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Abstract

In this paper we introduce a new generalized vector-valued paranormed sequence spaces Ny (Ey, A}, f,s)
using modulus function f, where p = (py) is a bounded sequence of positive real numbers such that inf p; >
0, (Ex, qx) is a sequence of seminormed spaces with Ey 1 C Ei for each k € N and s > 0. We prove results
regarding completeness, K-space, normality, inclusion relation are derived. These are more general than those
of Ruckle [7], Maddox [5], Ozturk and Bilgin [6], Sahiner [8], Atlin ef al. [1] and Srivastava and Kumar [9].

Keywords: Modulus function, paranormed space, normal sequence space, difference sequence space.

2010 MSC: 40A45, 46A45. @2012 MJM. All rights reserved.

1 Introduction
Let w denote the space of all complex sequences. Kizmaz [4] studied the sequence space
X(A)={x=(x): Ax € X}, for X = I, ¢, Co,
where Ax = (Axy) = (x — xg1) and shown that these sequence spaces are Banach spaces with the norm
xlla =[xl + [[Ax[|eo, x € X(D).

The sequence spaces X(A™) = {x = (x;) : A™x € X} for X = I, ¢ and ¢y are introduced by Et. and Colak
[2]. These sequence spaces are BK-spaces with norm
m
x[|a =Y [xi] + [|A"x]|oo, x € X(A™) where m € N.
i=0
Tripathy and Esi [10] introduced the difference operator A, u > 1 and defined the sequence spaces
X(Ay) ={x=(x¢): Ayx € X)} for X = I, c and cp and Ayx = (Ayxi) = (X — Xkiy)-

They proved that the above sequence spaces are Banach spaces and BK spaces with respect to the norm

u

Ixlla,= Yo [ x|+ 11 A% [l -
r=1
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Ruckle [7] constructed the sequence spaces L(f) = {x = (x}) € w : E f(l xx |) < oo} using the idea of
k=1

Modulus function f. He proved that L(f) is BK space. Maddox [5] introduced the class of sequences which
are strongly Cesaro summable with respect to the modulus function by

wo(f) = {x=(x) €w: -3 flx]) — 0 as n— oo,
k=1

Ozturk and Bligin [6] generalized the sequence spaces as

n

wolf, P) = {x = () € w: ikz[ﬂ X )P — 0 ,as 1 — ool
=1

where p = (py) is a bounded sequence of positive real numbers.

Sahiner [8] introduced the sequence spaces

Be(p, f.4,8) = {x = (0) € w(X) : ik_s[f(Q(Axk))]pk <0952 0} ,

k=1

and
o0

Be(p, ', q,8) = {x = (x) € w(X)+ Y K[fM(q(Axi)))P < o0, 5 > 0} /

k=1

where ¥ € N and (X, q) is a seminormed complex linear space.

Altin etal. [1] generalized the sequence space B¢(p, f,q,s) as
A, f,p,q,5) = { = (w) € w@(X): o Y K If @A) <0, 5 > o}.
k=1

Srivastave and Kumar [9] introduced a new vector valued sequence space Np(Ek, A™, f,s) where
Np(E, A™, f,5) = {x = (1) € w(Ex) : (| vp |7/ f(qe(A™xp))) € Np, s > 0},

where (E, gx) is a sequence of seminormed spaces such that Ex,; C Ej for each k € N, w(E;) = {x =
(xx) : xg € Eg, foreachk € N},v = (vy) is a sequence of real complex numbers such that 1 <| vy |< oo for
each k € N and N, is normal AK sequence space with absolutely monotonic paranorm gy, .

Let u, m > 0Dbe fixed integers then we introduce the following new type of Generalized paranormed vector
valued sequence space which unifies some earlier cases as particular cases:

Np(Ex, A1, f,8) = {x = (x¢) € w(Eg) : (| v |7/ f(ge(Alxg))) € Np, s > 0},

where p = (pi) is a bounded sequence of positive real numbers such that infy py > 0 and
i m
Alxe =Y (-1) < . ) X + uv, forallk € N.
v=0
1.1.1 Particular Cases:

(i) For Ex = Cforeachk € N, m =0, u =1, s = 0and Ny = I;, (where p; = 1 for each k € N), space
Np(Ex, A}, f,5) reduces to L(f) of Ruckle [7].

