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Oscillation results for third order nonlinear neutral differential
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Abstract

Some oscillation results are obtained for the third order nonlinear mixed type neutral differential equations of the

form

((x(t) + b(t)x(t− τ1) + c(t)x(t + τ2))
α)′′′ = q(t)xβ(t− σ1) + p(t)xγ(t + σ2), t ≥ t0

where α, β and γ are ratios of odd positive integers τ1, τ2, σ1 and σ2 are positive constants.
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1 Introduction

In this paper, we study the oscillatory nature of the third order nonlinear mixed type neutral differential
equations of the form

((x(t) + b(t)x(t− τ1) + c(t)x(t + τ2))α)′′′ = q(t)xβ(t− σ1) + p(t)xγ(t + σ2), t ≥ t0 (1.1)

subject to the following conditions:

(c1) τ1, τ2, σ1 and σ2 are positive constants;

(c2) q(t) and p(t) are real valued positive continuous functions on [t0,∞);

(c3) α, β and γ are ratios of odd positive integers;

(c4) b(t) and c(t) are real valued and thrice continuously differentiable functions with 0 ≤ b(t) < b < ∞ and
0 ≤ c(t) < c <∞.

Let θ = max{τ1, σ1}. By a solution of equation (1.1), we mean a real valued continuous function x(t) defined
for all t ≥ t0− θ and satisfying the equation (1.1) for all t ≥ t0. A nontrivial solution of equation (1.1) is called
oscillatory if it has infinitely many zeros on [t0,∞), otherwise it is called nonoscillatory.

Recently there has been a great interest in studying the oscillatory and asymptotic behavior of third order
differential equations, see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
and the references cited therein. In [1, 4, 7, 8, 9, 15, 20, 23], the authors studied the oscillatory behavior of
solutions of equation (1.1) when b(t) ≡ 0, c(t) ≡ 0 and p(t) ≡ 0. In [5, 6, 10, 11, 17, 18, 19, 21], the authors
studied the oscillatory behavior of solutions of equation (1.1) when c(t) ≡ 0 and p(t) ≡ 0. In [2, 13, 14, 22], the
authors discussed the oscillatory behavior of all solutions of equation (1.1) when α = β = γ = 1.

Motivated by this observation, in this paper we study the oscillatory and asymptotic behavior of all solutions
of equation (1.1) for different values of α, β and γ. So the purpose of this paper is to present some new oscillatory
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and asymptotic criteria for equation (1.1). In Section 2, we present criteria for equation (1.1) to be either
oscillatory or all its nonoscillatory solutions tend to zero as t → ∞. Examples are provided in Section 3 to
illustrate the results presented in Section 2.

2 Oscillation results

In this section, we present some new oscillation criteria for the equation (1.1). For convenience we use the
following notations:
Q(t)=min(q(t), q(t− τ1), q(t + τ2)), P (t)=min(p(t), p(t− τ1), p(t + τ2)),
and z(t)=[x(t) + b(t)x(t− τ1) + c(t)x(t + τ2)]α.

Lemma 2.1. If x(t) is a positive solution of equation (1.1), then the corresponding function z(t) satisfies only
the following two cases

Case (I) z(t) > 0, z′(t) > 0, z′′(t) > 0, z′′′(t) > 0; (2.1)

Case (II) z(t) > 0, z′(t) > 0, z′′(t) < 0, z′′′(t) > 0. (2.2)

Proof. Assume that x(t) is a positive solution of equation (1.1). Then there exists a t1 ≥ t0 such that x(t−θ) > 0
for all t ≥ t1. From the definition of z(t), it is clear that z(t) > 0 for all t ≥ t1. From equation (1.1), we have
z′′′(t) > 0 for all t ≥ t1. Therefore z′′(t) is strictly increasing for all t ≥ t1 and z′′(t) and z′(t) are of one sign for
all t ≥ t1. We prove that z′(t) > 0 for all t ≥ t1. If not, there exists a t2 ≥ t1 and M < 0 such that z′(t) < M

for all t ≥ t2. Integrating the last inequality from t2 to t, we get

z(t)− z(t2) < M(t− t2).

