Malaya Journal of Matematik

MJM an international journal of mathematical sciences with computer applications...

www.malayajournal.org

Malaya Jou Matematik

A new generalized vector-valued paranormed sequence space using modulus function

Tanweer Jalal^{*a*,*}, Reyaz Ahmad^{*b*}

^a Associate Professor, Department of General Studies, Yanbu Industrial College, P.O. Box: 30436, Yanbu Al-Saniayaiah, Kingdom of Saudia Arabia.

^bDepartment of Mathematics, NIT-Srinagar, INDIA.

Abstract

In this paper we introduce a new generalized vector-valued paranormed sequence spaces $N_p(E_k, \triangle_u^m, f, s)$ using modulus function f, where $p = (p_k)$ is a bounded sequence of positive real numbers such that $\inf_k p_k > 0$, (E_k, q_k) is a sequence of seminormed spaces with $E_{k+1} \subseteq E_k$ for each $k \in N$ and $s \ge 0$. We prove results regarding completeness, *K*-space, normality, inclusion relation are derived. These are more general than those of Ruckle [7], Maddox [5], Ozturk and Bilgin [6], Sahiner [8], Atlin *et al.* [1] and Srivastava and Kumar [9].

Keywords: Modulus function, paranormed space, normal sequence space, difference sequence space.

2010 MSC: 40A45, 46A45.

©2012 MJM. All rights reserved.

1 Introduction

Let ω denote the space of all complex sequences. Kizmaz [4] studied the sequence space

$$X(\triangle) = \{x = (x_k) : \triangle x \in X\}, \text{ for } X = l_{\infty}, c, c_0,$$

where $\triangle x = (\triangle x_k) = (x_k - x_{k+1})$ and shown that these sequence spaces are Banach spaces with the norm

$$||x||_{\triangle} = |x|_1 + ||\Delta x||_{\infty}, \ x \in X(\triangle).$$

The sequence spaces $X(\triangle^m) = \{x = (x_k) : \triangle^m x \in X\}$ for $X = l_{\infty}, c$ and c_0 are introduced by Et. and Colak [2]. These sequence spaces are *BK*-spaces with norm

$$||x||_{\triangle} = \sum_{i=0}^{m} |x_i| + ||\Delta^m x||_{\infty}, x \in X(\Delta^m)$$
 where $m \in N$.

Tripathy and Esi [10] introduced the difference operator \triangle_u , $u \ge 1$ and defined the sequence spaces

$$X(\triangle_u) = \{x = (x_k) : \triangle_u x \in X\} \text{ for } X = l_{\infty}, c \text{ and } c_0 \text{ and } \triangle_u x = (\triangle_u x_k) = (x_k - x_{k+u}).$$

They proved that the above sequence spaces are Banach spaces and *BK* spaces with respect to the norm

$$\|x\|_{\triangle u} = \sum_{r=1}^{u} |x_r| + \| \triangle^{u} x\|_{\infty}.$$

*Corresponding author.

E-mail address: tjalal@yic.edu.sa, tjalal@rediffmail.com (Tanweer Jalal), reyazrather@gmail.com(Reyaz Ahmad).

Ruckle [7] constructed the sequence spaces $L(f) = \{x = (x_k) \in \omega : \sum_{k=1}^{\infty} f(|x_k|) < \infty\}$ using the idea of Modulus function *f*. He proved that L(f) is *BK* space. Maddox [5] introduced the class of sequences which are strongly Cesaro summable with respect to the modulus function by

$$w_0(f) = \{ x = (x_k) \in \omega : \ \frac{1}{n} \sum_{k=1}^n f(\mid x_k \mid) \longrightarrow 0 \ \text{, as} \ n \longrightarrow \infty \}.$$

Ozturk and Bligin [6] generalized the sequence spaces as

$$w_0(f,P) = \{x = (x_k) \in \omega : \frac{1}{n} \sum_{k=1}^n [f(|x_k|)]^{p_k} \longrightarrow 0 \text{ , as } n \longrightarrow \infty\}.$$

where $p = (p_k)$ is a bounded sequence of positive real numbers.

Sahiner [8] introduced the sequence spaces

$$B_g(p,f,q,s) = \left\{ x = (x_k) \in \omega(X) : \sum_{k=1}^{\infty} k^{-s} [f(q(\triangle x_k))]^{p_k} < \infty, \ s \ge 0 \right\},$$

and

$$B_g(p,f^r,q,s) = \left\{ x = (x_k) \in \omega(X) : \sum_{k=1}^{\infty} k^{-s} [f^r(q(\triangle x_k))]^{p_k} < \infty, \ s \ge 0 \right\},$$

where $r \in N$ and (X, q) is a seminormed complex linear space.

