consequently,
IR (¢, )|l xxy < oo

[3*] : We show that R is equi-continuous:

Letty,to € J,such thatt; < t; and (x,y) € By. Then, we have:

A=A 173 | (ba—t1 )+ |Ap A=Ay | (B —13 § a—
Ruy (1) = Ry (v)] < P2l el 2 a2 (s,y(5), Dy () ds

1-Mi2|(t1—t2)+ A =1 (B -8 1 -3 5
1 e G 2)/0 (=57 (909, D%y 5)) as.

Using (H3), we obtain

Np|Ap—AgA 3 Ee—2
|R1y (tZ) - Rly (tl)‘ < 6\/\111!—21\\)\§§1—’71|1‘"(0¢—1) (tZ - tl) (3.34)

N1|1—/\1173|
+ e (- f2)

Ni|ApA1—Ap 82 3 3 Ni|An—1] 3 3
ey iren \2 1) s inereen (i)

and
Pa—AoaP|[(57-H") €
o o < | Ty IRE T @ 2020 / a3 5
DRy (t2) — DRy (1) < s | [ 5= £ (s9(9), D%y ()| ds

7 -1A25 1T (a=2)F(4-0)
[1-Aar] (7=t )

1

6|A117—1][A2§—-1|T (a—2)[ (2—0) _ o\&—-3 1)

* S0 a9 | (5w (9.0 ) fas
[A157=1[[A28—1[T («a—2)['(4—0)

By (H3), we have:

Ny [Ap—AgA 73|82 1— 1—
ID7Ruy (t2) = DRy ()| < gt e e=s) (tz -t U) (3.35)
N1|l—/\1173‘ 1— 1—
+ e (15 )
+ Ny ApAy7—Ap[84~2 (t3—17 _ t3—(7>
Ay —1][A§—1T(a—1)[(4—0) \ 2 1
Ni|A—1] 3— 3—
B Mmfl\IAzgfll\F(a—l)r(sza) (tl -t a) .

Hence, by (3.34) and (3.35), we obtain

Ni|Aa =AM 73|32 72 Ny 12173
Ry (f2) — Riy (t1) [ x < 6 —T[A8—1|T (a—1) (2 —t1) + 6A17—1|[A2E—1T(a—T1) (1 — t2)
Ni|ApAyn—Ap|§2 3 .3 NilAg—1] 3 .3
e e (8- 8) + gt (8- 8)

Ni|A2—=ApA 7?5272 1-0 1-o
Ry e [ v ey ) (tz — ) (3.36)
N1‘1*A1773| 1-0 1-0
T A A AT DT 2—0) (tl — b )
+ Ni[AgAy7—Ap[§* 2 <t3fa _ t3fa)
1A 1T a-DTE o) \ L2 1

Ni[Ap—1] (370_ 370)
T g re e\~ )
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Analogously, we can obtain

Np[Ap=AxAin® 8P 2 Na |12y |
IR2x (t2) = Rox ()lly < gzt (2 — 1) + g ime (f1 — f2)

Na[Ap Ay —Ap|8F—2 (3 ) Np|Ay7—1] (3_ 3)
+ 8-t \2 1) T gmgaig-are-n (B~ B

Na|A—ApA17P 8P 2 1-6 416
T ST (B-T)T(2=9) (fz —h ) (337)

+ Na|1-A17 -0 _ 416
6|17 —1[[A8-1[T(B-1)T'(2—0) \'1 2

No|AgA177—Ap|8P2 (3—5 _ 3-5)
+ Mt are-nra—s (2 - —h

Ny |Ayn—1]| (3757 34)
* e (TR )

Thanks to (3.36) and (3.37), we can state that ||¢ (x,y) (t2) — ¢ (x,y) (f1)|| — 0 as t; — t. Then, as a
consequence of steps ([1*], [2*],[3*]) , we can conclude that R is continuous and compact.
Step3: Now, we prove that T is contractive.

Let (x,y), (x1,y1) € X x Y. Then, for each t € ], we have

f | f(sy(s),Dy(s)
Ty (1)~ Tun (0] < s [ (=9 ( ) s
0 —f (s,y1(s), D’y (S))
At 1 a—1 f( ))
+ i [ -9 ds
(AMy=1)T () 0 _f (S yl D yl( ))
! f(sy y(s))
+%/ (1—s)*1 ds.
M-Dr@ £ (s5,v1(s), D% (s))
Thanks to (H1), we can write
ITiy ()= T (9] < gy (Iy = vl + | D%y = Do)
+ s (ly =l + | D%y = Doy ).
Consequently,
IT2 () = Tu () < SRt (Jly =y + || Doy = Dowi ), (338)
and
f ,y(s),D’
|D0'le (t) — DU'lel H)] < %/ (t _S)ucfafl f (S y(s) ]/(S)) ds
0 —f (s,y1(s), D’y (S))
I L) I A CA y(s))
+ AT @rE—o) /o (n—s) f(s y (e D‘5y1( ) ds
1
tl o a—1 f( S))
) A I
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By (H1), yields

ID"Try () = D Ty ()] < iy (Ily =l + [ D%y = Do)

+ \/\117—1]\(1]"‘(/0\4]-1‘-7{;‘1"(2—0) (Hy =yl + HD(SV - DJ%H)

+ ‘/\ln_l‘r(zl_lrl)r(z_g) (”]/ -yl + HD‘SJ/ - Dé]/lH) .