Letting t→∞, we see that z(t)→ −∞, which is a contradiction. Hence z′(t) > 0 for all t ≥ t1.This completes
the proof of the lemma.

Lemma 2.2. If A ≥ 0, B ≥ 0 and 0 < δ ≤ 1, then

Aδ + Bδ ≥ (A + B)δ (2.3)

If δ ≥ 1 then

(Aδ + Bδ) ≥ 1
2δ−1

(A + B)δ. (2.4)

Proof. Proof can be found in [21].

Theorem 2.3. Assume that 0 < β = γ ≤ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order differential
inequality

y′′(t) ≥ P (t)(σ1 − τ2)β/α

(1 + bβ + cβ)β/α
yβ/α(t + σ2 − σ1) (2.5)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
yβ/α(t− σ1 + τ1) (2.6)

has no positive decreasing solution, then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Without loss of generality, we
may assume that x(t) is a positive solution of equation (1.1) for all t ≥ t1 ≥ t0 (since the case x(t) is negative
is similar). Then there exists a t2 ≥ t1 such that x(t− θ) > 0 for all t ≥ t2. By the definition of z(t) we have,
z(t− θ) > 0 for all t ≥ t2. Define a function y(t) by

y(t) = z(t) + bβz(t− τ1) + cβz(t + τ2), for all t ≥ t2. (2.7)
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Then y(t) > 0 for all t ≥ t2, and

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) + cβz′′′(t + τ2)

= q(t)xβ(t− σ1) + p(t)xβ(t + σ2) + bβq(t− τ1)xβ(t− τ1 − σ1) +

bβp(t− τ1)xβ(t− τ1 + σ2) + cβq(t + τ2)xβ(t + τ2 − σ1) +

cβp(t + τ2)xβ(t + τ2 + σ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) + cβxβ(t + τ2 − σ1)] +

P (t)[xβ(t + σ2) + bβxβ(t− τ1 + σ2) + cβxβ(t + τ2 + σ2)].

Using (2.3) twice, the above inequality becomes

y′′′(t) ≥ Q(t)zβ/α(t− σ1) + P (t)zβ/α(t + σ2). (2.8)

Since x(t) is a positive solution of equation (1.1), from Lemma 2.1 we have two cases for z(t).
Case (I): In this case, we have z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 for all t ≥ t2. Then from (2.7), we have
y′(t) > 0, y′′(t) > 0 and y′′′(t) > 0 for all t ≥ t2.

From the inequality (2.8), we have

y′′′(t) ≥ P (t)zβ/α(t + σ2). (2.9)

Since z′(t) is increasing, we have

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t + τ2) for all t ≥ t0. (2.10)

Now

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds

or
z(t + σ1 − τ2) ≥ z′(t)(σ1 − τ2). (2.11)

Using (2.10) and (2.11) in (2.9), we obtain

y′′′(t) ≥ P (t)zβ/α(t + σ2)

≥ P (t)(σ1 − τ2)β/α(z′(t + σ2 − σ1 + τ2))β/α

≥ P (t)(σ1 − τ2)β/α

(1 + bβ + cβ)β/α
(y′(t + σ2 − σ1))β/α, t ≥ t2. (2.12)

By setting y′(t) = w(t), we see that w(t) > 0 and w′(t) > 0 for all t ≥ t2. Now inequality (2.9) becomes

w′′(t) ≥ P (t)
(1 + bβ + cβ)β/α

(σ1 − τ2)β/αwβ/α(t + σ2 − σ1), t ≥ t2. (2.13)

That is, w(t) is a positive increasing solution of the second order differential inequality (2.5), which is a
contradiction.