Altin *etal*. [1] generalized the sequence space $B_g(p, f, q, s)$ as

$$l(\triangle^m, f, p, q, s) = \left\{ x = (x_k) \in \omega(X) : \frac{1}{n} \sum_{k=1}^{\infty} k^{-s} [f(q(\triangle^m x_k))]^{p_k} < \infty, \ s \ge 0 \right\}.$$

Srivastave and Kumar [9] introduced a new vector valued sequence space $N_p(E_k, \triangle^m, f, s)$ where

$$N_p(E_k, \triangle^m, f, s) = \{x = (x_k) \in \omega(E_k) : (|v_k|^{-(s/p_k)} f(q_k(\triangle^m x_k))) \in N_p, s \ge 0\},\$$

where (E_k, q_k) is a sequence of seminormed spaces such that $E_{k+1} \subseteq E_k$ for each $k \in N$, $w(E_k) = \{x = (x_k) : x_k \in E_k$, for each $k \in N\}$, $v = (v_k)$ is a sequence of real complex numbers such that $1 \leq |v_k| < \infty$ for each $k \in N$ and N_p is normal *AK* sequence space with absolutely monotonic paranorm g_{N_v} .

Let $u, m \ge 0$ be fixed integers then we introduce the following new type of Generalized paranormed vector valued sequence space which unifies some earlier cases as particular cases:

$$N_p(E_k, \triangle_u^m, f, s) = \{x = (x_k) \in \omega(E_k) : (|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k))) \in N_p, s > 0\},\$$

where $p = (p_k)$ is a bounded sequence of positive real numbers such that $\inf_k p_k > 0$ and

$$\triangle_u^m x_k = \sum_{\nu=0}^m (-1)^{\nu} \begin{pmatrix} m \\ v \end{pmatrix} x_k + u\nu, \text{ for all } k \in N.$$

1.1.1 Particular Cases:

- (i) For $E_k = C$ for each $k \in N$, m = 0, u = 1, s = 0 and $N_p = l_1$, (where $p_k = 1$ for each $k \in N$), space $N_p(E_k, \Delta_u^m, f, s)$ reduces to L(f) of Ruckle [7].
- (ii) For $E_k = C$ for each $k \in N$, m = 0, u = 1, s = 0 and $N_p = \omega_0$, (where $p_k = 1$ for each $k \in N$), space $N_p(E_k, \Delta_u^m, f, s)$ reduces to $\omega_0(f)$ of Maddox [5].
- (iii) For $E_k = C$ for each $k \in N$, m = 0, u = 1, s = 0 and $N_p = \omega_0(p)$, space, $N_p(E_k, \triangle_u^m, f, s)$ reduces to $\omega_0(f, p)$ of Ozturk and Bilgin [6].

- (iv) For u = 1, the space $N_p(E_k, \triangle_u^m, f, s)$ reduces to $N_p(E_k, \triangle^m, f, s)$ of Srivastave and Kumar [9].
- (v) For $E_k = X$, for each $k \in N$, $v_k = k$, m = 1 and u = 1 and $N_p = l_p$, the space $N_p(E_k, \triangle_u^m, f, s)$ reduces to $B_g(p, f, q, s)$ of Sahiner [8].
- (vi) For $E_k = X$, for each $k \in N$, $v_k = k$, u = 1 and $N_p = l_p$, the space $N_p(E_k, \triangle_u^m, f, s)$ reduces to $l(\triangle^m, f, q, s)$ of Altin *etal*. [1].

Thus study of the space $N_p(E_k, \triangle_u^m, f, s)$ gives a unified approach to many of the earlier known spaces.

2. Some Definitions and Lemmas

Definition 2.1[3]. A sequence space X is called normal space if $x = (x_k) \in X$ and $|\lambda_k| \le 1$ for each $k \in N$. This implies $\lambda x = (\lambda_k x_k) \in X$.

For example, l(p), $c_0(p)$, $\omega(p)$ are normal space.

Definition 2.2[3]. A sequence space *X* is called *K* space if the co-ordinate function $p_k : X \to K$ given by $p_k(x) = x_k$ is continuous for each $k \in N$.

Definition 2.3. A complete metric space is called Frechet space. An *FK*-space is a Frechet space with continuous co-ordinates.

