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A spline method for solving fourth order singularly perturbed boundary
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Abstract

In this paper, singularly perturbed boundary value problem of fourth order ordinary differential equation
with a small positive parameter multiplying with the highest derivative of the form

eu™ (x) + p(x)u’ (x) +q(x)u(x) =r(x), 0<x <1,

u(0) = yo,u(1) = y1,u (0) = yo,u (1) =1,0< e <1

is considered. We have developed a numerical technique for the above problem using parametric and poly-
nomial septic spline method. The method is shown to have second and fourth order convergent depending
on the choice of parameters involved in the method. Truncation error and boundary equations are obtained.
The method is tested on an example and the results are found to be in agreement with the theoretical analysis.
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1 Introduction

Singular perturbation problems appear in many branches of applied mathematics, and for more than two
decades quite a large number of research papers on the qualitative and quantitative analysis of these problems
for both ordinary differential equations (ODEs) and partial differential equations (PDEs) have been reported
in the literature. Most of the papers connected with computational aspects are confined to second order
equations. But only few authors have developed numerical methods for singularly perturbed higher order
differential equations. These problems are classified on the basis of how the order of original differential equa-
tion is affected if sets ¢ = 0 [8]. Here, £ is a small positive parameter multiplying with the highest derivative
of the differential equation. The singularly perturbed problem is of convection-diffusion type if the order of
the differential equation is reduced by 1, whereas it is called reaction-diffusion type if order is reduced by 2.
The objective of the present paper is to develop a computational method to solve singularly perturbed bound-
ary value problems of fourth order ordinary differential equations of the form:

"

eu™ (x) + p(x)u’ (x) + q(x)u(x) =r(x), 0<x <1,
(1.1)
u(0) = yo,u(1) = y1,u" (0) = o, u" (1) = 51,0 < e <1,
where p(x), g(x) and r(x) are smooth, bounded, real functions p(x) : R — R, g(x) : R = R, r(x) : R = R
satisfying the following conditions

—p=p>00=>g9=>—7,7>0,
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B—2y>n>0, forsome 1,
D = (0,1),D = [0,1] and u eC*(D) (| C*(D). (1.2)

Analytical and numerical treatment of these equations have drawn much attention of many authors [5,22-
25]. The analytical treatment of singularly perturbed boundary value problems for higher order nonlinear
ordinary differential equations, which have important applications in Fluid Dynamics, can be found in [1,2,6-
9,13,20]. Semper [2] and Roos and Stynes [8] considered fourth order equations and applied a standard finite
element method. Garland [3] has shown that uniform stability of discrete boundary value problem follows
from uniform stability of the discrete initial value problem and uniform consistency of the scheme. Some re-
sults connected with the exponentially fitted higher order differences with identity expansion method [3] and
defect corrections are available in the literature. Loghmani and Ahmadinia [5] have developed a numerical
technique for solving singularly perturbed boundary value problems based on optimal control strategy by
using B-spline functions and least square method. Also finite element method is reported in [6,7]. In [9], an
iterative method is described. In [10,11,16,17,20], the authors have applied boundary value technique to find
the numerical solution for singularly perturbed second order boundary value problems. Niederdrenk and
Yserentant [12] considered convection diffusion type problems and derived conditions for the uniform stabil-
ity of discrete and continuous problems. Feckan [13] considered higher order problems and his approach is
based on the nonlinear analysis involving fixed point theory, Leray-Schauder theory etc. In [15], authors have
given a brief survey on computational techniques for the different classes of singularly perturbed problems.
Bawa [19] and Aziz and Khan [21] have solved second order singularly perturbed boundary value problem
using spline technique. Shanthi and Ramanujam [22-25] have developed numerical methods for singularly
perturbed higher order boundary value problems.

In this problem, we take p(x) = p = constant and q(x) = g = constant. In the present paper, parametric septic
spline is described for fourth order boundary value problems. In section 2, a brief description of the method is
given. Development of the boundary equations are given in section 3. In section 4, truncation error and class
of methods are discussed. We established the convergence of our method in section 5 and section 6 contains
the numerical results and discussions.

