Malaya $\mathcal{M}I\mathcal{M}$ Journal of an international journal of mathematical sciences with Matematik computer applications...

©2012 MJM. All rights reserved.

A note on Civin-Yood Theorem for locally C^{*}-algebras

Alexander A. Katz^{*a*,*}

^a Department of Mathematics and Computer Science, St. John's University, Queens, NY 11439, USA.

Abstract

www.malayajournal.org

In the present note we establish Civin-Yood Theorem for locally C^* -algebras, i.e. we show that if A be a locally C*-algebra, and J be its closed Jordan ideal, then J is as well a closed two-sided *-ideals in A.

Keywords: C*-algebras, locally C*-algebras, projective limit of projective family of C*-algebras.

2010 MSC: 46K05, 46K10

1 Introduction

Let A be a C*-algebra, and J be a closed Jordan ideal in A. In 1965 in their paper [2] Civin and Yood proved among other things that *J* is a two-sided *-ideal in *A*.

The Hausdorff projective limits of projective families of Banach algebras as natural locally-convex generalizations of Banach algebras have been studied sporadically by many authors since 1952, when they were first introduced by Arens [1] and Michael [8]. The Hausdorff projective limits of projective families of C^* -algebras were first mentioned by Arens [1]. They have since been studied under various names by many authors. Development of the subject is reflected in the monograph of Fragoulopoulou [4]. We will follow Inoue [6] in the usage of the name **locally** C*-algebras for these algebras.

The purpose of the present notes is to extend the aforementioned result of Civin and Yood from [2] to locally C*-algebras.

Preliminaries 2

First, we recall some basic notions on topological *-algebras. A *-algebra (or involutory algebra) is an algebra A over **C** with an involution

$$^*: A \rightarrow A$$

such that

$$(a+\lambda b)^* = a^* + \overline{\lambda} b^*,$$

and

$$(ab)^* = b^*a^*,$$

for every $a, b \in A$ and $\lambda \in \mathbb{C}$.

A seminorm $\|.\|$ on a *-algebra A is a C*-seminorm if it is submultiplicative, i.e.

$$|ab|| \leq ||a|| ||b||$$
,

and satisfies the C*-condition, i.e.

$$||a^*a|| = ||a||^2$$
,

*Corresponding author.

E-mail address: katza@stjohns.edu (Alexander A. Katz)

for every $a, b \in A$. Note that the C^{*}-condition alone implies that $\|.\|$ is submultiplicative, and in particular

$$||a^*|| = ||a||$$
,

for every $a \in A$ (cf. for example [4]).

When a seminorm $\|.\|$ on a *-algebra *A* is a *C**-norm, and *A* is complete in the topology generated by this norm, *A* is called a *C**-algebra.

A topological *-algebra is a *-algebra A equipped with a topology making the operations (addition, multiplication, additive inverse, involution) jointly continuous. For a topological *-algebra A, one puts N(A) for the set of continuous C^* -seminorms on A. One can see that N(A) is a directed set with respect to pointwise ordering, because

$$\max\{\|.\|_{\alpha}, \|.\|_{\beta}\} \in N(A)$$

for every $\|.\|_{\alpha}$, $\|.\|_{\beta} \in N(A)$, where $\alpha, \beta \in \Lambda$, with Λ being a certain directed set.

For a topological *-algebra *A*, and $\|.\|_{\alpha} \in N(A)$, $\alpha \in \Lambda$,

$$\ker \|.\|_{\alpha} = \{a \in A : \|a\|_{\alpha} = 0\}$$

is a *-ideal in *A*, and $\|.\|_{\alpha}$ induces a *C**-norm (we as well denote it by $\|.\|_{\alpha}$) on the quotient $A_{\alpha} = A / \ker \|.\|_{\alpha}$, and A_{α} is automatically complete in the topology generated by the norm $\|.\|_{\alpha}$, thus is a *C**-algebra (see [4] for details). Each pair $\|.\|_{\alpha}$, $\|.\|_{\beta} \in N(A)$, such that

$$\beta \succeq \alpha$$
,

 $\alpha, \beta \in \Lambda$, induces a natural (continuous) surjective *-homomorphism

$$g^{\beta}_{\alpha}: A_{\beta} \to A_{\alpha}.$$

Let, again, Λ be a set of indices, directed by a relation (reflexive, transitive, antisymmetric) " \leq ". Let

$$\{A_{\alpha}, \alpha \in \Lambda\}$$

 $\alpha \leq \beta$,

 $g^{\beta}_{\alpha}: A_{\beta} \longrightarrow A_{\alpha},$

be a family of C^* -algebras, and g^{β}_{α} be, for

the continuous linear *-mappings

so that

for all
$$\alpha \in \Lambda$$
, and
 $g^{\beta}_{\alpha} \circ g^{\gamma}_{\beta} = g^{\gamma}_{\alpha}$
whenever
 $\alpha \preceq \beta \preceq \gamma$.