Definition 2.4[9]. An *FK*-space *X* is said to be *AK*-space if $\Phi \subset X$ and $\{\delta^n\}$ is a basis for *X*, i.e., for each $x, x^{[n]} \to x$, where $x^{[n]}$ denotes the *n*th section of *x*. For example, $l(p), c_0(p), \omega(p)$ are *AK*-spaces.

Definition 2.5[3]. A paranorm *g* on a normal sequence space X is said to be absolutely monotone if

$$x = (x_k), y = (y_k) \in X$$
 and $|x_k| \le |y_k|$ for each $k \in N \Longrightarrow g(x) \le g(y)$.

Lemma 2.1[8]. If *f* is a modulus function, then f^r is also modulus function for each $r \in N$, where $f^r = f \circ f \circ \cdots \circ f(r$ -times composition of *f* with itself).

Lemma 2.2[5]. There is a modulus function *f* such that $f(xy) \le f(x) + f(y)$ for $x, y \ge 0$.

Lemma 2.3[5]. Let f_1 and f_2 be modulus functions and $0 < \delta < 1$. If $f_1(t) > \delta$ for $t \in [0, \infty)$, then

$$(f_2 \circ f_1)(t) < \left(\frac{2f_2(1)}{\delta}\right) f_1(t)$$

3. Results on Sequence Space $N_p(E_K, \triangle_u^m, f, s)$.

Theorem:. $N_p(E_K, \triangle_u^m, f, s)$ is a linear space.

Proof. It is easy to show that $N_p(E_K, \triangle_u^m, f, s)$ is a linear space. So we omit proof.

Lemma 3.1. Let (E_k, q_k) be a sequence of seminormed spaces, and N_p be normal *AK*-sequence space with absolutely monotone paranaorm g_{N_p} . Then function defined by

$$\tilde{f}_n: [0,\infty) \to [0,\infty), \ \tilde{f}_n(t) = g_{N_p}[\sum_{k=1}^n |v_k|^{-(s/p_k)} f(tq_k(\triangle_u^m x_k)e_k]$$

is continuous function of *t* for each positive integer *n*, where $x = (x_k)\epsilon N_p(E_K, \triangle_u^m, f, s)$ and (e_k) is unit vector basis of N_p .

Proof. We define function $g_k : [0, \infty) \to N_p$ by

$$g_k(t) = |v_k|^{-(s/p_k)} f(tq_k(\triangle_u^m x_k)e_k)$$

Let $t_i \rightarrow 0$ as $i \rightarrow \infty$. Then for each k = 1, 2, 3, ..., n;

$$g_k(t_i) = |v_k|^{-(s/p_k)} f(t_i q_k(\triangle_u^m x_k)) e_k \to (0, 0, \cdots) \text{ as } i \to \infty.$$

Therefore,

$$\sum_{k=1}^{n} g_k(t_i) = \sum_{k=1}^{n} |v_k|^{-(s/p_k)} f(t_i q_k(\triangle_u^m x_k) e_k \to (0, 0, \cdots) \text{ as } i \to \infty.$$

But paranorm g_{N_p} is continuous function, it follows that

$$g_{N_p}[\sum_{k=1}^n g_k(t_i)] \to 0$$
as $i \to \infty$.

Hence function \tilde{f}_n is continuous function of *t* for each positive integer *n*.

Theorem 3.2. Sequence space $N_p(E_K, \triangle_u^m, f, s)$ is a paranormed space with paranorm

$$g(x) = \sum_{i=1}^{m} f(q_i(x_i)) + g_{N_p} \left[(|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k))) \right], \text{ where } x \in N_p(E_K, \triangle_u^m, f, s).$$

Proof: By definition of $g, g(x) \ge 0$ for any $x = (x_k) \in N_p(E_K, \triangle_u^m, f, s)$. It is clear that g(0) = 0, g(x) = g(-x) and $g(x + y) \le g(x) + g(y)$ for any $x, y \in N_p(E_K, \triangle_u^m, f, s)$. It is left to prove the continuity of scaler multiplication under g. Suppose $x^n \to x$ as $n \to \infty$ in $N_p(E_K, \triangle_u^m, f, s)$ and $\alpha_n \to \alpha$ as $n \to \infty$ in C. We have to show that $g(\alpha_n x^n - \alpha x) \to 0$ as $n \to \infty$. Consider