2  Derivation of the method

In order to develop the numerical method for approximating the solution of singularly perturbed fourth
order boundary value problem, the interval [0, 1] is divided into N equal subintervals using the grid points
Xj = jh, j =0(1)N, where

1

= :1 = —. 2.1
x0=0, xn ,anth (2.1)

A function S (x,T) of class C°[0, 1] which interpolates u(x) at the mesh point x;j depends on a parameter T,
and as T — 0 it reduces to septic spline S (x) in [0, 1] is termed as parametric septic spline function. Since the
parameter T can occur in S (x) in many ways such a spline is not unique.

If Sp(x, T) = Sa(x) is a piecewise function satisfying the following differential equation in the interval [x; 1, x;]

S8 (0) =TSy (x) = (Q = M)+ Q1 — M)
= Aiz+Aj 1z
(2.2)
where
- 7;]'*1, F=1-z A= Qu— My, Sn(ve ) = My, SO (1 1) = Qu k=j—1j; T>0,

then it is termed as parametric septic spline II. Solving equation (2.2), we get

Sa(x) = By + Byx + Bz cosh /Tx + By sinh /Tx + Bs cos v/Tx + Bg sin /Tx

s 4)3 )3
- {(Qj Y kSN VAR B2k } . 23
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To develop the consistency relations between the value of spline and its derivatives at knots, let
Sa(xj) =uj, Sa(xjy1) = ujy1,

"

SA(JC]‘) — M]‘, SA(xj+1) S M]'+1, (2.4)

4 4
sV ) =B, W) = B,

To define spline in terms of u;’s, M;’s and F;’s, the coefficients introduced in Eq.(2.3) are calculated as

h? 2 Fi 4
Bi = wja+  5(Qm — T M) — 5
Xj—1 h? h? 1
*]T {(”j — 1) = o5 (Qjr - TMj_1) + ez (Qj - TM;) + = (Fj1 - Fj)],
1 h ) ) 1
By = puj—uja)+ o5 |=(Q1 = T M) +(Qj = TM)) | + o7 (F1 — Fp),
1 1 Q1) 1 Qj
— Z sinh (F - = _ Zsinh N ) A
Bs T2 sinh \/Th [2 st \/?x]( j-1 T ) 2% \/?le( T )
1 . 1.
- sinh /Txj_1Q; + = sinh ﬁijjl] ,
1 1 Qj1 1 Qj
B4 == W[—Zcoshﬁx]‘<F]‘_]_T )-I-ZCOSh\/?x]'_l( ]_?
1 1
+= cosh v7x;_1Q;j — b cosh \/?x]-le] ,
1 . Qj1 . Qj
BS = W{Slnﬁx]'(sil—’r) —Sln\/?le(F]'—T>:|,
1 Qj1 Qj
B6 = M{-COS\/%Xj(F]‘l—T)-‘-COS\/?X]‘l( J_T>:|
(2.5)
Substituting these values in (2.3), we get
_ h? _ h* _ h® _
Sa(r) = 2w+ w1+ g |pEM+ pEM | + @ 1@+ a2)g + g0,
(2.6)
where
(2) =P -2z, q(z) = z é 3sinhwz  3sinwz
pre) = P AT T A T WPsinhw  whsindw’
rz) = —2z  sinhwz sinwz JTh. (27)

w*  wisinhw  wisinw’

Applying the first, third and fifth derivative continuities at the knots, i.e. S(A” ) (x]‘) = S(A”) (x;r), u=13and5,
the following consistency relations are derived:

6

M]‘+1 + 4Mj + M]‘,l e ﬁ(”fﬂ - Zuj + Ll]',l) + 3’/12(0(2F]'+1 + 2‘321:]' + 062ij1)
+hH(a1Qj1 +281Q; + 41Qj1), j=1(1)N -1, (2.8)
h2

Mjp1 =2Mj+ M = (1~ whay)Fi1 +2(2 — w*B1)F + (1 — w'ay)Fj4]

n* .
_E(”‘ZQﬁl +2B2Qj +a2Qj-1), j=1(1)N -1, (29)
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P[(1 - w'a1)Qj1 +2(2 — w*B1)Qj + (1 — wa1)Qj1] =

