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Discontinuous dynamical system represents the Logistic retarded

functional equation with two different delays
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Abstract

In this work we are concerned with the discontinuous dynamical system representing the problem of the logistic

retarded functional equation with two different delays,

x(t) = ρx(t− r1)[1− x(t− r2)], t ∈ (0, T ],

x(t) = x0, t ≤ 0.

The existence of a unique solution x ∈ L1[0, T ] which is continuously dependence on the initial data, will be proved.

The local stability at the equilibrium points will be studied. The bifurcation analysis and chaos will be discussed.
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1 Introduction

Let R+ be the set of positive real numbers and let r ∈ R+. Consider the problem of retarded functional
equation

x(t) = f(t, x(t− r)), t ∈ (0, T ] (1.1)

x(t) = xo, t ≤ 0. (1.2)

Now, if T be positive integer, r = 1, and t = n = 1, 2, 3, · · ·T, then the problem (1.1)-(1.2) will be the
discrete dynamical system

xn = f(n, xn−1), n = 1, 2, 3, · · ·T (1.3)

x0 = xo, t ≤ 0. (1.4)

This shows that the discrete dynamical system (1.3)-(1.4) is a special case of the problem of retarded functional
equation (1.1)-(1.2).

2 Discontinuous dynamical systems

The discontinuous dynamical systems have been studied, recently, in [3]-[5]. The results in [4] and [5] shows
the richness of the models of discontinuous dynamical systems.
Consider the problem of retarded functional equation

x(t) = f(x(t− r)), t ∈ (0, T ] (2.5)
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x(t) = xo, t ≤ 0.

Let t ∈ (0, r], then t− r ∈ (−r, 0] and the solution of (1.1)− (1.2) is given by

x(t) = xr(t) = f(xo), t ∈ (0, r].

For t ∈ (r, 2r], we find that t− r ∈ (0, r] and the solution of (1.1)-(1.2) is given by

x(t) = x2r(t) = f(xr(t)) = f(f(xo)) = f2(xo), t ∈ (r, 2r].

Repeating the process we can deduce that the solution of the problem (1.1)-(1.2) is given by

x(t) = xnr(t) = fn(xo), t ∈ ((n− 1)r, nr],

which is continuous on each subinterval ((k − 1)r, kr), k = 1, 2, · · · , n, but

lim
t→kr+

x(k+1)r(t) = fk+1(xo) 6= xkr(t),

which implies that the solution of the problem (1.1)-(1.2) is discontinuous (sectionally continuous) on (0, T ]
and we have proved the following theorem

Theorem 2.1. The solution of the problem of retarded functional equation (1.1)-(1.2) is discontinuous (sec-
tionally continuous) even the function f is continuous.

Now, let f : [0, T ]×Rn → Rn and r1, r2, ..., rn ∈ R+. Then we can give the following definition

Definition 2.1. The discontinuous dynamical system is the problem of retarded functional equation

x(t) = f(t, x(t− r1), x(t− r2), · · · , x(t− rn)), t ∈ (0, T ], (2.6)

x(t) = x0, t ≤ 0 (2.7)

Definition 2.2. The equilibrium points of the discontinuous dynamical system (2.6)-(2.7) is the solutions of
the equation,

x(t) = f(t, x, x, · · · , x).

Consider now the discontinuous dynamical system of the Logistic retarded functional equation with two different
delays r1, r2 > 0

x(t) = ρx(t− r1)[1− x(t− r2)], t ∈ (0, T ], (2.8)

x(t) = x0, t ≤ 0. (2.9)

We study here the existence of a unique continuously dependent solution x ∈ L1[0, T ] of the problem (2.8)−(2.9).
The asymptotic stability (see [1]- [9]) at the equilibrium points will be studied. We study the chaos and
bifurcation for different values of r1, r2 and T and we compare the results with the results of the discrete
dynamical system of the Logistic difference equations,

xn = ρ xn−1(1− xn−1), n = 1, 2, · · · . (2.10)

and

xn = ρ xn−1(1− xn−2), n = 1, 2, · · · . (2.11)
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3 Existence and Uniqueness

Let L1 = L1[0, T ], T <∞ be the class of Lebesgue integrable functions on [0, T ] with norm

‖f‖ =
∫ T

0

|f(t)| dt, f ∈ L1.