$$g(\alpha_{n}x^{n} - \alpha x) = \sum_{i=1}^{m} f(q_{i}(\alpha_{n}x_{i}^{n} - \alpha x_{i})) + g_{N_{p}} \left[(|v_{k}|^{-(s/p_{k})}f(q_{k}(\triangle_{u}^{m}(\alpha_{n}x_{k}^{n} - \alpha x_{k})))) \right]$$

$$= \sum_{i=1}^{m} f(q_{i}(\alpha_{n}x_{i}^{n} - \alpha_{n}x_{i} + \alpha_{n}x_{i} - \alpha x_{i}))$$

$$+ g_{N_{p}} \left[(|v_{k}|^{-(s/p_{k})}f(q_{k}(\triangle_{u}^{m}(\alpha_{n}x_{k}^{n} - \alpha_{n}x_{k} + \alpha_{n}x_{k} - \alpha x_{k})))) \right]$$

$$\leq \sum_{i=1}^{m} f(|\alpha_{n}|q_{i}(x_{i}^{n} - x_{i}) + |\alpha_{n} - \alpha|q_{i}(x_{i})))$$

$$+ g_{N_{p}} \left[(|v_{k}|^{-(s/p_{k})}f(|\alpha_{n}|q_{k}(\triangle_{u}^{m}(x_{k}^{n} - x_{k})) + |\alpha_{n} - \alpha|q_{k}(\triangle_{u}^{m}x_{k})))) \right].$$

This gives,

$$g(\alpha_n x^n - \alpha x) \le M\left(\sum_{i=1}^m f(q_i(x_i^n - x_i) + g_{N_p}[(|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m(x_k^n - x_k))) + \sum_{i=1}^m f(|\alpha_n - \alpha|q_i(x_i)) + g_{N_p}[(|v_k|^{-(s/p_k)}f(|\alpha_n - \alpha|q_k(\triangle_u^m x_k)))]\right),$$

where $M = \sup_{n} (1 + [|\alpha_n|])$, this gives,

$$g(\alpha_n x^n - \alpha x) \le Mg(x^n - x) + \sum_{i=1}^m f(|\alpha_n - \alpha|q_i(x_i))$$

+
$$g_{N_p} \left[(|v_k|^{-(s/p_k)} f(|\alpha_n - \alpha|q_k(\triangle_u^m x_k))) \right].$$
(3.1)

First and second expressions of R.H.S in (3.1) tend to zero as $x^n \to x$ as $n \to \infty$ in $N_p(E_K, \triangle_u^m, f, s)$ and $\alpha_n \to \alpha$ as $n \to \infty$. We must only show that

$$g_{N_p}\left[(|v_k|^{-(s/p_k)}f(|\alpha_n-\alpha|q_k(\triangle_u^m(x_k^n-x_k)))\right]\to 0$$
as $n\to\infty$.

Since $(|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m(x_k)))\epsilon N_p$ is *AK*-sequence space, therefore

$$g_{N_p} \Big[(|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k))) - \sum_{k=1}^m |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k)e_k] \to 0 \text{ asm} \to \infty.$$

That is $g_{N_p}\left[\sum_{k=m+1}^{\infty} |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k))e_k\right] \to 0$ as $m \to \infty$. Therefore, for every $\epsilon > 0$ there exists a positive integer m_0 such that

$$g_{N_p}\Big[\sum_{k=m+1}^{\infty} |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k)))e_k\Big] < \epsilon/2, \text{ for all } m \ge m_0.$$

In particular

$$g_{N_p} \Big[\sum_{k=m_0+1}^{\infty} |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k))) e_k \Big] < \epsilon/2.$$
(3.2)

Since $\alpha_n \to \alpha$ as $n \to \infty$, therefore, for $\epsilon = 1$, there exists a positive integer n'_0 such that $|\alpha_n - \alpha| < 1$ for all $n \ge n'_0$. Consequently

$$\sum_{k=m_0+1}^{\infty} |v_k|^{-(s/p_k)} f(|\alpha_n - \alpha|q_k(\triangle_u^m(x_k))e_k$$
$$\leq \sum_{k=m_0+1}^{\infty} |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k))e_k \text{ for all } n \geq n'_0.$$

But g_{N_p} is monotone paranorm, it follows that for all $n \ge n'_0$.