3[(whaz +2)Fiyq +2(w*By — 2)F + (whaa + 2)F 1], j=1(1)N -1, 2.10)
where
“ _i+ d o > B _i*icotthricotw
1= A T WBsinhw  wPsinw’ T Wt Wb > ,
—2 1 1 2 1 1
Tt =1~ 5 othw — — cotw. 211
= Tt Sanhw | Psnw’ p2 7~ 3 othw — — cotw (2.11)

As T — 0 thatis w — 0 then (aq, B1, a2, B2) — (552101 3,71%/ 120' 425)

Using equations (2.8)-(2.10), we obtain the following scheme

(6111]'_3 +exutj_p +e3uj1 +equj+esujg +exijn+ 611/[]‘_,_3)

4
%(Plefs + p2Fj2 + pa3Fj_1 + paFj + p3Fii1 + paFi2 + p1Fig3),j = 3(1)N =3, (2.12)
where the coefficients (eq, e, 3, e4) and (p1, p2, p3, pa) of the developed scheme are given by
e = 1-3wha + 3w8 wuzx%,
e, = 4w41x1 — 2w4[31 — ocl + 48 x1B1 — 120(%‘81,
e3 = 7(1—w'm)? —8(1 wia))?(2 — w*By),
es = 12(1—way)?(2 - w*By) —8(1 — winy)?,
po= all-wha)?
pr = 2c1(1—whay)(2—w*Br) + (1 — whaq)? —3d1 (1 — whar) (2 + way),
p3 = (c1+¢c3)(1 — wha)? +6d1(1 — whay) (2 — w? ﬁ2)+2c2(1—w )2 — w? B1)

—3dy(1 — wiay) (2 + whay),
pa = 20(1—wa)® —6d1(1 — way) (2 + wag) — 641 (2 — w*B1)(2 — wBo)
+203(1 — whay) (2 — w*By) + 6da(1 — whay) (2 — wBy).

(2.13)
Also
1 3 1 1
g = gwstxl — §w4a% — §w4¢x1 601 — 60 + %
2 1 4 1 4
cp = 3 ocl + 3w x1B1 — 18w* a0y — 3wt &2 — 6w (xz 20wt g — w B1— 1201 — 682 + 3
C7182%8 — 360t —1200% _342_E4_§4 36
3 = 3w o+ 3w a1 w*u1 B w*ap By — 3way 3 w*ny Sw B1 + 36aq
+120p + 1267 + 3,
d = w4zx2ﬁ1 — w4tx1ﬁ2 + 6w4zx% — 1001 — 2a3 +2B1 + B2,
dy = 4dwtaofy —dwtaify + 12wra By — 16a; — 180y — 4B + 4B;.
(2.14)

As T — 0 thatis w — 0, we have
(i)(ell €p,¢e3, 64) — (1/ 0/ _9/ 16)/

.. 1 17 249 9 4
(11)(01/C2/C3/d1/d2) — (m/ 147 770 7 140~ 35)/

(111)(P1/ P2, P3, P4) - 1}@/ g/ %/%
[Remarks:] For these values our scheme reduces to the polynomial septic spline for fourth order boundary
value problem which is given as equation (7) in G. Akram and S. S. Siddiqi [4].

We have taken (eq,e,e3,e4) = (1,0, —9,16) in Eq. (2.12) and obtained

6
pr(Ei—s+ Fiva) + p2(Fja + Fia) + pa(Fjo1 + Fjen) + paky = cq (-5 + ujia) = 9(ujm1 +uj41) +16uj]. (2.15)
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Eq. (1.1) can be written in the following form by taking p(x) = pand q(x) =g as
EFj + PMj + quj =r1;.
Operate Ay on the both side of Eq. (2.16), we get
sAxF]- + prMj + qAxu]- = Axrj

where operator Ay is defined as follows for any function W’ evaluated at mesh point

AW = p1(Wi3 + Wji3) + pa(Wj2 + W) + pa(Wjo1 + Wip1) + paWi;.