Case (II). In this case, we have z′(t) > 0, z′′(t) < 0 and z′′′(t) > 0 for all t ≥ t2. Then y′(t) > 0, y′′(t) < 0
for all t ≥ t2. From the inequality (2.8), we have

y′′′(t) ≥ Q(t)zβ/α(t− σ1). (2.14)

Since z′(t) and y′(t) are decreasing, we have

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t− τ1)

or
y′(t− σ1 + τ1) ≤ (1 + bβ + cβ)z′(t− σ1), t ≥ t2. (2.15)
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Now

z(t)− z(t− (σ1 − τ1)) =

t∫
t−(σ1−τ1)

z′(s) ds

or
z(t) ≥ z′(t)(σ1 − τ1). (2.16)

Using (2.15) and (2.16) in (2.14), we obtain

y′′′(t) ≥ Q(t)zβ/α(t− σ1)

≥ Q(t)(σ1 − τ1)β/α(z′(t− σ1))β/α

≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
(y′(t− σ1 + τ1))β/α, t ≥ t2.

By taking y′(t) = w(t), we see that w(t) > 0 and w′(t) < 0. Thus, w(t) is a positive decreasing solution of the
second order differential inequality

w′′(t) ≥ Q(t)
(1 + bβ + cβ)β/α

(σ1 − τ1)β/αwβ/α(t− σ1 + τ1), (2.17)

which is a contradiction to (2.6). This completes the proof.

Theorem 2.4. Assume that β = γ ≥ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)β/α

4β−1(1 + bβ + cβ

2β−1 )β/α
yβ/α(t + σ2 − σ1) (2.18)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ

2β−1 )β/α
yβ/α(t + τ1 − σ1) (2.19)

has no positive decreasing solution, then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Without loss of generality, we
may assume that x(t) is a positive solution of equation (1.1). Then there exists a t2 ≥ t1 such that x(t− θ) > 0
for all t ≥ t2. By the definition of z(t), we have z(t− θ) > 0 for all t ≥ t2. Now define a function y(t) by

y(t) = z(t) + bβz(t− τ1) +
cβ

2β−1
z(t + τ2), t ≥ t2. (2.20)

Then, since z(t) > 0, we have y(t) > 0 and

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) +
cβ

2β−1
z′′′(t + τ2)

= q(t)xβ(t− σ1) + p(t)xβ(t + σ2) + bβq(t− τ1)xβ(t− τ1 − σ1) +

bβp(t− τ1)xβ(t− τ1 + σ2) +
cβ

2β−1
q(t + τ2)xβ(t + τ2 − σ1) +

cβ

2β−1
p(t + τ2)xβ(t + τ2 + σ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) +
cβ

2β−1
xβ(t + τ2 − σ1)] +

P (t)[xβ(t + σ2) + bβxβ(t− τ1 + σ2) +
cβ

2β−1
xβ(t + τ2 + σ2)], t ≥ t2.

Now using (2.4) twice in the last inequality, we obtain

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1) +
P (t)
4β−1

zβ/α(t + σ2)t ≥ t2. (2.21)

Since x(t) is a positive solution of equation (1.1), there are only two cases, as given in Lemma 2.1, for z(t).
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Case (I): In this case, we have z(t) > 0, z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 for all t ≥ t2. Then from
(2.20), we have y′(t) > 0, y′′(t) > 0 for all t ≥ t2. From the inequality (2.21), we have

y′′′(t) ≥ P (t)
4β−1

zβ/α(t + σ2), t ≥ t2. (2.22)

Since z′(t) is increasing, we have

y′(t) = z′(t) + bβz′(t− τ1) +
cβ

2β−1
z′(t + τ2)

≤ (1 + bβ +
cβ

2β−1
)z′(t + τ2), t ≥ t2

or

y′(t) ≤ (1 + bβ +
cβ

2β−1
)z′(t + σ2 + τ2), t ≥ t2 (2.23)

and

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds ≥ z′(t)(σ1 − τ2)

or
z(t + σ1 − τ2) ≥ z′(t)(σ1 − τ2). (2.24)

Now using (2.23) and (2.24) in (2.22), we have

y′′′(t) ≥ P (t)
4β−1

zβ/α(t + σ2)

≥ P (t)
4β−1

(σ1 − τ2)β/α(z′(t + τ2 − σ1 + σ2))β/α

y′′′(t) ≥ P (t)(σ1 − τ2)β/α(y′(t + σ2 − σ1))β/α

4β−1(1 + bβ + cβ

2β−1 )β/α
, t ≥ t2. (2.25)

Setting y′(t) = w(t), we see that w(t) > 0, w′(t) = y′′(t) > 0 and

w′′(t) ≥ P (t)(σ1 − τ2)β/αw(t + σ2 − σ1)β/α

4β−1(1 + bβ + cβ)β/α
, t ≥ t2. (2.26)

That is w(t) is a positive increasing solution of the second order differential inequality (2.18), which is a
contradiction.

