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Some Results for the Bessel transform
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Abstract

In this paper, using a Bessel generalized translation , we prove the estimates for the Bessel transform in the
space L2

p(R+) on certain classes of functions.
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1 Introduction and preliminaries

Integral transforms and their inverses (e.g., the Bessel transform) are widely used to solve various
problems in calculus, mechanics, mathemtical physics, and computational mathematics (see, e.g.,[3, 8]).

In [7], E.C. Titchmarsh characterized the set of functions in L2(R) satisfying the Cauchy Lipschitz condition
for the Fourier transform, namely we have

Theorem 1.1. Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the following are equivalents

1. ‖ f (x + h)− f (x)‖L2(R) = O(hα) as h −→ 0,

2.
∫
|λ|≥r |F (λ)|2dλ = O(r−2α) as r −→ +∞,

where F stands for the Fourier transform of f .

The main aim of this paper is to establish a generalization of Theorem 1.1 in the Bessel transform setting
by means of the Bessel generalized translation. We point out that similar results have been established in the
context of noncompact rank 1 Riemannian symmetric spaces and of Jacobi transform (see [2, 6]).

In this section, we give some definition and preliminaries concerning the Bessel transform. Everywhere
below p is a real number, p ≥ − 1

2 .

Let

D =
d2

dx2 +
(2p + 1)

x
d

dx
be the Bessel differential operator. We introduce the normalized Bessel function of the first kind jp defined by

jp(z) = Γ(p + 1)
∞

∑
n=0

(−1)n

n!Γ(n + p + 1)

( z
2

)2n
, z ∈ C, (1.1)

where Γ(x) is the gamma-function (see[4]). The function y = jp(x) satisfies the differential equation
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Dy + y = 0

with the initial conditions y(0) = 1 and y′(0) = 0. The function jp(x) is infinitely differentiable, even, and,
moreover entire analytic.

From (1.1) we see that

lim
z−→0

jp(z)− 1
z2 6= 0

by consequence, there exist c > 0 and η > 0 satisfying

|z| ≤ η =⇒ |jp(z)− 1| ≥ c|z|2 (1.2)

From [1], we have

|jp(x)| ≤ 1. (1.3)

and

1− jp(x) = O(x2), 0 ≤ x ≤ 1. (1.4)

Assume that L2
p(R+), p ≥ − 1

2 , is the Hilbert space of measurable functions f (x) on R+ with the finite
norm

‖ f ‖ = ‖ f ‖2,p =
(∫ ∞

0
| f (x)|2x2p+1dx

)1/2

Given f ∈ L2
p(R+), the Bessel transform is defined by

f̂ (λ) =
∫ ∞

0
f (t)jp(λt)t2p+1dt, λ ∈ R+.

The inverse Bessel transform is given by the formula

f (t) = (2pΓ(p + 1))−2
∫ ∞

0
f̂ (λ)jp(λt)λ2p+1dλ.

From [3], we have the Parseval’s identity∫ ∞

0
| f̂ (λ)|2λ2p+1dλ = 22pΓ2(p + 1)

∫ ∞

0
| f (t)|2t2p+1dt.

In L2
p(R+), consider the Bessel generalized translation Th (see [3, p. 121])

Th f (x) = cp

∫ π

0
f (

√
x2 + h2 − 2xhcost)sin2ptdt, p ≥ −1

2
, h > 0,

where

cp =
(∫ π

0
sin2ptdt

)−1
=

Γ(p + 1)
Γ( 1

2 )Γ(p + 1
2 )

From [5], we note importants properties of Bessel transform

(̂D f )(λ) = (−λ2) f̂ (λ). (1.5)

and

(̂Th f )(λ) = jp(λh) f̂ (λ). (1.6)

We define the differences of first and higher orders as
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∆h f (x) = Th f (x)− f (x) = (Th − E) f (x)

∆k
h f (x) = ∆h(∆k−1

h f (x)) = (Th − E)k f (x) =
∞

∑
i=1

(−1)k−i(k
i )Ti

h f (x), (1.7)

where T0
h f (x) = f (x), Ti

h f (x) = Th(Ti−1
h f (x)), i = 1, 2, .., k; k=1,2,.... and E is the unit operator in the space

L2
p(R+).