Hence,

[Aq]7*+1

1
||D”T1<y>D”Tl<y1>||Sk1[ ey ](|yyl||+HD‘5yD‘5y1H). (3.39)
T A AT Do)

By (3.38) and (3.39), we can write

\)\1’7—1\+\/\1\'7“+1+ 1
ITe ) =Ty ()llx ko | P TTEED L TEFT 0 (ly =y + [ Doy = Do ) -

+ |A1[7%+1
[Ay=1T (a+1)['(2—0)

Thus,

T ()~ Ty ) < ka6 (Ily —wall + [Py — Do) (3.40)
Analogously, we can get

IT2 (x) = T2 (x1) ly < ka2 ([lx = x1]| + [ D7x = D7xq)) - (3:41)

It follows from (3.40) and (3.41) that

1T (x,y) = T (x1, y1) Iy < k161 +K262] (I1(x — x1, ¥ — y1) Iy ) -

Using (3.15) , we conclude that T is a contraction mapping.

As a consequence of Krasnoselskii’s fixed point theorem we deduce that ¢ has a fixed point which is a

solution of (1.1). N

4 Examples

In this section we give some examples to illustrate our main results.

Example 4.1. Let us consider the following system:

; ﬁe*”tz cos(7tt) (y(t)+D%y(f)>
Dzx (t)+

+In(1+t) =0,te],
(5v/m+7e") <1+y(t)+D%y(t)) ( )

Ve~ cos(rt) <x(t)+D§ x(t)>

D5y (t) + +In(1+)=0,te],

)-o.

1
3
() -2y (3) =0

(5v/m+7et) <1+x(t)+D%x(t)

x(0) =0,x(1)— §x(3) =0,5(0) =0,y (1) - 3y (

X(0)=0x"(1)-2x"(3) =0y (0) =0,y

"

Set
Ve ™ |cos (mtt)] (|x] + |y|)
(5v/7+7et) (1+ x| + [y])

ftxy)=g(txy) = +1In (1+t2) ,t€100,1],x,y € [0,00).
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Fort € ] =10,1] and xq,y1, x2,y2 € [0,0) , we have:
Ve ™ |cos (7tt)| x+y X1+
t,x,y)—f(t xq, = —
e E S I G [ (- 7 R cm A R T
< Ve ™ |cos ()| (|x — x1] + |y — y1])
T BV 7en) (L x|+ [y]) (1 + x| + [ya)
Ve ™ [cos ()| (Jx — x1] + |y — y1l)

<
- (57 +7et)?
gw“fnzux—xlw—ym.

The condition (H1) holds with ky = ky = —Y" .
(5vm+7

11 _9 5 _5 _ 3 _4_ , _1 _ 2
c=g3d0=zmiM=3Mh=5=1=358=3

Fora = %,/5 =3,
M; =1,089, M, = 3,503, M3 = 0,909, My = 3,089,

and,
k1 (M1 + Mp) + kp (M3 + My) = 0,0605075.

Therefore,
ki (My+ Mp) + ko (M3 + My) < 1.

Hence, by Theorem 3.1, the problem (1.1) has a unique solution.

Example 4.2. Consider the following system:

7

: v e Jy(t)
DA+ srtvmned) ¥ sa(renayaswan 0 <)

5
|cos(7tt)||D2 x(t)
y (1) | ~

D3y () + mymarsmn T N 0,tc],
x(0)=0,x(1) ~ §x (§) =0,y (0) =0,y (1) - 3y (})
' (0) =0, (1) =3 (1) =0y @ =0y (1) -3y (1) =0.

For this example, we have

x| eyl
(t,x,y) = + ,t€[0,1],x,y € [0,00),
f y 571 ( /7.[ + zet) 57 ( /*n_et + 2)2 (1 + |y|) [ ] y [
|x| |COS(7Tt>‘ |y| t 6 [0, 1}/x/]/ 6 [0,00) .

8XY) = GUm v ) T 7yt 1)

Fort e J=1[0,1]and x,y,x1,y1 € [0,00), we have:
e |x —

f(bxy) = f(bx,y)| = S(ﬁet-l-Z)Z (1+x)) 1+ |x|) 57 (\/E—&-Zet)

ly — il

et 1
<———— x|t ="y
57 (y/7et +2)° 5 (v +2e) VY
1
< (Jx = x1|+ [y —ml),

51 (ﬁ+2)2
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and
|x — xq] |cos (7tt)| |y — v
t,x,y)—g(t x1, =
gl =8t = A T @ D T 7w 1)
< 1 v — x|+ |cos (7tt)] T
=147 AT L

<1 (x—wml+ly-n)

By Theorem 3.2, the problem (1.1) has at leat one solution.
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