Case (II): In this case we have z′(t) > 0, z′′(t) < 0 and z′′′(t) > 0 for all t ≥ t2. Then from (2.20), we
obtain y′(t) > 0 and y′′(t) < 0 for all t ≥ t2. From the inequality (2.21), we have

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1), t ≥ t2. (2.27)

Using the monotonicity of z′(t) and y′(t), we have

y′(t) = z′(t) + bβz′(t− τ1) +
cβ

2β−1
z′(t + τ2)

≤ (1 + bβ +
cβ

2β−1
)z′(t− τ1)

or

y′(t + σ1) ≤ (1 + bβ +
cβ

2β−1
)z′(t + σ1 − τ1), t ≥ t2. (2.28)

Also from the monotonicity of z′(t) we have

z(t)− z(t− σ1 + τ1) =

t∫
t−(σ1−τ1)

z′(s) ds ≥ z′(t)(σ1 − τ1)
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or
z(t) ≥ (σ1 − τ1)z′(t). (2.29)

Using (2.28) and (2.29) in (2.27), we get

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1)

≥ Q(t)
4β−1

(σ1 − τ1)β/α(z′(t− σ1))β/α

≥ Q(t)
4β−1

(σ1 − τ1)β/α (y′(t− σ1 + τ1))β/α

(1 + bβ + cβ

2β−1 )β/α

or

y′′′(t) ≥ Q(t)
4β−1

(σ1 − τ1)β/α (y′(t− σ1 + τ1))β/α

(1 + bβ + cβ

2β−1 )β/α
, t ≥ t2.

Set y′(t) = w(t). Then w(t) > 0 and w′(t) = y′′(t) < 0 and the last inequality becomes

w′′(t) ≥ Q(t)(σ1 − τ1)β/αwβ/α(t− σ1 + τ1)
4β−1(1 + bβ + cβ

2β−1 )β/α
, t ≥ t2. (2.30)

Thus, w(t) is a positive decreasing solution of the second order differential inequality (2.19), which is a contra-
diction. Now the proof is complete.

Theorem 2.5. Assume that 0 < β ≤ 1, γ ≥ 1, b ≤ 1, c ≤ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)γ/α

4γ−1(1 + bβ + cβ)γ/α
yβ/α(t + σ2 − σ1) (2.31)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
yβ/α(t− σ1 + τ1) (2.32)

has no positive decreasing solution, then every solution of equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Let us assume that x(t) is a
positive solution of (1.1) for all t ≥ t1 ≥ t0.. Then there exists a t2 ≥ t1 such that x(t − θ) > 0 for all t ≥ t2.

By the definition of z(t), we have z(t− θ) > 0 for all t ≥ t2. Set

y(t) = z(t) + bβz(t− τ1) + cβz(t + τ2) for all t ≥ t2. (2.33)

Then, y(t) > 0, and

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) + cβz′′′(t + τ2)

= q(t)xβ(t− σ1) + p(t)xγ(t + σ2) + bβq(t− τ1)xβ(t− τ1 − σ1) +

bβp(t− τ1)xγ(t− τ1 + σ2) + cβq(t + τ2)xβ(t + τ2 − σ1) +

cβp(t + τ2)xγ(t + τ2 + σ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) + cβxβ(t + τ2 − σ1)] +

P (t)[xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2)], t ≥ t2.

