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Abstract

In this paper, we prove the local attractivity of solutions for a certain nonlinear Volterra type functional
integral equations. We rely on a measure theoretic fixed point theorem of Dhage (2008) for nonlinear D-set-
contraction in Banach spaces. Finally, we furnish an example to validate all the hypotheses of our main result
and to ensure the existence and ultimate attractivity of solutions for a numerical nonlinear functional integral
equation.
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1 Introduction

The last three decades witnessed the active area of research in the connotation of measure theoretic fixed
point theory and its applications to the problems of nonlinear differential and integral equations. The novelty
of this approach lies in the advantage that along with existence we obtain some additional information about
some characterizations of the solutions automatically. Local and global stability of the solutions of certain
functional integral equations is discussed via measures of noncompactness by many researchers (see, for
instance, Banas and Goebel [3], Banas and Rzepka [4], Dhage [8, 9], Dhage and Ntouyas [13] and the references
therein). Very recently, Dhage [8] derived an abstract fixed point result more general than Darbo [5] fixed point
theorem using the notion of measures of noncompactness and applied to stability problem of certain nonlinear
functional integral equations. See Dhage and Lakshmikantham [12] and the references therein. Inspired or
motivated by the idea of D-functions that given in the examples of Dhage [10, 11], we prove in this paper the
local attractivity of solutions for a certain nonlinear Volterra type functional integral equations via Dhage’s
measure theoretic fixed point theorem.

We now consider the following generalized nonlinear functional integral equation (in short GNFIE)

x(t) = u(t, x(t)) + p
( ∫ γ(t)

0
f (t, s, x(θ(s))ds,

∫ σ(t)

0
g(t, s, x(η(s))ds

)
(1.1)
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for t ∈ R+ = [0, ∞) ⊂ R, where u : R+ × R → R, f , g : R+ × R+ × R → R, p : R × R → R and
γ, θ, σ, η : R+ → R+ are continuous functions.

Notice that the functional integral equation (1.1) is “general” in the sense that it includes several classes of
known integral equations discussed in the literature (see Banas and Rzepka [4], Dhage [8], Dhage and Ntouyas
[13], O’Regan and Meehan [15], Krasnoselskii [14], Väth [16], Dhage [7, 8] and the references therein). In this
paper, we intend to obtain solution of GNFIE (1.1) in the space BC(R+, R) of all bounded and continuous
real-valued functions on R+. We use a fixed point theorem of Dhage [8] involving general measures of
noncompactness to prove the existence and ultimate attractivity of solutions of GNFIE (1.1) under certain new
conditions. The results of this paper are new to the theory of nonlinear differential and integral equations.

2 Auxiliary Results

This section is devoted to presenting a few auxiliary results needed in the sequel. Assume that E is a
Banach space with the norm ‖ · ‖ and the zero element θ. Denote by B[x, r] the closed ball centered at x and
with radius r. If X, Y are arbitrary subsets of E then the symbols λX and X + Y stand for the usual algebraic
operations on those sets. Moreover, we write X, co X to denote the closure and the closed convex hull of X,
respectively.

Further, let Pp(E) denote the class of all nonempty subsets of E with a property p. Here p may be
p =closed (cl, in short), p =bounded (bd, in short), p =relatively compact (rcp, in short) etc. Thus,
Pcl(E),Pbd(E),Pcl,bd(E) and Prcp(E) denote respectively the classes of closed, bounded, closed and bounded
and relatively compact subsets of E.

The axiomatic way of defining the concept of the measure of noncompactness has been adopted in several
papers in the literature. See Akhmerov et al. [2], Deimling [6], Väth [16] and Zeidler [17]. In this paper, we
adopt the following axiomatic definition of the measure of noncompactness in a Banach space given in Banas
and Goebel [3] and Dhage [7, 8].

Definition 2.1. A mapping µ : Pbd(E) → R+ is called the measure of noncompactness in E if it satisfies the following
conditions:

1o The family ker µ = {X ∈ Pbd(E) : µ(X) = 0} is nonempty and ker µ ⊂ Prcp(E).

2o µ(X) = µ(X).

3o µ(co X) = µ(X).

4o X ⊂ Y ⇒ µ(X) ≤ µ(Y).

5o If {Xn} is a decreasing sequence of sets in Pcl,bd(E) such that lim
n→∞

µ(Xn) = 0, then the intersection set X∞ =
∞⋂

n=1
Xn is nonempty.