(ii) For Ex = Cforeachk € N, m =0, u =1, s = 0 and Ny = wy, (Where py = 1 for each k € N), space
Np(Ex, &Y, f,8) reduces to wy(f) of Maddox [5].

(iii) For Ex = Cforeachk € N, m =0, u =1, s = 0 and Ny = wo(p), space, Ny(Ey, A}, f,s) reduces to
wo(f, p) of Ozturk and Bilgin [6].
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(iv) For u =1, the space N, (E;, A", f,s) reduces to N, (E;, A™, f,s) of Srivastave and Kumar [9].
P p u p

(v) For Ex = X, foreachk € N, vy =k, m = 1and u = 1 and N, = I, the space N, (E, A}, f,s) reduces to
Be(p, f,q,5) of Sahiner [8].

(vi) For Ey = X, foreachk € N, vy =k, u = 1and N, = [, the space Ny (Ey, A}, f,s) reduces to [(A™, f,q,s)
of Altin etal. [1].

Thus study of the space N, (Ex, A}, f,s) gives a unified approach to many of the earlier known spaces.

2. Some Definitions and Lemmas

Definition 2.1[3]. A sequence space X is called normal space if x = (x;) € X and |A¢| < 1 for each keN.
This implies Ax = (Agxy)eX.

For example, I(p), co(p), w(p) are normal space.

Definition 2.2[3]. A sequence space X is called K space if the co-ordinate function py : X — K given by
pr(x) = x is continuous for each k € N.

Definition 2.3. A complete metric space is called Frechet space. An FK-space is a Frechet space with con-
tinuous co-ordinates.

Definition 2.4[9]. An FK-space X is said to be AK-space if ® C X and {¢"} is a basis for X, i.e., for each
x, xI" — x, where x["] denotes the nth section of x. For example, I(p), co(p), w(p) are AK-spaces.

Definition 2.5[3]. A paranorm g on a normal sequence space X is said to be absolutely monotone if

x = (x¢),y = (yx)eX and |xg| < |yi| for each keN = g(x) < g(v)-

Lemma 2.1[8]. If f is a modulus function, then f” is also modulus function for each reN, where f" =
fofofo---of(r-times composition of f with itself).

Lemma 2.2[5]. There is a modulus function f such that f(xy) < f(x) + f(y) for x,y > 0.

Lemma 2.3[5]. Let f; and f; be modulus functions and 0 < 6 < 1. If f1(t) > é for t € [0, 00), then

a0 ) < () At

3. Results on Sequence Space N, (Eg, A, f, ).
Theorem:. N, (Ex, A}, f,s) is a linear space.
Proof. It is easy to show that N,(Ex, A}, f,s) is a linear space. So we omit proof.

Lemma 3.1. Let (Ej, qx) be a sequence of seminormed spaces, and N, be normal AK-sequence space with
absolutely monotone paranaorm gy,. Then function defined by

fu:0,00) = [0,00), fu(t) = SNp[i ok |~/ £ (tai (L7 xc e
k=1

is continuous function of ¢ for each positive integer 1, where x = (x;)eN,(Ex, A}, f,s) and (e) is unit vector
basis of Nj.

Proof. We define function g : [0,00) — N, by

k() = o] /PR f(tqr (Al xy ey
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Lett; — 0asi — oo. Then foreachk =1,2,3,...,1n;

8k(t) = |oe| /PO f(tige( Al x) )ex — (0,0,-++) as i — co.
Therefore,

n

n
Yo gk(t) = Y [orl " P f(tige (Al xg)ex — (0,0,-+) as i — oo.
P =1

But paranorm gy, is continuous function, it follows that
n
g, [) gk(t)] — Oasi — co.
k=1

Hence function f, is continuous function of ¢ for each positive integer #.

Theorem 3.2. Sequence space N,(Ek, A}, f,s) is a paranormed space with paranorm

hgE

8(x) = Y f(ai(x) +gn, | okl /P f(gi(Alx))) | where x € Ny(Ex, A, f,).