Using (2.3) twice in the first part of righthand side of the last inequality, we have

y′′′(t) ≥ Q(t)zβ/α(t− σ1) + P (t)[xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2)], t ≥ t2. (2.34)

Using the fact that b ≤ 1, c ≤ 1, γ ≥ 1, and 0 < β ≤ 1, we have

xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2)

≥ xγ(t + σ2) + bγxγ(t− τ1 + σ2) + cγxγ(t + τ2 + σ2)
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≥ xγ(t + σ2) + bγxγ(t− τ1 + σ2) +
cγ

2γ−1
xγ(t + τ2 + σ2),

and applying (2.4) twice and simplifying, we obtain

xγ(t + σ2) + bβxγ(t− τ1 + σ2) + cβxγ(t + τ2 + σ2) ≥
1

4γ−1
z

γ
α (t + σ2). (2.35)

Substituting (2.35) in (2.34), we get

y′′′(t) ≥ Q(t)zβ/α(t− σ1) +
P (t)
4γ−1

zγ/α(t + σ2), t ≥ t2. (2.36)

Now we consider the following two cases for z(t) as in Lemma 2.1.
Case (I): In this case we have z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 for all t ≥ t2. Then from (2.33), we have

y′(t) > 0, y′′(t) > 0 and y′′′(t) > 0 for all t ≥ t2.

From the inequality (2.36), we have

y′′′(t) ≥ P (t)
4γ−1

zγ/α(t + σ2), t ≥ t2. (2.37)

Using the monotonicity of z′(t), we get

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t + τ2), t ≥ t2. (2.38)

Again using the monotonicity of z′(t), we obtain

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds ≥ z′(t)(σ1 − τ2),

or
z(t + σ1 − τ2) ≥ (σ1 − τ2)z′(t). (2.39)

Now using (2.38) and (2.39) in (2.37), we obtain

y′′′(t) =
P (t)
4γ−1

zγ/α(t + σ2)

≥ P (t)
4γ−1

(σ1 − τ2)γ/α(z′(t + σ2 − σ1 + τ2))γ/α

≥ P (t)
4γ−1

(σ1 − τ2)γ/α(y′(t + σ2 − σ1))γ/α

(1 + bβ + cβ)γ/α
, t ≥ t2.

By setting y′(t) = w(t), we see that w(t) = y′(t) > 0, w′(t) = y′′(t) > 0 and it satisfies

w′′(t) ≥ P (t)(σ1 − τ2)γ/α

4γ−1(1 + bβ + cβ)γ/α
wγ/α(t + σ2 − σ1), t ≥ t2.

Thus, w(t) is a positive increasing solution of the second order differential inequality (2.31), which is a contra-
diction.

Case (II): In this case we have z′(t) > 0, z′′(t) < 0 and z′′′(t) > 0 for all t ≥ t2. Therefore y′(t) >

0, y′′(t) < 0 and y′′′(t) > 0 for all t ≥ t2. From the inequality (2.36) we have

y′′′(t) ≥ Q(t)zβ/α(t− σ1), t ≥ t2. (2.40)

Since z′′(t) < 0, we have z′(t) is decreasing and therefore

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t− τ1), (2.41)

or
y′(t− σ1) ≤ (1 + bβ + cβ)z′(t− σ1 − τ1), t ≥ t2.
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Again using the monotonicity of z′(t), we see that

z(t)− z(t− σ1 + τ1) =

t∫
t−(σ1−τ1)

z′(s) ds ≥ (σ1 − τ1)z′(t),

or
z(t) ≥ (σ1 − τ1)z′(t). (2.42)

Substituting (2.41) and (2.42) in (2.40), we obtain

y′′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
(y′(t− σ1 + τ1))β/α, t ≥ t2. (2.43)

By setting y′(t) = w(t), we see that w(t) is a positive decreasing solution of

w′′(t) ≥ Q(t)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
wβ/α(t− σ1 + τ1), t ≥ t2, (2.44)

which is a contradiction to (2.32). This completes the proof.

Theorem 2.6. Assume that 0 < γ ≤ 1, β ≥ 1, b ≤ 1, c ≤ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)γ/α

(1 + bβ + cβ)γ/α
yβ/α(t + σ2 − σ1) (2.45)

has no positive increasing solution and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ)β/α
yβ/α(t− σ1 + τ1) (2.46)

has no positive decreasing solution, then equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.5 and hence the details are omitted.