The family ker µ described in 1o is said to be the kernel of the measure of noncompactness µ. We refer to
[2, 3, 4, 6, 16, 17] for further facts concerning the measures of noncompactness and their properties. Let us
only observe that the intersection set X∞ is a member of the family ker µ. Indeed, since µ(X∞) ≤ µ(Xn) for
any n, we infer that µ(X∞) = 0. In view of 1o this yields that X∞ ∈ ker µ.

A measure µ of noncompactness is said to be sublinear if

6o µ(X + Y) ≤ µ(A) + µ(B) for all X, Y ∈ Pbd(E), and

7o µ(λX) ≤ |λ|µ(X) for all λ ∈ R and X ∈ Pbd(E).

Let E = BC(R+, R) be the space of all continuous and bounded functions on R+ and define a norm ‖ · ‖
in E by

‖x‖ = sup{|x(t)| : t ≥ 0}.
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Clearly E is a Banach space with this supremum norm. Let us fix a bounded subset A of E and a positive
real number T. For any x ∈ A and ε ≥ 0, denote by ωT(x, ε), the modulus of continuity of x on the interval
[0, T] defined by

ωT(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T], |t− s| ≤ ε}.

Moreover, let
ωT(A, ε) = sup{ωT(x, ε) : x ∈ A},

ωT
0 (A) = lim

ε−→0
ωT(A, ε),

ω0(A) = lim
T−→∞

ωT
0 (A).

By A(t) we mean a set in R defined by A(t) = {x(t)|x ∈ A} for t ∈ R+. We denote diam (A(t)) =
sup{|x(t)− y(t)| : x, y ∈ A}. Finally we define a function µ on Pbd(E) by the formula

µ(A) = ω0(A) + lim sup
t−→∞

diam(A(t)). (2.2)

It has been shown in Banas and Goebel [3] that µ is a sublinear measure of noncompactness in E. From the
definition of the measure µ, it is clear that the thickness of the bundle of functions A(t) tends to zero as t tends
to ∞. This particular characteristic of µ has been utilized in formulating the main existence and attractiivity
result of this paper.

Before going to the key tool used in this paper, we recall the following useful definition introduced by
Dhage [8].

Definition 2.2. A mapping T : E → E is called D-set-Lipschitz if there exists a upper semi-continuous nondecreasing
function ϕ : R+ → R+ such that µ(T (A)) ≤ ϕ(µ(A) for all A ∈ Pbd(E) with T (A) ∈ Pbd(E), where ϕ(0) = 0. The
function ϕ is sometimes called a D-function of T on E. Especially when ϕ(r) = kr, k > 0, U is called a k-set-Lipschitz
mapping and if k < 1, then T is called a k-set-contraction on E. Further, if ϕ(r) < r for r > 0, then T is called a
nonlinear D-set-contraction on E.

Lemma 2.1 (Dhage [8]). If ϕ is a D-function with ϕ(r) < r for r > 0, then limn→∞ ϕn(t) = 0 for all t ∈ [0, ∞) and
vice-versa.

Using Lemma 2.1, Dhage [8] proved the following important result.

Theorem 2.1. Let C be a closed, convex and bounded subset of a Banach space E and let T : C → C be a continuous
and nonlinear D-set-contraction. Then T has a fixed point.

Remark 2.1. Let us denote by Fix(T ) the set of all fixed points of the operator T which belong to C. It
can be shown that the set Fix(T ) existing in Theorem 2.1 belongs to the family ker µ. Indeed, if Fix(T ) 6∈
ker µ, then µ(Fix(T )) > 0 and T (Fix(T )) = Fix(T ). Now from nonlinear set-contractivity it follows that
µ(T (Fix(T ))) ≤ φ(µ(Fix(T ))) which is a contradiction since φ(r) < r for r > 0. Hence Fix (T ) ∈ ker µ. This
particular characteristic has been utilized in our study of local attractivity of the solutions of nonlinear integral
equations.

