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General energy decay for nonlinear wave equation of φ−Laplacian type

with a delay term in the internal feedback
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Abstract

Under conditions on the delay term, using the multiplier method and general weighted integral inequali-
ties, we study the question of asymptotic behavior of solutions for a nonlinear wave equation with φ−Laplacian
operator and a delay term in the internal feedback.
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1 Introduction

It is well known that the φ−Laplacian operator degenerates equations in divergence form. It has been
much studied during the last years and their results is by now rather developed, especially with delay. In
the classical theory of the wave equations several main parts of mathematics are joined in a fruitful way, it is
very remarkable that the φ−Laplace wave equation occupies a similar position, when it comes to nonlinear
problems. In recent years, the PDEs with time delay effects have become an active area of research and arise
in many applied problems.

In this paper we investigate the decay properties of solutions for the initial boundary value problem of a
nonlinear wave equation

(
|u′|l−2u′

)′
− ∆φu + µ1g(u′(x, t)) + µ2g(u′(x, t− τ)) = 0 in Ω×]0, +∞[,

u(x, t) = 0 on Γ×]0, +∞[,
u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω,
u′(x, t− τ) = f0(x, t− τ) in Ω×]0, τ(0)[,

(1.1)

where Ω is a bounded domain in Rn, n ∈ N∗, with a smooth boundary ∂Ω = Γ, τ > 0 is a time delay, µ1
and µ2 are positive real numbers and the initial data (u0, u1, f0) belong to a suitable space. The operator ∆φ is
defined by

∆φ =
n

∑
i=1

∂xi (φ(|∂xi |
2)∂xi ). (1.2)

For φ ∼ 1, when g is linear, it is well known that if µ2 = 0, that is, in the absence of a delay, the energy of
problem (1.1) exponentially decays to zero (see for instance [5, 6, 12, 18]). On the contrary, if µ1 = 0, that is,
there exists only the delay part in the interior, the system (1.1) becomes unstable (see for instance [8]). In [8],
the authors showed that a small delay in a boundary control can turn such a well-behaved hyperbolic system
into a wild one and therefore, delay becomes a source of instability. To stabilize a hyperbolic system involving
input delay terms, additional control terms will be necessary (see [19, 20, 21]). In [19] the authors examined
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the problem (P) with φ ∼ 1 and determined suitable relations between µ1 and µ2, for which stability or,
alternatively, instability takes place. More precisely, they showed that the energy is exponentially stable if
µ2 < µ1 and they found a sequence of delays for which the corresponding solution will be unstable if µ2 ≥ µ1.
The main approach used in [19], is an observability inequality obtained by means of a Carleman estimate. The
same results were shown if both the damping and the delay act in the boundary domain. We also recall the
result by Xu, Yung and Li in [21], where the authors proved the same result as in [19] for the one-dimension
space by adopting the spectral analysis approach.

When g is nonlinear and in the case µ2 = 0, φ ∼ 1, the problem of existence and energy decay have been
previously studied by several authors (see [1, 3, 11, 12, 13]) and many energy estimates have been derived
for arbitrary growing feedbacks (polynomial, exponential or logarithmic decay). The decay rate of a global
solution depends on the growth near zero of g(s) as it was proved in [11, 12, 13, 17].

In this article, we use some technique from [3] to give energy decay estimates of solutions to the problem
(1.1) for a nonlinear damping and a delay term in the φ−Laplace type. We use the multiplier method and
some properties of convex functions. These arguments of convexity were introduced and developed in [4, 7,
13, 14, 15], and used by Liu and Zuazua [16], Eller et al. [9] and Alabau-Boussouira [1].

2 Preliminaries and Notations

We omit the space variable x of u(x, t), u′(x, t) and for simplicity reason denote u(x, t) = u and u′(x, t) = u′,
when no confusion arises. The constants c used throughout this paper are positive generic constants which
may be different in various occurrences also the functions considered are all real valued, here u′ = du(t)/dt
and u′′ = d2u(t)/dt2. We use familiar function spaces Wm,Φ

0 , where the function Φ : R+ → R+ si colled an
N-function, in the sense of Definition 2.1 given in [3, pp 6-8].