For second derivative of u, we take relation from [Eq. (5), Ref. [4]]

42
AxM]' = ﬁ[(u];g, + M]'+3) + 24(11]',2 + uj+2) + 15(11]',1 + u]'+1) — 80u]'].

Here, (p1, P2, P3, pa) = (1,120,1191,2416) for second derivative. Using (2.15-2.19), we get

(62 + 42ph? + qh*p1) (uj_3 + 1j43) + (1008ph* + qh* po) (j_» + uj42)

+(—54¢ + 630ph® + qh*p3) (uj_1 + uji1) + (96¢ — 3360ph* + qh*p4)u;

= ¥ [p1(rj_3 +7j13) + p2(rj—z + 1js2) + p3(rjo1 +rj1) + parl, j = 3(1)(N = 3).

3 Development of boundary equations

55

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

The relation (2.20) gives (N — 5) algebraic equations in (N — 1) unknowns u;,j = 1(1)N — 1. We require
four more equations, two at each end of range of integartion in order to have closed form solution for u;. For
the discretization of the boundary conditions, we have developed boundary equations for second and fourth

order methods as follows:

3.1 Second order method

. 4 .
(i) —5uq +4upy —uz = 2799+ hzﬂo — %(1’0 —qv0—pno),j =1,

52 11 T 672,
(ii) 21y — Ly + Buz — [ua = 570 — Eh%0,j =2,

(iti) — ffun—a+ Bun_s — Fun_o+ Run_1 =41 — &h¥*p,j=N-2,

(iv) —un_3+4uny_p—buny_1=-271+ h2171 1112};_ rN—qm —pm),j=N-—-1

3.2 Fourth order method

() — 38w + 150w — Gus + G ua — $Fus = — B+ 0 — FE (0 — 70— o). j =

(i) — %5780 + Sz u2 — g5 s + T e — o5t + gEsTHe = ~ 200 70 T 33 M0/] = 2,

(i) 557N 6 — T3 UN -5 + o1 N4 ~ Tgp UN-3 F+ G UN-2 — 7N = ~aa 1 + 33, = N =2,
(iv) — 3un-1 + 5 un—2 — G unos + FHun—s— Hhuns = —Fn - m - FE n a1 —pm),j =

N-1.



56 Talat Sultana / Spline solution for...

4 Truncation error

To obtain the local truncation error t;, j = 3(1)(N — 3), associated with the scheme (2.20), substitute

rp = su§4) + pu}l + qu;j in eq. (2.20) and expanding it by Taylor series about x;, we obtain the following lo-

cal truncation error

€h4 4
t; = (864 —48p; — 48p, — 48p3 — 24p4)ju](- )
6

+(8640 — 6480p; — 2880p, — 720p3 )%u]@

eh® () 6720ph10u(8)

B Y 8! j

eh10 (10)
+(708480 — 7348320p; — 645120p, — 10080p3)—uj

10!
10080 phlzu(]())

10! j

+(78624 — 272160p; — 53760p, — 3360p3)

+O(h'?).

(4.1)
By using the above equation and eliminating the coefficients of various powers of &, we can obtain class of the

methods. For arbitrary choices of py, p2, p3 and ps, we obtain the following methods:

4.1 Second order methods
By equating the coefficient of h* equal to zero in (4.1), we get second order methods. Therefore,

Pas = 36 — Zpl — 2]{)2 — 2p3, (4.2)
where p1, p2, p3 and p4, are arbitrary. The truncation error is given by

B eh® 6) (864 4 2 79 4
b= - ul®) (8640 — 6480p; — 2880, — 720p3). (4.3)

The local truncation error at j = 1,2, N — 2, N — 1 for second order methods is
_ 6 .
(Fnou® o), j=1,N-1,

()6 + O(7), j=2,N -2,

4.2 Fourth order methods

By equating the coefficient of h* and h® equal to zero in (4.1), we get fourth order methods. Therefore,
p3 =12 —9p; — 4py and py = 12+ 16p1 + 6p2, (4.5)

where p; and p; are arbitrary. The truncation error is given by

8

eh 8
b= gu](. (38304 — 241920p; — 40320p,). (4.6)