3 Local Attractivity Results

In this section we prove our main existence and attractivity results for the GNFIE (1.1) under some suitable
conditions. We need the following definition in what follows. Let us assume that E = BC(R+, R) and let Ω
be a subset of E. Let T : E → E be an operator and consider the operator equation in E,

T x(t) = x(t) for all t ∈ R+. (3.3)

Below we give an attractivity characterizations of the solutions for the operator equation (3.3) on R+.
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Definition 3.3. We say that solutions of the equation (3.3) are locally ultimately attractive if there exists a closed ball
B[x0, r0] in the space BC(R+, R) for some x0 ∈ BC(R+, R) such that, for arbitrary solutions x = x(t) and y = y(t)
of equation (3.3) belonging to B[x0, r0] ∩Ω, we have

lim
t→∞

(x(t)− y(t)) = 0. (3.4)

In case the limit (3.2) is uniform with respect to the set B[x0, r0] ∩Ω, i.e., for each ε > 0 there exists T > 0 such that

|x(t)− y(t)| ≤ ε (3.5)

for all solutions x, y ∈ B[x0, r0]∩Ω of (3.3) and for t ≥ T, we will then say that solutions of equation (3.3) are uniformly
locally ultimately attractive on R+.

We consider the following set of hypotheses in the sequel.

(H0) The functions γ, θ, σ, η : R+ −→ R+ are continuous and limt−→∞ γ(t) = 0.

(H1) The function u : R+ ×R −→ R is continuous and there exists a continuous and nondecreasing function
ϕ : R+ → R+ such that

|u(t, x)− u(t, y)| ≤ ϕ(|x − y|)

for each t ∈ R+ and x, y ∈ R. Moreover, we assume ϕ(r) < r for r > 0.

(H2) The function U : R+ −→ R+ defined by U(t) = |u(t, 0)| is bounded with c1 = supt≥0 U(t).

(H3) The function f : R+ ×R+ ×R −→ R is continuous and there exist a constant k > 0 and a function ϕ as
appears in (H1) such that

| f (t, s, x)− f (t, s, y)| ≤ k ϕ(|x − y|)

for t, s ∈ R+ and x, y ∈ R.

(H4) The function F : R+ −→ R+ defined by F(t) =
∫ γ(t)

0
| f (t, s, 0)|ds is bounded with c2 = supt≥0 F(t).

(H5) The function g : R+ ×R+ ×R −→ R is continuous and there exist functions a, b : R+ −→ R+ satisfying

|g(t, s, x)| ≤ a(t)b(s)

for t, s ∈ R+ and x ∈ R. Moreover, lim
t−→∞

a(t)
∫ σ(t)

0
b(s)ds = 0.

(H6) The function p : R×R −→ R satisfies the following condition

|p(t1, t2)− p(t′1, t′2)| ≤ |t1 − t′1|+ |t2 − t′2|

for all t1, t2, t′1, t′2 ∈ R. Moreover, p(0, 0) = 0.

Remark 3.2. Since the hypothesis (H0) holds, there exists a constant c0 > 0 such that c0 = supt≥0 γ(t). Similarly,

since (H5) holds, the function v : R+ → R+ defined by v(t) = a(t)
∫ σ(t)

0 b(s)ds is continuous and the number
c3 = supt≥0 v(t) exists.

Theorem 3.2. Assume that the hypotheses (H0) − (H6) hold. Further if there exists a positive solution r0 of the
inequality

(1 + c0k)ϕ(r) + q ≤ r, (3.6)

where q is the constant defined by q = ∑3
i=1 ci, then the GNFIE (1.1) has a solution and the solutions are uniformly

locally ultimately attractive on R+.
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Proof. Now consider the closed ball B[0, r0] in E centered at origin of radius r0. Define the mapping T on E by

T x(t) = u(t, x(t)) + p
( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
(3.7)

for t ∈ R+. We shall show that the map T satisfies all the conditions of Theorem 3.1 on E.

Step I: First we show that T defines a mapping T : E −→ E. Since p, q, γ, σ are continuous, T x is
continuous and hence it is measurable on R+ for each x ∈ E. As θ(R+) ⊆ R+, we have maxt≥0 |x(θ(t))| ≤
maxt≥0 |x(t)|. On the other hand, hypotheses (H0)− (H3) and (H5) imply that

|T x(t)| ≤ |u(t, x(t))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
− p(0, 0)

∣∣∣
≤ |u(t, x(t))− u(t, 0)|+ |u(t, 0)|+

∣∣∣ ∫ γ(t)

0
f (t, s, x(θ(s)))ds

∣∣∣+ ∣∣∣ ∫ σ(t)

0
g(t, s, x(η(s)))ds

∣∣∣
≤ ϕ(|x(t)|) + |u(t, 0)|+

∫ γ(t)