We use the following hypotheses:
(hyp1) g : R → R is an odd non-decreasing function of the class C0(R) such that there exist ε1 (sufficiently
small), c1, c2, c3, α1, α2 > 0 and a convex and increasing function H : R+ → R+ of the class C1(R+)∩C2(]0, ∞[)
satisfying H(0) = 0, and H linear on [0, ε1] or (H′ > 0 and H′ = 0 on ]0, ε1]), such that

c1|s|l−1 ≤ |g(s)| ≤ c2|s|p if |s| ≥ ε1, (2.3)

|s|l + |g|(p+1)/p(s) ≤ H−1(sg(s)) if |s| ≤ ε1, (2.4)

with p satisfying

l − 1 ≤ p ≤ n + 2
n− 2

, if n > 2

l − 1 ≤ p < ∞, if n ≤ 2

|g′(s)| ≤ c3, (2.5)

α1 sg(s) ≤ G(s) ≤ α2 sg(s), (2.6)

where

G(s) =
∫ s

0
g(r) dr

(hyp2) φ : R+ → R+ is of class C1(]0, +∞[) ∩ C(]0, +∞[) satisfying φ(s) > 0 on ]0, +∞[ and φ is non decreas-
ing.
(hyp3)

α2µ2 < α1µ1. (2.7)

We first state some lemmas which will be needed later.

Lemma 2.1 (Sobolev–Poincaré’s inequality). Let q be a number with 2 ≤ q < +∞ (n = 1, 2, ..., p) or 2 ≤ q ≤
pn/(n− p) (n ≥ p + 1). Then there is a constant c∗ = c∗(Ω, q, p) such that

‖u‖q ≤ c∗‖∇u‖p for u ∈ W1,p
0 (Ω).

The case p = q = 2 gives the known Poincare’s inequality.



Kh. ZENNIR. / Nonlinear wave equation of φ−Laplacian type with a delay term. 145

Lemma 2.2 ([9, 10]). Let E : R+ → R+ be a non-increasing differentiable function and Ψ : R+ → R+ a convex and
increasing function such that Ψ(0) = 0. Assume that∫ T

s
Ψ(E(t)) dt ≤ E(s) ∀0 ≤ s ≤ T.

Then E satisfies the following estimate:

E(t) ≤ ψ−1 (h(t) + ψ(E(0))) ∀t ≥ 0, (2.8)

where ψ(t) =
∫ 1

t
1

Ψ(s) ds for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)
Ψ(E(0)) , and

h−1(t) = t +
ψ−1 (t + ψ(E(0)))

Ψ
(
ψ−1 (t + ψ(E(0)))

) ∀t ≥ E(0)
Ψ(E(0))

.

We introduce as in [19] the new variable

z(x, ρ, t) = ut(x, t− τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0. (2.9)

Then we have
τz′(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0, +∞). (2.10)

Therefore problem (1.1) is equivalent to:

(
|u′|l−2u′

)′
− ∆φu(x, t) + µ1g(u′(x, t)) + µ2g(z(x, 1, t)) = 0 in Ω×]0, +∞[,

τz′(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω×]0, 1[×]0, +∞[,
u(x, t) = 0 on ∂Ω× [0, +∞[,
z(x, 0, t) = u′(x, t) on Ω× [0, +∞[,
u(x, 0) = u0(x) u′(x, 0) = u1(x) in Ω
z(x, ρ, 0) = f0(x,−ρτ) in Ω×]0, 1[.

(2.11)

Let ξ be a positive constant such that

τ
µ2(1− α1)

α1
< ξ < τ

µ1 − α2µ2

α2
. (2.12)

The energy of u at time t of the problem (2.11) is defined by

E(t) =
l − 1

l
‖u′(t)‖l

l +
∫

Ω

n

∑
i=1

φ̃(|∂xi u|
2)dx + ξ

∫
Ω

∫ 1

0
G(z(x, ρ, t)) dρ dx. (2.13)

where φ̃(s) = 1
2
∫ s

0 φ(t)dt. We give an explicit formula for the derivative of the energy.