Let Γ be the collections $\{g_{\alpha}^{\beta}\}$ of all such transformations. Let A be a *-subalgebra of the direct product algebra

so that for its elements $x_{lpha} = g^{eta}_{lpha}(x_{eta}),$ for all $lpha \preceq eta,$ where $x_{lpha} \in A_{lpha},$ and $x_{eta} \in A_{eta}.$

, A

The *-algebra A constructed above is called a Hausdorff projective limit of the projective family

$$\{A_{\alpha}, \alpha \in \Lambda\},\$$

relatively to the collection

 $\Gamma = \{g_{\alpha}^{\beta} : \alpha, \beta \in \Lambda : \alpha \preceq \beta\},\$

and is denoted by

 $\underline{\lim} A_{\alpha}$,

 $\alpha \in \Lambda$, and is called the Arens-Michael decomposition of *A*.

It is well known (see, for example [11]) that for each $x \in A$, and each pair $\alpha, \beta \in \Lambda$, such that $\alpha \preceq \beta$, there is a natural projection

$$\pi_{\beta}: A \longrightarrow A_{\beta},$$

defined by

$$\pi_{\alpha}(x) = g^{\beta}_{\alpha}(\pi_{\beta}(x)),$$

and each projection π_{α} for all $\alpha \in \Lambda$ is continuous.

A topological *-algebra (A, τ) over \mathbb{C} is called a **locally** C*-algebra if there exists a projective family of C*-algebras

$$\{A_{\alpha}; g_{\alpha}^{\beta}; \alpha, \beta \in \Lambda\},\$$

so that

 $A \cong \underline{\lim} A_{\alpha},$

 $\alpha \in \Lambda$, i.e. *A* is topologically *-isomorphic to a projective limit of a projective family of *C**-algebras, i.e. there exits its Arens-Michael decomposition of *A* composed entirely of *C**-algebras.

A topological *-algebra (A, τ) over \mathbb{C} is a locally C^* -algebra iff A is a complete Hausdorff topological *algebra in which the topology τ is generated by a saturated separating family F of C^* -seminorms (see [4] for details).

Every C^* -algebra is a locally C^* -algebra.

A closed *-subalgebra of a locally *C**-algebra is a locally *C**-algebra.

The product $_{\alpha \in \Lambda} A_{\alpha}$ of *C*^{*}-algebras A_{α} , with the product topology, is a locally *C*^{*}-algebra.

Let *X* be a compactly generated Hausdorff space (this means that a subset $Y \subset X$ is closed iff $Y \cap K$ is closed for every compact subset $K \subset X$). Then the algebra C(X) of all continuous, not necessarily bounded complex-valued functions on *X*, with the topology of uniform convergence on compact subsets, is a locally C^* -algebra. It is well known that all metrizable spaces and all locally compact Hausdorff spaces are compactly generated (see [7] for details).

Let *A* be a locally C^* -algebra. Then an element $a \in A$ is called **bounded**, if

$$||a||_{\infty} = \{\sup ||a||_{\alpha}, \alpha \in \Lambda : ||.||_{\alpha} \in N(A)\} < \infty.$$

The set of all bounded elements of *A* is denoted by b(A).

It is well-known that for each locally C^* -algebra A, its set b(A) of bounded elements of A is a locally C^* -subalgebra, which is a C^* -algebra in the norm $\|.\|_{\infty}$, such that it is dense in A in its topology (see for example [4]).

3 Civin-Yood Theorem for locally C*-algebras

Let us recall that a subspace *J* of an associative algebra *A* is called a **Jordan ideal** of *A*, if for each $a \in J$ and $b \in A$,

$$\frac{ab+ba}{2}=a\circ b\in J,$$

where the multiplication $a \circ b$ thus defined is called symmetric (see [5] for details).

Now we are ready to present the main theorem of the current notes.

Theorem 3.1. Let (A, τ_A) be a locally C^* -algebra, and (J, τ_I) be a closed Jordan ideals in A, such that

$$\tau_I = \tau_A | J.$$

Then (J, τ_I) *is a closed two-sided* **-ideal of A.*

Proof. Let now (A, τ_A) be a locally C*-algebra, and let

 $A = \lim A_{\alpha}$

 $\alpha \in \Lambda$, be its Arens-Michael decomposition into a projective limit of a projective family of C*-algebras A_{α} , $\alpha \in \Lambda$, built using the family of seminorms $\|.\|_{\alpha}$, $\alpha \in \Lambda$, that defines the topology τ_A . Let

$$\pi_{\alpha}: A \to A_{\alpha},$$

 $\alpha \in \Lambda$, be a projection from *A* onto A_{α} , for each $\alpha \in \Lambda$. Each π_{α} is an surjective *-homomorphism from *A* onto $A_{\alpha}, \alpha \in \Lambda$. Let

$$g^{\rho}_{\alpha}: A_{\beta} \to A_{\alpha},$$

be a surjective *-homomorphism from A_{β} onto A_{α} , for each pair $\alpha, \beta \in \Lambda$, such that $\alpha \preceq \beta$. Such family g_{α}^{β} , $\alpha, \beta \in \Lambda$ does exist because the family $A_{\alpha}, \alpha \in \Lambda$ is projective. Let

$$J_{\alpha}=\pi_{\alpha}(J),$$

for each $\alpha \in \Lambda$. One can see now that

because

$$\pi_{\alpha} = g^{\beta}_{\alpha} \circ \pi_{\beta},$$

 $g^{\beta}_{\alpha}(J_{\beta})=J_{\alpha},$

for all $\alpha \leq \beta, \alpha, \beta \in \Lambda$.