$$g_{N_{p}} \Big[\sum_{k=m_{0}+1}^{\infty} |v_{k}|^{-(s/p_{k})} f(|\alpha_{n} - \alpha|q_{k}(\triangle_{u}^{m}(x_{k}))e_{k} \Big] \\ \leq g_{N_{p}} \left[\sum_{k=m_{0}+1}^{\infty} |v_{k}|^{-(s/p_{k})} f(q_{k}(\triangle_{u}^{m}(x_{k}))e_{k} \right].$$

Using inequality (3.2), for all $n \ge n'_0$

$$g_{N_p}\Big[\sum_{k=m_0+1}^{\infty} |v_k|^{-(s/p_k)} f(|\alpha_n - \alpha|q_k(\triangle_u^m(x_k))e_k\Big] \le \epsilon/2.$$
(3.3)

By Lemma 3.1, function

$$\tilde{f}_{m_0}(t) = g_{N_p} \left[\sum_{k=1}^{m_0} |v_k|^{-(s/p_k)} f(tq_k(\triangle_u^m(x_k))e_k], \ t \ge 0 \right]$$

is continuous function of *t*. Hence there exists $\delta \in (0, 1)$ such that

$$\tilde{f}_{m_0}(t) < \epsilon/2$$
, whenever $t < \infty$.

Again, since $\alpha_n \to \alpha$ as $n \to \infty$, therefore for $\delta \in (0, 1)$, there exist a positive integer n_0'' such that

$$|\alpha_n - \alpha| < \delta$$
 for all $n \ge n_0''$ we have $\tilde{f}_{m_0}(|\alpha_n - \alpha|) < \epsilon/2$, for all $n \ge n_0''$

that is

$$g_{N_p}\left[\sum_{k=1}^{m_0} |v_k|^{-(s/p_k)} f(|\alpha_n - \alpha|q_k(\triangle_u^m(x_k))e_k\right] < \epsilon/2 \text{ for all } n \ge n_0''$$
(3.4)

We take $n_0 = \max(n'_0, n''_0)$. Using inequality (3.3)and (3.4), we have

$$g_{N_p}\left[|v_k|^{-(s/p_k)}f(|\alpha_n - \alpha|q_k(\triangle_u^m(x_k)))\right]$$

$$\leq g_{N_p}\left[\sum_{k=1}^{m_0} |v_k|^{-(s/p_k)}f(|\alpha_n - \alpha|q_k(\triangle_u^m(x_k))e_k\right]$$

$$+ g_{N_p} \left[\sum_{k=m_0+1}^{\infty} |v_k|^{-(s/p_k)} f(|\alpha_n - \alpha| q_k(\triangle_u^m(x_k)) e_k \right] \\ < \epsilon/2 + \epsilon/2 = \epsilon, \text{ for all } n \ge n_0.$$

From inequality (3.1), $g(\alpha_n x_n - \alpha x) \to 0$ as $n \to \infty$. Hence $N_p(E_K, \triangle_u^m, f, s)$ is a paranormed sequence space.

Remark 3.1.Sequence space $N_p(E_K, \triangle_u^m, f, s)$ is not totally paranormed space.

Let $g(x) = 0 \Longrightarrow \sum_{i=1}^{m} f(q_i(x_i)) + g_{N_p} \left[|v_k|^{-(s/p_k)} f(q_k(\Delta_u^m(x_k))) \right] = 0 \Longrightarrow q_i(x_i) = 0$ foreach i = 1, 2, ..., mand

$$g_{N_p}\left[|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m(x_k)))\right]=0.$$

But

$$q_i(x_i)=0$$

does not mean $x_i = 0$ as q_i is seminorm on E_i . Hence g is not total paranormed on space $N_p(E_K, \triangle_u^m, f, s)$.

Theorem 3.3. Sequence space $N_p(E_K, \triangle_{\mu}^m, f, s)$ is a *K*-space if N_p is a *K*-space.

Proof. We have to show the coordinate function $P_k : N_p(E_K, \triangle_u^m, f, s) \to E_k$ given by $P_k(x) = x_k$, where $x \in N_p(E_K, \triangle_u^m, f, s)$ is continuous for each $k \in N$. Let (x^n) be any sequence in $N_p(E_K, \triangle_u^m, f, s)$ such that $x^n \to 0$ as $n \to \infty$ in $N_p(E_K, \triangle_u^m, f, s)$. That is

$$\sum_{i=1}^{mu} f(q_i(x_i^n)) + g_{N_p} \left[|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k^n))) \right] \to 0 \text{ as } n \to \infty$$

This means that

$$f(q_i(x_i^n)) \to 0 \text{ as } n \to \infty \text{ for each } i = 1, 2, ..., m$$

and

$$g_{N_p}\left[|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m(x_k^n)))\right] \to 0 \text{ as } n \to \infty$$
(3.5).