2 Main results

Lemma 2.1. For f ∈ L2
p(R+). Then

‖∆k
hDr f (x)‖2 =

∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

Proof From formula (1.5), we have

(̂Dr f )(t) = (−1)rt2r f̂ (t); r = 0, 1, 2, .... (2.8)

We use formulas (1.6) and (2.8), we conclude that

T̂i
hDr f (t) = (−1)r jip(th)t2r f̂ (t); 1 ≤ i ≤ k. (2.9)

Or, from formulas (1.7) and (2.9) the image ∆k
hDr f (x) under the Bessel transform has the form

∆̂k
hDr f (t) = (−1)r(jp(th)− 1)kt2r f̂ (t).

By Parseval’s identity, we have the result.

Our main result is as follows

Theorem 2.2. Let f ∈ L2
p(R+). Then the following are equivalents

1. ‖∆k
hDr f (x)‖ = O(hα) as h −→ 0, (0 < α < k)

2.
∫ ∞

s t4r| f̂ (t)|2t2p+1dt = O(s−2α) as s −→ +∞

Proof 1) =⇒ 2) Suppose that

‖∆k
hDr f (x)‖ = O(hα) as h −→ 0

From Lemma 2.1, we have

‖∆k
hDr f (x)‖2 =

∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt.

By formula (1.2), we obtain∫ η
h

η
2h

t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt ≥ c2kη4k

24k

∫ η
h

η
2h

t4r| f̂ (t)|2t2p+1dt.

There exists then a positive constant C such that

∫ η
h

η
2h

t4r| f̂ (t)|2t2p+1dt ≤ C
∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

≤ Ch2α
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Then ∫ 2s

s
t4r| f̂ (t)|2t2p+1dt = O(s−2α)

for all s > 0.

Moreover, we have

∫ ∞

s
t4r| f̂ (t)|2t2p+1dt =

∞

∑
j=0

∫ 2j+1s

2js
t4r| f̂ (t)|2t2p+1dt

≤ C
∞

∑
j=0

(2js)−2α

≤ Cs−2α.

This proves that ∫ ∞

s
t4r| f̂ (t)|2t2p+1dt = O(s−2α) as s −→ +∞.

2) =⇒ 1) Suppose now that ∫ ∞

s
t4r| f̂ (t)|2t2p+1dt = O(s−2α) as s −→ +∞.

We have to show that ∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt = O(h2α) as h −→ 0.

We write ∫ ∞

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt = I1 + I2,

where

I1 =
∫ 1/h

0
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

and

I2 =
∫ ∞

1/h
t4r|jp(th)− 1|2k| f̂ (t)|2t2p+1dt

From formula (1.3), we obtain

I2 ≤ 4k
∫ ∞

1/h
t4r| f̂ (t)|2t2p+1dt = O(h2α) as h −→ 0.

Set

ψ(t) =
∫ ∞

t
x4r| f̂ (x)|2x2p+1dx

From formula (1.4) and integration by parts, we have

I1 = −
∫ 1/h

0
|jp(th)− 1|2k|ψ′(t)dt

≤ −h2k
∫ 1/h

0
t2kψ′(t)dt

≤ −ψ(
1
h
) + 2kh2k

∫ 1/h

0
t2k−1−2αdt
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Or, we see that α < k the integral exists. Then

I1 ≤ 2k
2k− 2α

h2kh−2k+2α

≤ Ch2α

and this ends the proof.

Corollary 2.1. Let f ∈ L2
p(R+), (p ≥ − 1

2 ), and let

‖∆k
hDr f (x)‖ = O(hα) as h −→ 0.

Then ∫ ∞

s
| f̂ (t)|2t2p+1dt = O(s−4r−2α) as s −→ +∞
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