0
| f (t, s, x(θ(s)))|ds +

∫ σ(t)

0
|g(t, s, x(η(s)))|ds

≤ ϕ(|x(t)|) + |u(t, 0)|+
∫ γ(t)

0
| f (t, s, x(θ(s)))− f (t, s, 0)|ds +

∫ γ(t)

0
| f (t, s, 0)|ds +

∫ σ(t)

0
a(t)b(s)ds

≤ ϕ(‖x‖) + U(t) + kγ(t)ϕ(‖x‖) + c2 + v(t)

≤ (1 + c0 k)ϕ(‖x‖) + q,

for all t ∈ R+. Taking supemum over t, we obtain,

‖T x‖ ≤ (1 + c0 k)ϕ(‖x‖) + q ≤ r. (3.8)

From (3.7), we deduce that T x ∈ E and T defines a mapping T : B[0, r0] → B[0, r0].

Step II: We show that T is continuous on B[0, r0]. Let ε > 0 be given and let x, y ∈ B[0, r0] be such that
‖x − y‖ ≤ ε. Then by hypotheses (H1)− (H5)

|T x(t)− T y(t)| ≤ |u(t, x(t))− u(t, y(t))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
− p
( ∫ γ(t)

0
f (t, s, y(θ(s)))ds,

∫ σ(t)

0
g(t, s, y(η(s)))ds

)∣∣∣
≤ ϕ(|x(t)− y(t)|) +

∣∣∣ ∫ γ(t)

0
[ f (t, s, x(θ(s)))− f (t, s, y(θ(s)))]ds

∣∣∣
+
∣∣∣ ∫ σ(t)

0
[g(t, s, x(η(s)))− g(t, s, y(η(s)))]ds

∣∣∣
≤ ϕ(|x(t)− y(t)|) +

∫ γ(t)

0
| f (t, s, x(θ(s)))− f (t, s, y(θ(s)))|ds

+
∫ σ(t)

0
|g(t, s, x(η(s)))− g(t, s, y(η(s)))|ds

≤ ϕ(‖x − y‖) + kγ(t)ϕ(‖x − y‖) + 2
∫ σ(t)

0
a(t)b(s)ds

≤ (1 + c0k)ϕ(ε) + 2v(t)

≤ (1 + c0k)ε + 2v(t). (3.9)

Since v(t) → 0 as t → ∞, there exists T > 0 such that v(t) ≤ ε, ∀t > T. Thus if t > T, then from (3.8) we have
that

|T x(t)− T y(t)| ≤ (3 + c0k)ε.

If t < T, then define a function ω = ω(ε) by the formula

ω(ε) = sup{|g(t, s, x)− g(t, s, y)| : t, s ∈ [0, T], x, y ∈ [−r0, r0], |x − y| ≤ ε}. (3.10)

Now g(t, s, x) is continuous and hence uniformly continuous on [0, T]× [0, T]× [−r0, r0]. As a result we have
ω(ε) → 0 as ε → 0. Therefore, from (3.10),
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|T x(t)− T y(t)| ≤ (1 + c0k)ε + σ∗ω(ε)

for all t ∈ R+, where σ∗ = max{σ(t) : t ∈ [0, T]}. Hence, it follows that

‖T x − T y‖ ≤ max{(3 + c0k)ε, (1 + c0k)ε + σ∗ω(ε)}
→ 0 as ε → 0.

Hence T is a continuous mapping from B[0, r0] into itself.

Step III: Here we show that T is a nonlinear set-contraction on B[0, r0]. This will be done in the following
two cases:

Case I : Let A ⊂ B[0, r0] be non-empty. Further fix the number T > 0 and ε > 0. Since the functions f
and g are continuous on compact [0, T] × [0, T] × [−r0, r0], there are constants c4 > 0 and c5 > 0 such that
| f (t, s, x)| ≤ c4 and |g(t, s, x)| ≤ c5 for all t, s ∈ [0, T] and x ∈ [−r0, r0]. Then choosing t, τ ∈ [0, T] such that
|t− τ| ≤ ε and taking into account our hypotheses, we obtain

|T x(t)− T x(τ)| ≤ |u(t, x(t))− u(τ, x(τ))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
−p
( ∫ γ(τ)

0
f (τ, s, x(θ(s)))ds,

∫ σ(τ)