Since N_p is a *K*-space, therefore for each *k*

$$|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m(x_k^n))\to 0 \text{ as } n\to\infty,$$

that is $f(q_k(\triangle_u^m(x_k^n)) \to 0 \text{ as } n \to \infty$. Thus for any $\delta > 0$, there exist $n_0 \in N$ such that $f(q_k(\triangle_u^m(x_k^n)) < \delta$ for all $n \ge n_0$. Let $\delta = f(\epsilon)$, where $\epsilon > 0$. Then

$$f(q_k(\triangle_u^m(x_k^n)) < f(\epsilon) \text{ for all } n \ge n_0 \to q_k(\triangle_u^m(x_k^n) < \epsilon \text{ for all } n \ge n_0.$$

This shows that for each k, $\triangle_u^m(x_k^n) \to 0$ in E_k as $n \to \infty$. By condition (3.5), $f(q_i(x_i^n)) \to 0$ as $n \to \infty$ for each i = 1, 2, ..., m. But f is modulus function, it follows that $x_i^n \to 0$ in E_i as $n \to \infty$ for each i = 1, 2, ..., m. Now $x_i^n \to 0$ in E_i as $n \to \infty$ for each i = 1, 2, ..., m and $\triangle_u^m x_k^n \to 0$ in E_i as $n \to \infty$ for each $k \in N$. This implies that $x_k^n \to 0$ in E_k as $n \to \infty$ for each $k \in N$. Thus, coordinate wise function P_k is continuous for each $k \in N$. Hence $N_p(E_K, \triangle_u^m, f, s)$ is a K-space.

Theorem 3.4. Sequence space $N_p(E_K, \triangle_u^m, f, s)$ is a complete paranormed space under the paranorm *g* defined by

$$g(x) = \sum_{i=1}^{m} f(q_i(x_i)) + g_{N_p} \left[|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k))) \right], \text{ where } x \in N_p(E_K, \triangle_u^m, f, s),$$

if N_p is a *K*-space and (E_k, q_k) is a sequence of complete seminormed spaces.

Proof. Clearly $N_p(E_K, \triangle_u^m, f, s)$ is a paranormed space under g. To show that it is complete, Let $(x^n) = ((x^n_k)_k)$ be a Cauchy sequence in $N_p(E_K, \triangle_u^m, f, s)$. Then $g(x^n - x^t) \to 0$ as $n, t \to \infty$.

That is

$$\sum_{i=1}^{m} f(q_i(x_i^n - x_i^t)) + g_{N_p} \left[|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k^n - x_k^t))) \right] \to 0 \text{ as } n, t \to \infty.$$

This means that

$$f(q_i(x_i^n - x_i^t) \to 0 \text{ as } n, t \to \infty \text{ for each } i = 1, 2, ..., m,$$

and

$$g_{N_p}\left[|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m(x_k^n-x_k^t)))\right]\to 0 \text{ as } n,t\to\infty.$$
(3.6)

Since N_p is a *K*-space, therefore for each *k*,

$$|v_k|^{-(s/p_k)}f\left(q_k(\triangle_u^m(x_k^n-x_k^t))\right)\to 0 \text{ as } n,t\to\infty.$$

that is

$$f(q_k(\triangle_u^m(x_k^n-x_k^t))) \to 0 \text{ as } n, t \to \infty.$$

Thus for any δ positive, there exists $n_0 \in N$ such that

$$f(q_k(\triangle_u^m(x_k^n-x_k^t))) < \delta \text{ for all } n, t \ge n_0.$$

Let $\delta = f(\epsilon)$, where $\epsilon > 0$. Then

$$f(q_k(\triangle_u^m(x_k^n - x_k^t))) < f(\epsilon) \text{ for all } n, t \ge n_0.$$

This implies

$$(q_k(\triangle_u^m(x_k^n-x_k^t))<\epsilon \text{ for all } n,t\geq n_0.$$

This shows that for each k, $(\triangle_u^m(x_k^n)$ is a Cauchy sequence in E_k . By condition (3.6), $f(q_i(x_i^n - x_i^t)) \to 0$ as $n, t \to \infty$, for each i = 1, 2, ..., m. But f is a modulus function, it follows that (x_i^n) is Cauchy sequence in E_i for each i = 1, 2, ..., m.