The local truncation error at j = 1,2, N — 2, N — 1 for fourth order method is

(DU +0(), j=1,N-1,

(B8R +O), j=2N-2.
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5 Convergence analysis

Now, we investigate the convergence analysis of the spline method described in section 2 for problem (1.1).
To do so, we let, U = (u;), U = (%), V = (vj), T = (tj) and E = (¢;) = U — U, be N-dimensional column
vectors. Here, U, U, T denotes the exact solution, the approximate solution and truncation error respectively
and ¢; is the discretization error for j = 1(1)(N — 1). Thus we can write the system (2.20) in the matrix form:

AU —K*BR =V and A = Ay + I?pA, + h*qB (5.1)

where A1, Az, B, Rand V are defined by

[ a1 a3 as a4 as |
ay 4y Ay a4y 43
0 —54e 96 —54e 0 6¢
6¢ 0 —54e 96 —54e 0 6¢

*

4 . . . . , 52)
6¢ 0 —54e  96¢  —b4e 0 6¢e
6¢ 0 —b4de 96 —54e 0

* * *

* *
aN_¢ AN-5 AN—4 AN-3 AN AN
AN-5 AN-4 AN-3 A4N-2 A4N-1 |

0 0 0 0 0
0 0 0 0 0 0
1008 630 —3360 630 1008 42
42 1008 630 —3360 630 1008 42

42 1008 630 —-3360 630 1008 42
42 1008 630 —3360 630 1008
0 0 0 0 0 0
0 0 0 0 0

P2 pP3 P+ pP3 P2 P1
p1 P2 P3 P4 P3 P2 P1

pP1 P2 P3 P4+ P3 P2 P1
P1 P2 P3 P4 P3 P2

R=[rj]Tand V = [0;]T, j=1(1)N - 1.

Moreover,
aov0 + b0 + do™™ (ro — gv0 — pigo), j=1,
QS’)’Q + bzhzﬂo, ] =2,
— (6 + 42ph* + qp1h*)yo + h* prr, j=3
v = 0, j=4(1)N —4, (5.5)
—(6e + 42ph? + qp1h*)y1 + K piry, j=N-3,
ayyo + bn_2h®n1, j=N-2,
any1 + by_1h?m + dN%(”N — 471 —pm), j=N-1,
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where for second order method, we have

(i) (Ll(], ai,dp,as,dq,0s, b1, do) = ( — 2, —5,4, —1,0,0, 1, —g) ,

) (0305, 03, 05,05, b2) =(3, 2, %, 2, - ,00,-8),

(iii) (N, ay_¢r AN_5, AN_4r AN_3/ON_2/ AN _1, bN-2) = (Z 0,0,—15, %, %, % - g) /
(iv) (an,aN-—5,4N—4,4N-3,AN-2,4N-1,bN—1,dN) = ( -2,0,0,-1,4,-5,1, —ﬂ)
and for fourth order method, we have

: 429 1322 11066 6684 2171 302 204 274
(i) (a0, a1, a2,a3,a4,as,b1,dg) = ( ~ 35,735 /245 + 045 245/ 2457 49 7 —245>/

. * ok ok ok ok % % _ 9898 1342 7213 2049 3799 11059 12 348
(ii) (ag, a1, a3, a3, a3, a5, ag,by) = ( T 24497797 7 3757/ 146’ 691’ 12203’ 8551’ 323)/

* * * * * * * _ 9898 12 11059 3799 2049 7213 1342 348
(iii) (an, AN _6 AN _5 AN 2 AN_3/AN_2/ AN _1,DN-2) = ( 2449/ 85517 T 12203’ 691/ 146’ 375/ 97 ’ 323)/

: 429 302 2171 6684 11066 1322 204 274
(iv) (an,an—5,aN—4,AN—3,AN—2,AN-1,bN-1,dN) = ( — 35/ 245’ D457 D457 045 ¢ 35 s 49/ 245> .
Also, we have
AU—h*BR=T(h)+ V. (5.6)