1

Il
_

Proof: By definition of g,g(x) > 0 for any x = (xi) € Np(Ek, A}, f,s). Itis clear that g(0) = 0, g(x) =
g(—x) and g(x +y) < g(x) +g(y) for any x,y € Ny(Ex, A}, f,s). It is left to prove the continuity of scaler
multiplication under g. Suppose x" — x as n — co in Ny(Exg, A}, f,s) and &, — a as n — oo in C. We have to
show that g(a,x"™ —ax) — 0 as n — co. Consider

g(‘xnx” — lXX) = if(qi(anx? — ocxi)) +ng (|Uk|7(5/pk)f(qk(AZ1(lX”xlrfl - tXXk))))
i=1

- if(qi(zxnx? — QnXj + QnXj — QX;))
i=1

1

8y (1067077 F(ge( Al (] = e + i — 1)) |

s

Il
—_

< ) fllanlqi(xf —xi) + |an — alqi(xi))

+8nN, [(le*“*’“f(\om\qk(Al?(xZ —xx)) + |on — “|‘7k(A7unxk))))} :
This gives,
glanx" —ax) <M <if(%‘(x? = x;) + g, [([o6] /P9 F(gie( AT (xf — xk))))
iz

m

+ Y f (o — algiCxs)) + g, [0l ™79 f (an — g A
i=1

where M = sup, (1 + [|a,|]), this gives,
m
ganx" —ax) < Mg(x" —x) + ) f(lan — alqi(x;))
i=1
gy (10677 f(lan — alg( 0D - (3.1)
First and second expressions of R.H.S in (3.1) tend to zero as x” — x asn — oo in Np(EK, A, f,s) and

&y — & as n — oo. We must only show that

gy, [(Joel ™/ f(|an — algi (A} (xff = x¢)))] — Oasn — co.
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Since (|og|~/P) f(qx (A (xx)))eN, is AK-sequence space, therefore
SNP[(|Uk|_(S/p")f(Qk AT (%)) Z ok~ /PO F (g (AT (xp)ex] — O asm — oo

Al (xr))ex] — 0 as m — oo,

That is g, [ X541 [0k~ /P9 £ (qe(
Therefore, for every € > 0 there exists a positive integer mg such that

an, [ X okl P f(qu( A (x)))er] < e/2, forall m > mo,
k=m+1
In particular
gn, [ Y ol TS PO F(qe( AT (i) ex] < /2. (3.2).

k=mg+1
Since &y, — & as n — oo, therefore, for e = 1, there exists a positive integer n;, such that |a, —a| < 1 for all

n > nj. Consequently

Yo o TSP (o — al g (AT (x) e
k=mg+1
< Y Jokl TSP F(g( AT (xp) ek for all n > .
k=mg+1

But ¢, is monotone paranorm, it follows that for all n > n;

en L X okl 7P flan — g (AT (x) e
k:m0+1

Yo 1ol P (g (A (xi) ek | -

<8N,
p
k=mg+1

Using inequality (3.2), for all n > n

any [ X ol fan — algi(A7 (xi))ex] < e/2.

k=mg+1

By Lemma 3.1, function

T () = gy [ X Jol =779 f(tge (A ()e], £ 0
k=1

is continuous function of t. Hence there exists § € (0, 1) such that

fmy () < €/2, whenever t < co.

Again, since &, — a as n — oo, therefore for 6 € (0,1), there exist a positive integer ny// such that

ay —a| < 6 for all n > nj we have fu, (Jan — a|) < €/2, foralln > nj

that is
[Z o] ~C/PE) f (|, — algpe( O (xk))ekl <e/2foralln > nj

We take 1y = max(ny, ny). Using inequality (3.3)and (3.4), we have

any 1061 f(Jan — alai( Al (x1)) |

ZO: ol /PR f (| — ‘X‘]k(Aum(xk))ek]

< 8N, [
k=1
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o

N, | L ol TP F (o — g (A7 (xi) e
k:m0+1

<e€/2+4+¢€/2=¢, forall n > ny.

From inequality (3.1), g(anxy, —ax) — 0 asn — co. Hence Ny(Eg, A}, f,s) is a paranormed sequence
space.