Lemma 2.3. Let (u, z) be a solution of the problem (2.11). Then, the energy functional defined by (2.13) satisfies

E′(t) ≤ −
(

µ1 −
ξα2

τ
− µ2α2

)∫
Ω

u′g(u′) dx

−
(

ξ

τ
α1 − µ2(1− α1)

)∫
Ω

z(x, 1, t)g(z(x, 1, t)) dx

≤ 0. (2.14)

Proof. Multiplying the first equation in (2.11) by u′, integrating over Ω, we get

0 =
d
dt

(
(l − 1)

l
‖u′‖l

l +
∫

Ω

n

∑
i=1

φ̃(|∂xi u|
2)

)
dx

+ µ1

∫
Ω

u′g(u′) dx + µ2

∫
Ω

u′g(z(x, 1, t))dx. (2.15)
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We multiply the second equation in (2.11) by ξg(z) and integrate the result over Ω× (0, 1) to obtain

ξ

∫
Ω

∫ 1

0
z′g(z(x, ρ, t)) dρ dx = − ξ

τ

∫
Ω

∫ 1

0

∂

∂ρ
G(z(x, ρ, t)) dρ dx

= − ξ

τ

∫
Ω

(G(z(x, 1, t))− G(z(x, 0, t))) dx. (2.16)

Then

ξ
d
dt

∫
Ω

∫ 1

0
G(z(x, ρ, t)) dρ dx = − ξ

τ

∫
Ω

G(z(x, 1, t)) dx +
ξ

τ

∫
Ω

G(u′) dx. (2.17)

From (2.15), (2.17) and using the Young inequality we get

E′(t) = −
(

µ1 −
ξα2

τ

)∫
Ω

u′g(u′) dx

− ξ

τ

∫
Ω

G(z(x, 1, t)) dx − µ2

∫
Ω

u′(t)g(z(x, 1, t)) dx. (2.18)

Let us denote G∗ to be the conjugate function of the convex function G, i.e., G∗(s) = supt∈R+ (st − G(t)).
Then G∗ is the Legendre transform of G which is given by (see [2], [4], [7], [14], [15], [17])

G∗(s) = s(G′)−1(s)− G[(G′)−1(s)] ∀s ≥ 0, (2.19)

and satisfies the following inequality

st ≤ G∗(s) + G(t) ∀s, t ≥ 0. (2.20)

Then by the definition of G we get
G∗(s) = sg−1(s)− G(g−1(s)).

Hence

G∗(g(z(x, 1, t))) = z(x, 1, t)g(z(x, 1, t))− G(z(x, 1, t))

≤ (1− α1)z(x, 1, t)g(z(x, 1, t)). (2.21)

Making use of (2.18), (2.20) and (2.21), we have

E′(t) ≤ −
(

µ1 −
ξα2

τ

)∫
Ω

u′g(u′) dx − ξ

τ

∫
Ω

G(z(x, 1, t)) dx

+ µ2

∫
Ω

(
G(u′) + G∗(g(z(x, 1, t)))

)
dx

≤ −
(

µ1 −
ξα2

τ
− µ2α2

)∫
Ω

u′g(u′) dx − ξ

τ

∫
Ω

G(z(x, 1, t)) dx

+ µ2

∫
Ω

G∗(g(z(x, 1, t))) dx. (2.22)

Using (2.6) and (2.12), we obtain

E′(t) ≤ −
(

µ1 −
ξα2

τ
− µ2α2

)∫
Ω

u′g(u′) dx

−
(

ξ

τ
α1 − µ2(1− α1)

)∫
Ω

z(x, 1, t)g(z(x, 1, t)) dx

≤ 0.

3 Main result

Our main result reads as.
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Theorem 3.1. Let (u0, u1, f0) ∈ W2,Φ ∩ W1,Φ
0 × W1,l

0 (Ω) × W1,l
0 (Ω; W1,l(0, 1)) and assume that the hypotheses

(hyp1)–(hyp3) hold. Then, for some constants ω, ε0 we have

E(t) ≤ ψ−1 (h(t) + ψ(E(0))) ∀t > 0, (3.23)

where ψ(t) =
∫ 1

t
1

ωϕ(τ) dτ for t > 0, h(t) = 0 for 0 ≤ t ≤ E(0)
ωϕ(E(0)) ,

h−1(t) = t +
ψ−1 (t + ψ(E(0)))

ωϕ
(
ψ−1 (t + ψ(E(0)))