Theorem 2.7. Assume that β ≥ 1, 0 < γ ≤ 1, b ≥ 1, c ≥ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)(σ1 − τ2)γ/α

(1 + bβ + cβ)γ/α
yγ/α(t + σ2 − σ1) (2.47)

has no positive increasing solution, and the second order differential inequality

y′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ)β/α
yβ/α(t + τ1 − σ1) (2.48)

has no positive decreasing solution, then equation (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) for all t ≥ t1 ≥ t0. Without loss of generality, let
us assume that x(t) is a positive solution of equation (1.1) for all t ≥ t1 ≥ t0. Then there exists a t2 ≥ t1 such
that x(t− θ) > 0 for all t ≥ t2. By the definition of z(t) we have z(t− θ) > 0 for all t ≥ t2. Set

y(t) = z(t) + bβz(t− τ1) +
cβ

2γ−1
z(t + τ2) for all t ≥ t2. (2.49)

Then, y′(t) > 0, and using the fact b ≥ 1, c ≥ 1, γ ≤ 1, β ≥ 1, we have

y′′′(t) = z′′′(t) + bβz′′′(t− τ1) +
cβ

2γ−1
z′′′(t + τ2)

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) +
cβ

2β−1
xβ(t + τ2 − σ1)] +

P (t)[xγ(t + σ2) + bβxγ(t− τ1 + σ2) +
cβ

2γ−1
xγ(t + τ2 + σ2)]

≥ Q(t)[xβ(t− σ1) + bβxβ(t− τ1 − σ1) +
cβ

2β−1
xβ(t + τ2 + σ2)]
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+P (t)[xγ(t + σ2) + bγxγ(t− τ1 + σ2) + cγxγ(t + τ2 + σ2)], t ≥ t2

Now applying (2.4) and (2.3) twice in first and second part of right hand side of last inequality, we get

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1) + P (t)zγ/α(t + σ2), t ≥ t2. (2.50)

Now we consider the following two cases for z(t) as given in Lemma 2.1.
Case (I): In this case we have z′(t) > 0, z′′(t) > 0 and z′′′(t) > 0 and therefore y′(t) > 0, y′′(t) > 0 and

y′′′(t) > 0 for all t ≥ t2. From the inequality (2.50), we have

y′′′(t) ≥ P (t)zγ/α(t + σ2), t ≥ t2. (2.51)

Applying monotonicity of z′(t), we get

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

y′(t) ≤ (1 + bβ + cβ)z′(t + τ2), t ≥ t2. (2.52)

Also using the monotonicity of z′(t), we get

z(t + σ1 − τ2)− z(t) =

t+σ1−τ2∫
t

z′(s) ds > z′(t)(σ2 − τ2)

z(t + σ1 − τ2) ≥ z′(t)(σ1 − τ2). (2.53)

Combining (2.51), (2.52) and (2.53), we obtain

y′′′(t) = P (t)zγ/α(t + σ2)

≥ P (t)(σ1 − τ2)γ/αz′(t + τ2)

≥ P (t)(σ1 − τ2)γ/α(y′(t + σ2 − σ1))γ/α

(1 + bβ + cβ)γ/α
, t ≥ t2.

By putting y′(t) = w(t), we see that w(t) is a positive increasing solution of

w′′(t) ≥ P (t)(σ2 − τ2)γ/α

(1 + bβ + cβ)γ/α
wγ/α(t + σ2 − σ1), t ≥ t2

which is a contradiction (2.47).
Case (II): In this case we have z′′(t) < 0 for all t ≥ t2. Therefore z′(t) is decreasing, for all t ≥ t2. Since

z′(t) is decreasing we have

y′(t) = z′(t) + bβz′(t− τ1) + cβz′(t + τ2)

≤ (1 + bβ + cβ)z′(t− τ1), t ≥ t2. (2.54)

Also using the monotonicity of z′(t), we get

z(t)− z(t− σ1 + τ1) =

t∫
t−(σ1−τ1)

z′(s) ds ≥ (σ1 − τ1)z′(t)

or
z(t) ≥ (σ1 − τ1)z′(t). (2.55)

From (2.50), we have

y′′′(t) ≥ Q(t)
4β−1

zβ/α(t− σ1), t ≥ t2. (2.56)

Combining (2.54), (2.55) and (2.56), we obtain

y′′′(t) ≥ Q(t)(σ1 − τ1)β/α

4β−1(1 + bβ + cβ)β/α
(y′(t− σ1 + τ1))β/α, t ≥ t2. (2.57)
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By taking y′(t) = w(t), we see that w(t) is a positive decreasing solution of

w′′(t) ≥ (σ1 − τ1)β/αQ(t)
4β−1(1 + bβ + cβ)β/α

(w(t− σ1 + τ1))β/α, t ≥ t2, (2.58)

which is a contradiction to (2.48). This completes the proof.