Remark 3.1.Sequence space Ny, (Ex, A}, f,s) is not totally paranormed space.
Let g(x) = 0 = Y1y f(qi(xi)) + &N, [[ox| = /PO f(qi( A3 (x¢)))] = 0= gi(x;) = O foreach i =1,2,..,m
and

gny ([0~ fgu( Al (x) | = 0.
But
qi(x;) =0

does not mean x; = 0 as q; is seminorm on E;. Hence g is not total paranormed on space Ny (Ex, A}/, f,s).
Theorem 3.3. Sequence space Ny(Ek, A}, f,s) is a K-space if N) is a K-space.

Proof. We have to show the coordinate function P : Ny(Eg, A}, f,5) — Ej given by Pi(x) = xi, where
x € Ny(Ek, A}, f,s) is continuous for each k € N.
Let (x") be any sequence in Ny, (Eg, A}/, f,s) such that x” — 0 as n — oo in Ny (Ex, A}, f,s). That is

mu

gfwi(x?» + 8w, [0l =P f(qe( A (x)))] — 0as n — oo,

This means that
f(qi(x]')) = 0asn — oo for eachi=1,2,..,m,

and
N, | 1okl /P9 f(qr( AT (xf)) | — Oasn — oo (3.5).

Since Ny, is a K-space, therefore for each k
Ivkl_(s/”k>f(qk(Aum(x,’§)) —0asn — oo,

that is f(qr(A](xf)) — 0asn — co. Thus for any 6 > 0, there exist ng € N such that f(gq, (A} (x})) <
0 for alln > ng. Let § = f(€), where € > 0. Then

flar(A(x)) < f(e) for alln > ng — qp(Ay (xf) < € for alln > ny.

This shows that for each k, AJf(x}) — 0 in Ex as n — co. By condition (3.5), f(q;(x}')) — 0asn — oo for
eachi = 1,2,..,m. But f is modulus function, it follows that x}' — 0in E; asn — oo foreachi = 1,2,...,m.
Now x}' — 0in E;as n — oo foreachi =1,2,...,mand Aj/x}! — 0in E; as n — oo for each k € N. This implies
that x;! — 0in E; as n — oo for each k € N. Thus, coordinate wise function Py is continuous for each k € N.
Hence Ny(Ex, A}, f,s) is a K-space.

Theorem 3.4. Sequence space Ny(Eg, A, f,s) is a complete paranormed space under the paranorm g
defined by

™=

8(x) = Y f(gi(x)) + g, [Iox =77 f(ge( Al (xi))]  where x € Ny (B, Al £,5),

1

Il
—_

if N is a K-space and (Ey, qx) is a sequence of complete seminormed spaces.

Proof. Clearly N,(Ek, A}, f,s) is a paranormed space under g. To show that it is complete, Let (x") =
((x}!)k) be a Cauchy sequence in N, (Eg, A, f,s).Then g(x" — x') — 0as n,t — oo.
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That is

s

Il
—_

Flastel — ) + g, [[oxl ™6/ Fa( AL — 2] — Oasm b — oo
This means that
f(gi(xf — xf) —0asn,t — oofor eachi=1,2,...,m,

and
gy [P (Al (e = )] — 0as b - . (36)

Since Ny, is a K-space, therefore for each k,
ok =/ PO (gre(AM(x —xE))) — Oasn,t — oo,
that is
Flae(AF (2} = i) — 0asn,t — o.
Thus for any § positive, there exists 19 € N such that
Flar(AM(x —x1))) < 6 for alln, t > ny.
Let 6 = f(e), where € > 0. Then
Fle(AM(x) = x1))) < f(e) for alln, t > ng.
This implies
(gD (xf — x1)) < e for alln, t > ny.
This shows that for each k, (A} (x}) is a Cauchy sequence in Ey. By condition (3.6), f(g;(x!' — x!)) — 0 as
n,t — oo, foreachi = 1,2,...,m. But f is a modulus function, it follows that (x') is Cauchy sequence in E; for
eachi=1,2,...,m.