) ∀t > 0,

ϕ(s) = {s if H is linear on [0, ε1], sH′(ε0s) if H′(0) = 0 and H′′ > 0 on ]0, ε1].}

Proof. Multiplying the first equation of (2.11) by ϕ(E)
E u, we obtain for all 0 ≤ S ≤ T,

0 =
∫ T

S

ϕ(E)
E

∫
Ω

u
((

|u′|l−2u′
)′
− ∆φu + µ1g(u′(x, t)) + µ2g(z(x, 1, t))

)
dx dt

=
[

ϕ(E)
E

∫
Ω

u|u′|l−2u′dx
]T

S
−
∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

u|u′|l−2u′dxdt

−
∫ T

S

ϕ(E)
E

∫
Ω

u′ldxdt +
∫ T

S

ϕ(E)
E

∫
Ω

(
n

∑
i=1

φ(|∂xi u|
2)|∂xi u|

2dxdt

+ µ1

∫ T

S

ϕ(E)
E

∫
Ω

ug(u′) dx dt + µ2

∫ T

S

ϕ(E)
E

∫
Ω

ug(z(x, 1, t)) dxdt

Similarly, we multiply the second equation of (2.11) by ϕ(E)
E e−2τρg(z(x, ρ, t)), we have

0 =
∫ T

S

ϕ(E)
E

∫
Ω

∫ 1

0
e−2τρg(z)(τz′ + zρ) dxdρdt

=

[
ϕ(E)

E

∫
Ω

∫ 1

0
τe−2τρG(z) dxdρ

]T

S

− τ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

∫ 1

0
e−2τρG(z) dxdρdt

+
∫ T

S

ϕ(E)
E

∫
Ω

∫ 1

0

(
∂

∂ρ
(e−2τρG(z)) + 2τe−2τρG(z)

)
dxdρdt

=

[
ϕ(E)

E

∫
Ω

∫ 1

0
τe−2τρG(z) dxdρ

]T

S

− τ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

∫ 1

0
e−2τρG(z) dxdρdt

+
∫ T

S

ϕ(E)
E

∫
Ω

(e−2τG(z(x, 1, t))− G(z(x, 0, t))) dxdt

+ 2τ

∫ T

S

ϕ(E)
E

∫ 1

0

∫
Ω

e−2τρG(z) dxdρdt.

We have by (hyp2), sφ(s) ≥ 2φ̃(s), (note that φ̃ is convex and defines a bijection from R+ to R+), summing to
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obtain, for A = 2 min{1, τe−2τ/2ξ}

A
∫ T

S
ϕ(E) dt ≤ −

[
ϕ(E)

E

∫
Ω

u|u′|l−2u′dx
]T

S
+
∫ T

S
(

ϕ(E)
E

)′
∫

Ω
u|u′|l−2u′dxdt

+
3l − 2

l

∫ T

S

ϕ(E)
E

∫
Ω

u′l dxdt− µ1

∫ T

S

ϕ(E)
E

∫
Ω

ug(u′) dx dt

− µ2

∫ T

S

ϕ(E)
E

∫
Ω

ug(z(x, 1, t)) dxdt−

[
ϕ(E)

E

∫
Ω

∫ 1

0
τe−2τρG(z)dxdρ

]T

S

+ τ

∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

∫ 1

0
e−2τρG(z)dxdρdt

−
∫ T

S

ϕ(E)
E

∫
Ω

(e−2τG(z(x, 1, t))− G(z(x, 0, t))) dxdt. (3.24)

Using Lemma 2.1, since E is non-increasing, using the Holder, Cauchy–Schwartz, Poincare and Young’s in-
equalities with exponents l

l−1 , l, to get

|
∫

Ω
u|u′|l−2u′dx| ≤ (

∫
Ω
|u|ldx)1/l(

∫
Ω
|u′|ldx)(l−1)/l

≤ c(
∫

Ω
|∇u|2dx)1/2E(l−1)/l(t)

≤ cE(l−1)/l(t)(
n

∑
i=1

φ̃−1(
∫

Ω

n

∑
i=1

φ̃(|∂xi |
2)dx))1/2

≤ cE(l−1)/l(t)(φ̃−1(E(t)))1/2 (3.25)