0
g(τ, s, x(η(s)))ds

)∣∣∣
≤ |u(t, x(t))− u(t, x(τ))|+ |u(t, x(τ))− u(τ, x(τ))|

+

∣∣∣∣∣
∫ γ(t)

0
f (t, s, x(θ(s)))ds−

∫ γ(τ)

0
f (τ, s, x(θ(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(t)

0
g(t, s, x(η(s)))ds−

∫ σ(τ)

0
g(τ, s, x(η(s)))ds

∣∣∣∣∣
≤ ϕ(|x(t)− x(τ)|) + |u(t, x(τ))− u(τ, x(τ))|

+

∣∣∣∣∣
∫ γ(t)

0
f (t, s, x(θ(s)))ds−

∫ γ(t)

0
f (τ, s, x(θ(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ γ(t)

0
f (τ, s, x(θ(s)))ds−

∫ γ(τ)

0
f (τ, s, x(θ(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(τ)

σ(t)
g(t, s, x(η(s)))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ σ(τ)

0
[g(t, s, x(η(s)))ds− g(τ, s, x(η(s)))]ds

∣∣∣∣∣
≤ ϕ(|x(t)− x(τ)|) + |u(t, x(τ))− u(τ, x(τ))|

+
∫ γ(t)

0
| f (t, s, x(θ(s)))− f (τ, s, x(θ(s)))|ds

+

∣∣∣∣∣
∫ γ(t)

γ(τ)
| f (τ, s, x(θ(s)))| ds

∣∣∣∣∣+
∣∣∣∣∣
∫ σ(τ)

σ(t)
|g(t, s, x(η(s)))| ds

∣∣∣∣∣
+
∫ σ(τ)

0
|g(t, s, x(η(s)))ds− g(τ, s, x(η(s)))|ds

≤ ϕ(|x(t)− x(τ)|) + ωT(u, ε) + kωT( f , ε) + c4ωT(γ, ε)

+TωT(g, ε) + c5ωT(σ, ε),

where

ωT(γ, ε) = sup{|γ(t)− γ(τ)| : t, τ ∈ [0, T], |t− τ| ≤ ε},

ωT(σ, ε) = sup{|σ(t)− σ(τ)| : t, τ ∈ [0, T], |t− τ| ≤ ε},
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ωT(u, ε) = sup{|u(t, x)− u(τ, x)| : t, τ ∈ [0, T], |t− τ| ≤ ε, |x| ≤ r0},

ωT( f , ε) = sup{| f (t, s, x)− f (τ, s, x)| : t, τ ∈ [0, T], |t− τ| ≤ ε, |x| ≤ r0},

ωT(g, ε) = sup{|g(t, s, x)− g(τ, s, x)| : t, τ ∈ [0, T], |t− τ| ≤ ε, |x| ≤ r0}.

The above inequality further implies that

ωT(T x, ε) ≤ ϕ(ωT(x, ε)) + ωT(u, ε) + c0kωT( f , ε)

+c4ωT(γ, ε) + TωT(g, ε) + c5ωT(σ, ε).
(3.11)

Since by hypotheses, the functions u, ϕ, γ, σ and f , g are continuous respectively on [0, T] and [0, T] ×
[0, T] × [−r0, r0], we infer that they are uniformly continuous there. Hence we deduce that ϕ(ωT(x, ε)) →
0, ωT(u, ε) → 0, ωT(γ, ε) → 0, ωT( f , ε) → 0, ωT(g, ε) → 0 as ε → 0. Hence from the above estimate (3.11), we
obtain

ωT
0 (T (A)) = 0,

and consequently
ω0(T (A)) = 0. (3.12)

Case II: Now for any x, y ∈ A one has:

|T x(t)− T y(t)| ≤ |u(t, x(t))− u(t, y(t))|+
∣∣∣p( ∫ γ(t)

0
f (t, s, x(θ(s)))ds,

∫ σ(t)

0
g(t, s, x(η(s)))ds

)
−p
( ∫ γ(t)

0
f (t, s, y(θ(s)))ds,

∫ σ(t)

0
g(t, s, y(η(s)))ds

)∣∣∣
≤ ϕ(|x(t)− y(t)|) +

∣∣∣ ∫ γ(t)

0
f (t, s, x(θ(s)))− f (t, s, y(θ(s)))ds

∣∣∣
+
∣∣∣ ∫ σ(t)

0
g(t, s, x(η(s)))ds− g(t, s, y(η(s)))ds

∣∣∣
≤ ϕ(diam (A(t))) +

∫ γ(t)