Now (x_i^n) is Cauchy sequence in E_i for each i = 1, 2, ..., m and $(\triangle_u^m x_k^n)$ is Cauchy sequence in E_k for each $k \in N$. This implies that x_k^n is a cauchy sequence in E_k for each $k \in N$. Since each E_k is complete, so sequence (x_k^n) is convergent for each $k \in N$. Let $\lim_n x_k^N = x_k$ for each $k \in N$. Since (x^n) is Cauchy sequence therefore for each $\epsilon > 0$, there exists n_0 such that $g(x^n - x^t) < \epsilon$ for all $n, t \ge n_0$. So we have

$$\lim_{t} \sum_{i=1}^{m} f(q_i(x_i^n - x_i^t)) = \sum_{i=1}^{m} f(q_i(x_i^n - x_i)) < \epsilon$$

and

$$\lim_{t} g_{N_p} \left[|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k^n - x_k^t))) \right]$$

= $g_{N_p} \left[|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k^n - x_k))) \right] < \epsilon \text{ for all } n \ge n_0.$

This implies that $g(x^n - x) < 2\epsilon$ for all $n \ge n_0$ that is $x^n \to x$ as $n \to \infty$ in $N_p(E_K, \triangle_u^m, f, s)$.

Next we will show that $x \in N_p(E_K, \triangle_u^m, f, s)$. Let $a_k^n = |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m(x_k^n - x_k)))$. Then for each $k, a_k^n \to 0$ as $n \to \infty$, since f is continuous function. We choose δ_k^n with $0 < \delta_k^n < 1$ such that $a_k^n < \delta_k^n |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k^n))$. But $(|v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k^n))) \in N_p$ for each n. so for each $n, a^n = (a_k^n) \in N_p$. Again,

$$\begin{aligned} |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k)) &= |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m (x_k - x_k^n))) \\ &\leq |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m (x_k^n - x_k))) + |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k^n)) \\ &< (1 + \delta_k^n) |v_k|^{-(s/p_k)} f(q_k(\triangle_u^m x_k^n)). \end{aligned}$$

This implies,

$$|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m x_k)) \le M_n |v_k|^{-(s/p_k)}f(q_k(\triangle_u^m x_k^n))$$

where $M_n = \sup_k (\delta_k^n + 1)$.

But N_p is normal sequence space, it follows that $|v_k|^{-(s/p_k)}f(q_k(\triangle_u^m x_k))) \in N_p$, that is $x \in N_p(E_K, \triangle_u^m, f, s)$.

Hence $N_p(E_K, \triangle_u^m, f, s)$ is a complete paranormed space.

Theorem 3.5. Let f, f_1 , f_2 be modulus functions, (E_k, q_k) be a sequence of seminormed spaces and s, s_1 , $s_2 \ge 0$. Then

$$(i)N_{p}(E_{K}, \triangle_{u}^{m}, f_{1}, s) \cap N_{p}(E_{K}, \triangle_{u}^{m}, f_{2}, s) \subseteq N_{p}(E_{K}, \triangle_{u}^{m}, f_{1} + f_{2}, s),$$

$$(ii)N_{p}(E_{K}, \triangle_{u}^{m}, f, s_{1}) \subseteq N_{p}(E_{K}, \triangle_{u}^{m}, f, s_{2}), \quad if \ s_{1} \le s_{2}$$

and

$$(iii)N_p(E_K, \triangle_u^m, f_1, s) \subseteq N_p(E_K, \triangle_u^m, f_2 \circ f_1, s), \ if \ (|v_k|^{-(s/p_k)}) \in N_p.$$

Proof. It is easy to prove (*i*) and (*ii*) part of the above theorem. So consider the third one,

(*iii*) Let $x \in N_p(E_K, \triangle_u^m, f_1, s)$. Then $(|v_k|^{-(s/p_k)}f_1(q_k(\triangle_u^m x_k))) \in N_p$. We choose δ such that $\delta \in (0, 1)$ and define sets

 $G_{1} = \{k \in N : f_{1}(q_{k}(\triangle_{u}^{m}x_{k})) \leq \delta\} \text{ and } G_{2} = \{k \in N : f_{1}(q_{k}(\triangle_{u}^{m}x_{k})) > \delta\}.$ If $k \in G_{1}$, then $(|v_{k}|^{-(s/p_{k})}(f_{2} \circ f_{1})(q_{k}(\triangle_{u}^{m}x_{k})) < |v_{k}|^{-(s/p_{k})}f_{2}(\delta).$ Again if $k \in G_{2}$ then by Lemma 2.3

$$|v_k|^{-(s/p_k)}(f_2 \circ f_1)(q_k(\triangle_u^m x_k)) < |v_k|^{-(s/p_k)} \left(\frac{2f_2(1)}{\delta}\right) f_1(q_k(\triangle_u^m x_k))$$