For l ≥ 2, φ̃−1 is non decreasing and ϕ is convex, increasing and of class C1(]0, +∞[) such that ϕ(0) = 0 (then
s → s(l−1)/l , s → φ̃−1(s) and s → ϕ(s)

s are non decreasing), we deduce that

−
[

ϕ(E)
E

∫
Ω

u|u′|l−2u′dx
]T

S
=

ϕ(E(S))
E(S)

∫
Ω

u(S)|u′(S)|l−2u′(S)dx

− ϕ(E(T))
E(T)

∫
Ω

u(T)|u′(T)|l−2u′(T)dx

≤ Cϕ(E(S)),

∣∣∣∣∣
∫ T

S

(
ϕ(E)

E

)′ ∫
Ω

u|u′|l−2u′ dxdt

∣∣∣∣∣ ≤ c
∫ T

S

∣∣∣∣( ϕ(E)
E

)′∣∣∣∣E dt

≤ cϕ(E(S)),

−

[
ϕ(E)

E

∫
Ω

∫ 1

0
e−2τρG(z) dxdρ

]T

S

=
ϕ(E(S))

E(S)

∫
Ω

∫ 1

0
e−2τρG(z(x, ρ, S)) dxdρ,

− ϕ(E(T))
E(T)

∫
Ω

∫ 1

0
e−2τρG(z(x, ρ, T)) dxdρ

≤ Cϕ(E(S)),

∫ T

S

((
ϕ(E)

E

)′)∫
Ω

∫ 1

0
e−2τρG(z) dxdρdt ≤ c

∫ T

S

(
−
(

ϕ(E)
E

)′)
Edt

≤ cϕ(E(S)),

∫ T

S

ϕ(E)
E

∫
Ω

e−2τG((x, 1, t)) dxdt ≤ c
∫ T

S

ϕ(E)
E

(−E′) dt

≤ cϕ(E(S)),
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∫ T

S

ϕ(E)
E

∫
Ω

G(z(x, 0, t))dxdt =
∫ T

S

ϕ(E)
E

∫
Ω

G(u′(x, t)) dxdt

≤ c
∫ T

S

ϕ(E)
E

(−E′) dt

≤ cϕ(E(S)),

We conclude

A
∫ T

S
ϕ(E)dt ≤ cϕ(E(S)) + µ1

∫ T

S

ϕ(E)
E

∫
Ω
|u||g(u′)| dx dt

+
3l − 2

l

∫ T

S

ϕ(E)
E

∫
Ω

u′ldxdt + µ2

∫ T

S

ϕ(E)
E

∫
Ω
|u||g(z(x, 1, t))| dxdt. (3.26)

In order to apply the results of Lemma 2.2, we estimate the terms of the right-hand side of (3.26) .
We distinguish two cases.

1. H is linear on [0, ε1]. We have c1|s|l−1 ≤ |g(s)| ≤ c2|s|p for all s ∈ R, and then, using (2.6) and noting that
s 7→ ϕ(E(s))

E(s) is non-increasing,

3l − 2
l

∫ T

S

ϕ(E)
E

∫
Ω
|u′|ldxdt ≤ c

∫ T

S

ϕ(E)
E

∫
Ω

u′g(u′)dxdt ≤ cϕ(E(S)),

Using the Poincaré, Young inequalities and the energy inequality from Lemma 2.3, we obtain, for all ε > 0,∫ T

S

ϕ(E)
E

∫
Ω
|ug(u′)|dxdt ≤ ε

∫ T

S

ϕ(E)
E

∫
Ω

up+1dxdt + cε

∫ T

S

ϕ(E)
E

∫
Ω

g1+ 1
p (u′)dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε

∫ T

S

ϕ(E)
E

∫
Ω

u′g(u′)dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε ϕ(E(S)),

∫ T

S

ϕ(E)
E

∫
Ω
|ug(z(x, 1, t))|dxdt ≤ ε

∫ T

S

ϕ(E)
E

∫
Ω

up+1dxdt + cε

∫ T

S

ϕ(E)
E

∫
Ω

g1+ 1
p (z(x, 1, t))dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε

∫ T

S

ϕ(E)
E

∫
Ω

z(x, 1, t)g(z(x, 1, t))dxdt

≤ εc
∫ T

S
ϕ(E)dt + cε ϕ(E(S)).