0
| f (t, s, x(θ(s)))− f (t, s, y(θ(s)))|ds

+
∫ σ(t)

0
|g(t, s, x(η(s)))ds− g(t, s, y(η(s)))|ds

≤ ϕ(diam (A(t))) + k
∫ γ(t)

0
|x(θ(s))− y(θ(s))| ds + 2v(t)

≤ ϕ(diam (A(t))) + k
∫ γ(t)

0
diam A(θ(s))ds + 2v(t)

≤ ϕ(diam (A(t))) + k
∫ γ(t)

0
diam (A) ds + 2v(t)

≤ ϕ(diam (A(t))) + kγ(t)diam (A) ds + 2v(t).

As a result of the above inequality we obtain

diam (T (A(t))) ≤ ϕ(diam (A(t))) + kγ(t)diam (A) + 2v(t).

Taking the limit superior as t → ∞ in the above inequality yields

lim sup
t→∞

diam (T (A(t))) ≤ ϕ

(
lim sup

t→∞
diam (A(t))

)
+ k lim sup

t→∞
γ(t) diam A + 2 lim sup

t→∞
v(t).

Since both the limits, namely limt→∞ v(t) and limt→∞ γ(t) exist and each one is equal to 0, it follows that
lim supt→∞ v(t) = 0 and lim supt→∞ γ(t) = 0. Hence, from the above inequality, we have

lim sup
t→∞

diam (T (A(t))) ≤ ϕ

(
lim sup

t→∞
diam (A(t))

)
. (3.13)
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Now from the inequalities (3.12), (3.13) and the definition of µ it follows that

µ(T (A)) = ω0(T (A)) + lim sup
t→∞

diam (T (A(t)))

≤ ϕ

(
0 + lim sup

t→∞
diam (A(t))

)
≤ ϕ

(
ω0(A) + lim sup

t→∞
diam (A(t))

)
,

or, equivalently,

µ(T (A)) ≤ ϕ(µ(A)), (3.14)

where µ is the measure of noncompactness defined in the space BC(R+, R). This shows that T is a nonlinear
D-set-contraction on B[0, r0]. Thus, the map T satisfies all the conditions of Theorem 2.2 with C = B[0, r0]
and an application of it yields that T has a fixed point in B[0, r0]. This further by definition of T implies that
the GNFIE (1.1) has a solution in B[0, r0]. Moreover, taking into account that the image of B[0, r0] under the
operator T is again contained in the ball B[0, r0] we infer that the set F (T ) of all fixed points of T is contained
in B[0, r0]. If the set F (T ) contains all solutions of the equation (1.1), then we conclude from Remark 2.1 that
the set F (T ) belongs to the family ker µ. Now, taking into account the description of sets belonging to ker µ

(given in Section 2) we deduce that all solutions of the equation (1.1) are uniformly locally ultimately attractive
on R+. This completes the proof.

4 An Example

As an application, we consider the following nonlinear functional integral equation

x(t) =
1

1 + t
ln
(

1 +
1
2
|x(t)|

)
+
∫ t2

t3+1

0

(
1 + t

1 + t + t2

)
ln
(

1 +
1
2
|x|
)

ds

+
∫ t

1+t

0
exp(−t2)

s2 cos x(s)
1 + | sin x(s)|

ds, (4.15)

for all t ∈ R+.

Let

p(t, t′) = t + t′, ϕ(t) = ln
(

1 +
1
2

t
)

, θ(t) = t2 + 1, σ(t) =
t

1 + t
, η(t) = t,

γ(t) =
t2

t3 + 1
, u(t, x) =

1
1 + t

ln
(

1 +
1
2
|x(t)|

)
, a(t) = (1 + t)3 exp(−t), b(s) = s2,

for all t, t′, s ∈ R+, and

f (t, s, x) =
(

1 + t
1 + t + t2

)
ln
(

1 +
1
2
|x|
)

,

g(t, s, x) = (1 + t)3 exp(−t)
s2 cos x(s)

1 + | sin x(s)|

for all t, s ∈ R+ and x ∈ R. Notice that:

(i) The functions γ, θ, σ, η are obviously continuous and lim
t→∞

γ(t) = lim
t→∞

t2

1 + t3 = 0. Also c0 = sup
t≥0

γ(t) =

sup
t≥0

t2

1 + t3 ≈ 0.441.
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(ii) For arbitrary fixed x, y ∈ R we have

|u(t, x)− u(t, y) =
1

1 + t

∣∣∣∣ln(1 +
1
2
|x|
)
− ln

(
1 +

1
2
|y|
)∣∣∣∣

≤ ln
1 + 1

2 |x|
1 + 1

2 |y|
≤ ln

(
1 +

1
2
· |x| − |y|

1 + 1
2 |y|

)

< ln
(

1 +
1
2
|x − y|

)
= ϕ(|x − y|).