Now (x7') is Cauchy sequence in E; for each i = 1,2,...,m and (Aj}/x}) is Cauchy sequence in E; for each
k € N. This implies that x} is a cauchy sequence in Ej. for each k € N. Since each E; is complete, so sequence
(x!) is convergent for each k € N. Let lim, x}¥ = x; for each k € N. Since (x") is Cauchy sequence therefore
for each € > 0, there exists 1y such that g(x" — xt) < eforall n,t > ny. So we have

™=

lim Y flgu(x! — x)) = Y- flau(x! —x) < e
i=1 j

1

I
—

and
lim g, [loxl =/ f(ge( A1 — x0)))
=8N, {|vk|*(5/7"’<)f(qk(A’:f(x’k1 - xk)))] < eforalln > ny.
This implies that g(x" — x) < 2€ for all n > ng thatis x" — xasn — coin N,(Ex, A}, f,s).
Next we will show that x € N,(Ex, A, f,s). Let a! = [vg|~ /P f(qp(AM(x!! — xi)). Then for each

k,aj — 0asn — oo, since f is continuous function. We choose o with 0 < 6 < 1 such that 4} <
O [0k |~/ P f (g (AT ). But (|og| =/ P4 f(qr(Alx}))) € Np for each n. so for each n,a" = (al') € Nj,. Again,

o] =P8 F(gie(Alxe)) = [oe PO f(qe( A (i — x7)))
< o " PO F(qe( AT = x0))) + [okl =P f(qe( Al ag))
< (14 ) o]~/ P0) f(qe( D).
This implies,
o]~/ P8 F (gAY xe)) < Maloe] =779 f(qr( Al ap)),

where M;, = sup, (6} +1).
But N, is normal sequence space, it follows that [0k~ /PO F (g (Al xy))) € Ny, thatis x € Ny(Ex, A}, f,s).
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Hence Ny(Ek, A}/, f,s) is a complete paranormed space.

Theorem 3.5. Let f, f1, f» be modulus functions, (Eg, gx) be a sequence of seminormed spaces and s, 51,5, >
0.Then

<1>Np(EKr AZl,fl,S) N NP(EK/ fZ/ ) - Np EK/ Au/fl +f2/ )/
(ii)Np(Ex, A}, f,51) © Np(Ex, A}, f,52), if s1 <5
and
(iii)Np(Ex, A, f1,8) € Np(Ex, A", fr0 f1,5), if (Jog|~C/P¥)) € N,

Proof. It is easy to prove (i) and (ii) part of the above theorem. So consider the third one,

(iii) Let x € Np(Ex, A}, f1,8). Then (|ok]~6/PE) £ (g (A xp))) € Nj. We choose d such that § € (0,1) and
define sets

={keN: fi(gr(A)x)) <6} and Gy = {k € N : fi(qe(Affxp)) > 0}
If k € Gy, then (Jog|~C/P) (fo 0 f1) (g (Al xi)) < vk~ 6/PE) £5(8). Again if k € G, then by Lemma 2.3

ol ~/P) (0 £1)(@r( DI < [ =77 (2f2< ’) £ (@A),

Therefore for any k € G UG, = N
~(s/p1) A ~5/p0 £, 05y + (22N 1) =m0 £ (g (A
|vk| (f20 f1)(qr(Ayxk)) < |vgl S(0) +{ =5 ) vl fi(ae(Ayxi))

Above inequality is true for each k € N. But Ny, is normal sequence space and (Jog|~6/Pe)) € N, it follows
that ([og|~/P) (f2 0 1) (qk(Al k) € Np, thatis x € Np(Ex, A}, f2© fi,5)

Theorem 3.6. Sequence space N, (Ex, A}, f,s) is a normal space if m —0and u = 1.
Proof. Let x € Ny(Eg, A, f,s). Then (|vg|~ /PO f(ge(x))) € Np. Again, let A = (Ay) be a sequence of scalars
such that |[A;| <1 for each k € N. We have

QM) = [Aklgr(xe) < qx(xx) implies o] ~C/PF) £ (g (Agay) < Jok|~C/P¥) f(qe (k).

But N, is normal space, it follows that [0k~ /PO f(qr(Agxy) € Np. That is, Ax € Np(Eg, A, f,s). Hence
Ny(Exk, Ao,f,s) is a normal space.

Remark 3.2. Above theorem does not hold for any m,u € N.

To show that the space Ny,(Ek, A}, f,s) is not normal in general, consider the following example. Let
Ex = Cforeachk € N, f(x) = x, qx(x) = [x¢|, m =2, u =1, s = 0and N, = [; (where p; = 1 for each
k € N). Then x = (x) = (K) € Np(Ex, A}, f,s). But Ax € Np(E, A™, f,s), where A(—1F) foreach k € N.
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