Therefore for any $k \in G_1 \cup G_2 = N$,

$$|v_k|^{-(s/p_k)}(f_2 \circ f_1)(q_k(\triangle_u^m x_k)) < |v_k|^{-(s/p_k)}f_2(\delta) + \left(\frac{2f_2(1)}{\delta}\right)|v_k|^{-(s/p_k)}f_1(q_k(\triangle_u^m x_k))$$

Above inequality is true for each $k \in N$. But N_p is normal sequence space and $(|v_k|^{-(s/p_k)}) \in N_p$, it follows that $(|v_k|^{-(s/p_k)}(f_2 \circ f_1)(q_k(\triangle_u^m x_k))) \in N_p$, that is $x \in N_p(E_K, \triangle_u^m, f_2 \circ f_1, s)$.

Theorem 3.6. Sequence space $N_p(E_K, \triangle_u^m, f, s)$ is a normal space if m - 0 and u = 1. **Proof.** Let $x \in N_p(E_K, \triangle^0, f, s)$. Then $(|v_k|^{-(s/p_k)}f(q_k(x_k))) \in N_p$. Again, let $\lambda = (\lambda_k)$ be a sequence of scalars such that $|\lambda_k| \leq 1$ for each $k \in N$. We have

$$q_k(\lambda_k x_k) = |\lambda_k| q_k(x_k) \le q_k(x_k)$$
 implies $|v_k|^{-(s/p_k)} f(q_k(\lambda_k x_k) \le |v_k|^{-(s/p_k)} f(q_k(x_k))$.

But N_p is normal space, it follows that $|v_k|^{-(s/p_k)} f(q_k(\lambda_k x_k) \in N_p$. That is, $\lambda x \in N_p(E_k, \triangle^0, f, s)$. Hence $N_p(E_k, \triangle^0, f, s)$ is a normal space.

Remark 3.2. Above theorem does not hold for any $m, u \in N$.

To show that the space $N_p(E_K, \triangle_u^m, f, s)$ is not normal in general, consider the following example. Let $E_k = C$ for each $k \in N$, f(x) = x, $q_k(x) = |x_k|$, m = 2, u = 1, s = 0 and $N_p = l_1$ (where $p_k = 1$ for each $k \in N$). Then $x = (x_k) = (K) \in N_p(E_K, \triangle_u^m, f, s)$. But $\lambda x \in N_p(E_k, \triangle^m, f, s)$, where $\lambda(-1^k)$ for each $k \in N$.

References

- [1] Y. Altin, M. Isik and R. Colak, A New system of sequence space defined by modulus, *Studia Univ. Babes-Bolyai Mathematica* **53(2)**, 2008 3-13.
- [2] M. Et. and R. Colak, On some generalized difference sequence spaces, Soochow J. Math. 21(4), 1995 377-386.
- [3] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, Basel, 981.
- [4] H. Kizmaz, On certain sequence spaces, Can. Math. Bull., 24(2),(1981)169-176.

- [5] I. J. Maddox Sequence spaces defined by a modulus, *Math. Proc. Cambridge Philos. Soc.*, (100),(1986)161-166.
- [6] E. Ozturk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, *Ind. J.Pure Appl. Math.*, **25(6)**,(1994)621-625.
- [7] W. H. Ruckle, F. K. spaces in which the sequence of coordinate vectors is bounded, *Can. J. Math.*, 25(5), (1973)973-978.
- [8] A. Sahiner, Some new paranormed spaces defined by modulus function, *Ind. J.Pure Appl. Math.*, **33(12)**,(2002)1877-1888.
- [9] P. D. Srivastava and S. Kumar, Generalised vector valued paranormed sequence spaces using modulus function *Appl. Math. and Comput.*, **215**, (2010)4110-4118.
- [10] B. C. Tripathy and A. Esi, A new type of difference sequence space, *Int. J. Sci. Technol.*, (1)(2006), 11-14.
- [11] A. Wilansky, Summability Through Functional Analysis, vol. 85, North-Holland Mathematics Studies, Amsterdam, Netherlands, 1984.

Received: March 7, 2014; Accepted: August 23, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/