Therefore, hypothesis (H1) is satisfied with ϕ(r) = ln
(

1 +
1
2

r
)

< r, for r > 0.

(iii) (H2) is satisfied since U(t) = |u(t, 0)| = 0 and c1 = supt≥0 |u(t, 0)| = 0.

(iv) For arbitrary fixed x, y ∈ R such that |x| ≥ |y| and for t > 0 we obtain

| f (t, s, x)− f (t, s, y)| =
(

1 + t
1 + t + t2

)
ln

1 + 1
2 |x|

1 + 1
2 |y|

≤ ϕ(|x − y|),

as in (ii). The case is similar when |y| ≥ |x|. Thus (H3) is satisfied with k = 1 and ϕ(r) = ln
(

1 +
1
2

r
)

<

r, for r > 0.

(v) Next, hypothesis (H4) is satisfied, since the function F : R+ → R defined by

F(t) =
∫ γ(t)

0
| f (t, s, 0)|ds =

∫ t2

t3+1

0
0 ds = 0

is bounded with c2 = supt≥0 F(t) = 0.

(vi) The function g acts continuously from the set R+ ×R+ ×R into R. Moreover, we have

|g(t, s, x)| ≤ (1 + t)3 exp(−t) s2 = a(t)b(s),

for all t, s ∈ R+ and x ∈ R, then we can see that hypothesis (H5) is satisfied. Indeed, we have

lim
t→∞

a(t)
∫ t

1+t

0
b(s)ds = lim

t→∞
(1 + t)3 exp(−t)

∫ t
1+t

0
s2ds

=
1
3

lim
t→∞

t3 exp(−t) = 0.

Also we have c3 = sup
t≥0

1
3

t3 exp(−t) ≈ 0.37.

(vii) Obviously, hypothesis (H6) is satisfied.

The inequality
(1 + c0k)ϕ(r) + q ≤ r

reduces to the form

(1 + 0.441) ln
(

1 +
1
2

r
)

+ 0.37 ≤ r.

It is easily seen that each number r ≥ 0.6 satisfies the above inequality. Thus, as the number r0 we can take
r0 = 0.6. Note that this estimate of r0 can be improved.

Keeping in view the above observations, we find that the functions γ, ϕ, θ, σ, η, u, f , g,a and b satisfy all
the conditions of Theorem 3.2 and hence the GNFIE (4.1) has at least one solution in the space BC(R+, R) and
the solutions of the equation (4.1) are uniformly locally ultimately attractive on R+ located in the ball B[0, 0.6].
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Remark 4.3. We remark that:

(i) Taking u(t, x(t)) = q(t), p(t, t′) = t + t′ for all t, t′ ∈ R+ and for any x ∈ R the generalized nonlinear
functional integral equation (4.1) reduces to the nonlinear functional integral equation considered by
Dhage [8] which, in turn, includes several classes of known integral equations discussed in the literature.

(ii) Taking p(t, t′) = t′, γ(t) = t and θ(s) = s for all t, s ∈ R+, we retrieve the functional integral equation
studied by Aghajani, Banas and Sabzali [1].

(iii) The authors in [1] generalized Theorem 2.2 under the weaker upper semi-continuity of the D-function ψ

and the requirement of the condition that limn→∞ ψn(r) = 0 for all t > 0, however to hold this condition,
they needed an additional condition on the function ψ that ψ(r) < r for r > 0. But in actual practice, it is
very difficult to verify this condition and the authors in [1] did not provide any example of the function
ψ illustrating the comparison between two conditions in applications. Moreover, for applications to
the existence result, they assumed an additional condition on the function ψ, namely, supperadditivity
which automatically yields the upper semi-continuity together with the monotone characterization of
the function ψ and so, the existence theorem for the nonlinear integral equation considered in Aghajani
et.al. [1] follows by a direct application of Theorem 2.2 of Dhage [8].
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