From Eq. (5.1) and Eq. (5.6), we get

Clearly

a1 +ax +az +ay + as,

a; +ay + a3 +ay +ai +ag,

—(6e+42ph?) + q(p1 +2p2 +2ps + pa)ltt,

S; = q(2p1 + 2p2 + 2p3 + pa)ht, j
— (66 +42ph2) + q(p1 + 2p2 + 2p3 + pa)l,
a?\]76 + a}s\]75 + ﬂ}ﬁ\]74 + a?\]73 + a}i]?z + a*N,’l/
aN—s+aN_a+an-_3+an_2 +an—_1,

Il
RO

z
|
o
—
o
Qo
=

~

I
zzzZl
||
=

S~ S S,
Il

We can choose h sufficiently small so that the matrix A is irreducible and monotone [18]. It follows that Al
exists and its elements are non negative. Hence, from Eq. (5.7), we have

E=A"1T(h). (5.9)
Also, from the theory of the matrices, we have
N-1
Y. aSi=1,k=11)N-1, (5.10)
j=1

where @y ; is the (k, j)th element of the matrix AL, Therefore

1 1
mini<j<cn-1S0  §(2p1 +2p2 + 2p3 + pa) bt

N-1
Y@, < (5.11)
j=1

From Eq.(5.9) and (5.11), we have

N-1
ej =Y a;Ti(h), k=1(1)N -1
j=1
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and therefore

KT;

where K is a constant indepent of /. It follows that
(i) For second order methods the truncation error is || T ||= O(h®). It follows that || E ||= O(h?).
(ii) For fourth order methods the truncation error is || T ||= O(k®). It follows that || E ||= O(h*).

6 Numerical results and discussion

Example 1: Consider the boundary value problem

ox _2(1+4x) _2(1-x) _22-x)
x(1—x) b5e bSele ve—e V& 4e VE —e F

8 16 ' 16 -

su(4)(x) —4u"(x) —u(x) = —

u(0)=u(l) =1, u"(0) =u"(1) = -1.
We have solved this example by scheme (2.20) and have obtained approximate solution at x = 0.001(0.001)0.009
for the sake of comparison with references. The obtained numerical results are tabulated in table 1 and 2 for

second and fourth order methods respectively. The comparison is also made in table 2 with the obatined
results of [23].

Table 1. Maximum absolute errors for example 1
Second order method,e = 0.01,/ = 0.001

x Present method Exact [23] Errors of present method
(P1, P2, P3,p4) = (0,0,0,36)
0.001 1.0000033 1.000063 5.97(-5)
0.002 1.0000058 1.000127 1.21(—4)
0.003 1.0000074 1.000192 1.84(—4)
0.004 1.0000084 1.000258 2.50(—4)
0.005 1.0000087 1.000324 3.15(—-4)
0.006 1.0000084 1.000392 3.84(—4)
0.007 1.0000074 1.000461 4.54(—4)
0.008 1.0000058 1.000530 5.24(—4)
0.009 1.0000033 1.000600 5.97(—4)
Conclusion

We have developed a numerical method for the solution of fourth order singularly pertubed boundary value
problem using parametric septic spline. It is a computationally efficient method and the algorithm can easily
be implemented on a computer. The method has been analysed for convergence and proved that the method
is second and fourth order convergent. Also, the errors at nodal points are compared with the errors of [23]
and observed to be better.

Table 2. Maximum absolute errors for example 1
Fourth order method,e = 0.01,/ = 0.001

X Present method Exact [23] Errors of present method Errors [23]
(plr P2, P3, P4) = (Or 0,12, 12)
0.001 1.000016 1.000063 4.70(-5 6.19(—5
0.002 1.000028 1.000127 9.90(-5 1.22(—4
0.003 1.000036 1.000192 1.56(—4 1.82(—4
0.004 1.000041 1.000258 2.17(—-4 2.40(—4

0.006 1.000041 1.000392 3.51
0.007 1.000056 1.000461 4.05(—4
0.008 1.000028 1.000530 5.02(—4

(=5) (=5)
(=5) (—4)
(—4) (—4)
(—4) (—4)
0.005 1.000042 1.000324 2.82(—4) 2.97(—4)
(—4) (—4)
(—4) (—4)
(—4) (—4)
0.009 1.000090 1.000600 5.10(—4) (—4)
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