Inserting these two inequalities into (3.26), choosing ε > 0 small enough, we deduce that∫ T

S
ϕ(E(t))dt ≤ cϕ(E(S)).

Using Lemma 2.2 for E in the particular case where ϕ(s) = s, we deduce from (2.8) that

E(t) ≤ ce−ωt.

2. H′(0) = 0 and H′′ > 0 on ]0, ε1]. For all t ≥ 0, we consider the following partition of Ω

Ω1
t = {x ∈ Ω : |u′| ≥ ε1}, Ω2

t = {x ∈ Ω : |u′| ≤ ε1},

Ω̃1
t = {x ∈ Ω : |z(x, 1, t)| ≥ ε1}, Ω̃2

t = {x ∈ Ω : |z(x, 1, t)| ≤ ε1}.

Using (2.3), (2.6) and the fact that s 7→ ϕ(s)
s is non-decreasing, we obtain

c
∫ T

S

ϕ(E)
E

∫
Ω1

t

(|u′|l + g(p+1)/p(u′))dxdt ≤ c
∫ T

S

ϕ(E)
E

∫
Ω

u′g(u′)dxdt ≤ cϕ(E(S)).
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On the other hand, since H is convex and increasing, H−1 is concave and increasing. Therefore (2.4) and the
reversed Jensen’s inequality for a concave function imply that∫ T

S

ϕ(E)
E

∫
Ω2

t

(|u′|l + g(p+1)/p(u′)) dxdt ≤
∫ T

S

ϕ(E)
E

∫
Ω2

t

H−1(u′g(u′)) dxdt

≤
∫ T

S

ϕ(E)
E

|Ω|H−1
( 1
|Ω|

∫
Ω

u′g(u′)dx
)

dt. (3.27)

Let us assume H∗ to be the conjugate function of the convex function H, i.e., H∗(s) = supt∈R+ (st− H(t)).
Then H∗ is the Legendre transform of H, which is given by (see Arnold [2, pp. 61–64] and [4, 7, 14, 15])

H∗(s) = s(H′)−1(s)− H[(H′)−1(s)] ∀s ≥ 0 (3.28)

and satisfies the following inequality

st ≤ H∗(s) + H(t) ∀s, t ≥ 0. (3.29)

Due to our choice ϕ(s) = sH′(ε0s), we have

H∗
(

ϕ(s)
s

)
= ε0sH′(ε0s)− H(ε0s) ≤ ε0 ϕ(s). (3.30)

Making use of (3.27), (3.29) and (3.30), we have∫ T

S

ϕ(E)
E

∫
Ω2

t

(|u′|l + g(p+1)/p(u′)) dxdt ≤ c
∫ T

S
H∗
(

ϕ(E)
E

)
dt + c

∫ T

S

∫
Ω

u′g(u′)dt

≤ ε0

∫ T

S
ϕ(E)dt + cE(S),

∫ T

S

ϕ(E)
E

∫
Ω̃2

t

g(p+1)/p(z(x, 1, t)) dxdt ≤
∫ T

S

ϕ(E)
E

∫
Ω̃2

t

H−1(z(x, 1, t)g(z(x, 1, t))) dxdt

≤
∫ T

S

ϕ(E)
E

|Ω|H−1
( 1
|Ω|

∫
Ω

z(x, 1, t)g(z(x, 1, t))dx
)

dt

≤ c
∫ T

S
H∗
(

ϕ(E)
E

)
dt + c

∫ T

S

∫
Ω

z(x, 1, t)g(z(x, 1, t))dt

≤ ε0

∫ T

S
ϕ(E)dt + cE(S). (3.31)

Then, choosing ε0 > 0 small enough and using (3.26), we obtain in both cases∫ +∞

S
ϕ(E(t))dt ≤ c

(
E(S) + ϕ(E(S))

)
≤ c

(
1 +

ϕ(E(S)
E(S)

)
E(S)

≤ cE(S) ∀S ≥ 0. (3.32)

Using Lemma 2.2 in the particular case where Ψ(s) = ωϕ(s), we deduce from (2.8) our estimate (3.23). The
proof of Theorem 3.1 is now complete.
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