Theorem 2.8. Assume that γ ≥ 1, 0 < β ≤ 1, b ≥ 1, c ≥ 1 and σ2 > σ1 > max{τ1, τ2}. If the second order
differential inequality

y′′(t) ≥ P (t)yγ/α(t + σ2 − σ1)(σ1 − τ2)γ/α

4γ−1(1 + bβ + cβ)γ/α
(2.59)

has no positive increasing solution and the second order differential inequality

y′′(t) ≥ Q(t)yβ/α(t− σ1 + τ1)(σ1 − τ1)β/α

(1 + bβ + cβ)β/α
(2.60)

has no positive decreasing solution, then equation (1.1) is oscillatory.

Proof. The proof is similar to that of Theorem 2.7 and hence the details are omitted.

Corollary 2.9. Assume that α = β = γ ≥ 1, σ2 > σ1 > max{τ1, τ2}. If

lim sup
t→∞

t+σ2−τ2−2∫
t

(t + σ2 − τ2 − s− 1)P (s) ds ≥ 4α−1(1 + aα +
bα

2α−1
) (2.61)

and

lim sup
t→∞

t∫
t−σ1+τ1

(t− s + 1)Q(s) ds ≥ 4α−1(1 + aα +
bα

2α−1
) (2.62)

then every solution of equation (1.1) is oscillatory.

Proof. Condition (2.61) and (2.62) imply that the differential inequalities (2.59) and (2.60) have no positive
increasing and no positive decreasing solutions respectively see [12, 16]. Now the result follows from Theorem
2.8.

Corollary 2.10. Let β < γ, b ≤ 1, c ≤ 1, σ2 > σ1 > max{τ1, τ2}. If

∞∫
t0

( t+σ1−τ1∫
t

Q(s) ds
)

dt = ∞ (2.63)

∞∫
t0

( t∫
t−σ2+τ2+1

P (s) ds
)

dt = ∞ (2.64)

then every solution of equation (1.1) is oscillatory.

Proof. Conditions (2.63) and (2.64) imply that the differential inequalities (2.31) and (2.32) have no positive
increasing and no positive decreasing solutions respectively [12, 16]. Now the result follows from Theorem
2.5.

3 Examples

In this section, we shall see some examples to illustrate main results.

Example 3.1. Consider the third order differential equation

((x(t) + 2x(t− 1) + 3x(t + 2))3)′′′ = (t + 1)x3(t− 3) + tx3(t + 5), t ≥ 1 (3.1)

Here b(t) = 2, c(t) = 3, τ1 = 1, τ2 = 2, σ1 = 3, σ2 = 5, q(t) = t + 1, p(t) = t and α = β = γ = 3. Then
Q(t) = t, P (t) = t− 1 and we can easily see that all the conditions of Corollary 2.9 are satisfied. Therefore all
the solutions of equation (3.1) are oscillatory.
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Example 3.2. Consider the third order differential equation

((x(t) +
1
2
x(t− 1) +

1
3
x(t + 2))3)′′′ = (t + 1)x(t− 3) + (t + 2)2x3(t + 4), t ≥ 1 (3.2)

Here b(t) = 1
2 , c(t) = 1

3 , τ1 = 1, τ2 = 2, σ1 = 3, σ2 = 4, α = 1, β = 1, γ = 3, q(t) = t + 1, p(t) = (t + 2)2.
Then Q(t) = t, P (t) = t2 and we can easily see that all the conditions of Corollary 2.10 are satisfied. Therefore
all the solutions of equation (3.2) are oscillatory.
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