From the fact that *J* is a closed in τ_J topology subspace of *A* it follows that J_{α} is a closed in $\|.\|_{\alpha}$ subspace of A_{α} for all $\alpha \in \Lambda$.

We show now that J_{α} is a Jordan ideal of A_{α} for each $\alpha \in \Lambda$. In fact, let $a_{\alpha} \in J_{\alpha}$, and $b_{\alpha} \in A_{\alpha}$ be arbitrary, and $\alpha \in \Lambda$. We select arbitrary $a \in \pi_{\alpha}^{-1}(a_{\alpha})$ which is obviously in *J*, and $b \in \pi_{\alpha}^{-1}(b_{\alpha})$, which is obviously in *A*. Because *J* is a Jordan ideal of *A* it follows that

$$a \circ b = \frac{ab+ba}{2} \in J.$$

One can see that

$$\pi_{\alpha}(a) = a_{\alpha}$$
 and $\pi_{\alpha}(b) = b_{\alpha}$.

Thus,

$$J_{\alpha} \quad \ni \quad \pi_{\alpha}(a \circ b) = \pi_{\alpha}(\frac{ab+ba}{2}) = \frac{\pi_{\alpha}(ab+ba)}{2} = \frac{\pi_{\alpha}(ab) + \pi_{\alpha}(ba)}{2}$$
$$= \quad \frac{\pi_{\alpha}(a)\pi_{\alpha}(b) + \pi_{\alpha}(b)\pi_{\alpha}(a)}{2} = \frac{a_{\alpha}b_{\alpha} + b_{\alpha}a_{\alpha}}{2} = a_{\alpha} \circ b_{\alpha}.$$

Now, applying to each J_{α} , $\alpha \in \Lambda$ Civin-Yood theorem from [2] we conclude that each J_{α} , $\alpha \in \Lambda$ is a two-sided *-ideal of A_{α} , i.e. for arbitrary $a_{\alpha} \in J_{\alpha}$ and $b_{\alpha} \in A_{\alpha}$ it follows that $a_{\alpha}b_{\alpha}, b_{\alpha}a_{\alpha}, a_{\alpha}^* \in J_{\alpha}$.

Let now $a \in J$ and $b \in A$ be arbitrary elements from J and A respectively. Then for each $\alpha \in \Lambda$,

$$J_{\alpha} \ni \pi_{\alpha}(a)\pi_{\alpha}(b) = \pi_{\alpha}(ab),$$

which implies that there exists a unique element $ab \in J$. Similarly we obtain that $ba \in J$.

At the same time for each $\alpha \in \Lambda$, even though generally speaking a^* exists in A, because

$$(\pi_{\alpha}(a))^* = \pi_{\alpha}(a^*) = a^*_{\alpha} \in J_{\alpha},$$

which implies that $a^* \in J$.

References

- [1] Arens, R., A generalization of normed rings. (English) Pacific J. Math., Vol. 2 (1952), pp. 455–471.
- [2] Civin, P.; Yood, B., Lie and Jordan structures in Banach algebras. (English) Pacific J. Math. Vol. 15 (1965), pp. 775–797.
- [3] Dixmier, J., C*-algebras. (English) Translated from the French by Francis Jellett. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford (1977), 492 pp.
- [4] Fragoulopoulou, M., Topological algebras with involution. (English) North-Holland Mathematics Studies, Vol. 200, Elsevier Science B.V., Amsterdam (2005), 495 pp.
- [5] Hanche-Olsen, H.; Størmer, E., *Jordan operator algebras.* (English) Monographs and Studies in Mathematics, Vol. 21. Pitman (Advanced Publishing Program), Boston, MA (1984), 183 pp.
- [6] Inoue, A., Locally C*-algebra. (English), Mem. Fac. Sci. Kyushu Univ. Ser. A, Vol. 25 (1971), pp. 197–235.
- [7] Kelley, J.L., *General topology*. (English) Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin (1975), 298 pp
- [8] Michael, E.A., *Locally multiplicatively-convex topological algebras*. (English) Mem. Amer. Math. Soc., No. 11 (1952), 79 pp.
- [9] Pedersen, G.K., C*-algebras and their automorphism groups. (English) London Mathematical Society Monographs, Vol. 14. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York (1979), 416 pp.
- [10] Schmüdgen, K., Uber LMC*-Algebren. (German) Math. Nachr. Vol. 68 (1975), pp. 167–182.
- [11] Trèves, F., Topological vector spaces: Distributions and Kernels. (English), New York-London: Academic Press. (1967), 565 pp.

Received: February 26, 2015; Accepted: March 1, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/