Let D = {x ∈ R : 0 ≤ x(t) ≤ 1, t ∈ (0, T ] and x(0) = x0, t ≤ 0}.

Definition 3.3. By a solution of the problem (2.8)− (2.9) we mean a function x ∈ L1 satisfying the conditions
(2.8)− (2.9).

Theorem 3.2. The problem (2.8)− (2.9) has a unique solution x ∈ L1.

Proof. Define, on D, the operator F : L1 −→ L1 by

Fx(t) = ρx(t− r1)[1− x(t− r2)].

The operator F makes sense, indeed for x ∈ D we have

|Fx(t)| ≤ ρ |x(t− r1)|

and
‖Fx‖ ≤ ρ(x0r1 + ‖x‖).

Now for x, y ∈ D,we can obtain

|Fx− Fy| = |ρx(t− r1)(1− x(t− r2))− ρy(t− r1)(1− y(t− r2))|
≤ ρ |x(t− r1)− y(t− r1)|+ ρ |x(t− r2)− y(t− r2)|

which implies that

‖Fx− Fy‖ ≤ ρ

∫ T

0

|x(t− r1)− y(t− r1)| dt+ ρ

∫ T

0

|x(t− r2)− y(t− r2)| dt =

= ρ

[∫ r1

0

|x(t− r1)− y(t− r1)| dt+
∫ T

r1

|x(t− r1)− y(t− r1)| dt+

+
∫ r2

0

|x(t− r2)− y(t− r2)| dt+
∫ T

r2

|x(t− r2)− y(t− r2)| dt

]
=

= ρ

[∫ T

r1

|x(t− r1)− y(t− r1)| dt+
∫ T

r2

|x(t− r2)− y(t− r2)| dt

]

≤ ρ

[∫ T−r1

0

|x(θ)− y(θ)| dθ +
∫ T−r2

0

|x(ϕ)− y(ψ)| dϕ

]

≤ ρ

[∫ T

0

|x(θ)− y(θ)| dθ +
∫ T

0

|x(ϕ)− y(ψ)| dϕ

]
≤ 2ρ ‖x− y‖ .

If ρ < 1
2 we deduce that

‖Fx− Fy‖ < ‖x− y‖

and then the problem (2.8)− (2.9) has, on D, a unique solution x ∈ L1.

4 Continuous dependence on initial conditions

Consider the problem
x(t) = ρx(t− r1)[1− x(t− r2)], t ∈ (0, T ],

x(t) = x∗0, t ≤ 0. (4.12)

For the continuous dependence of The solution of (2.8)−(2.9) on the initial data we have the following theorem.
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Theorem 4.3. The solution of the discontinuous dynamical system represents the problem of the logistic
retarded functional equation with two different delays is continuously dependent on the initial data.

Proof. Let x(t) and x∗(t) be the solution of the two problems (2.8)− (2.9) and (2.8)− (4.12) respectively, then

|x(t)− x∗(t)| ≤ ρ |x(t− r1)− x∗(t− r1)|+ ρ |x(t− r2)− x∗(t− r2)|

which implies that

‖x(t)− x∗(t)‖ ≤ ρ

∫ T

0

|x(t− r1)− x∗(t− r1)| dt+ ρ

∫ T

0

|x(t− r2)− x∗(t− r2)| dt =

= ρ

[∫ r1

0

|x(t− r1)− x∗(t− r1)| dt+
∫ T

r1

|x(t− r1)− x∗(t− r1)| dt+

+
∫ r2

0

|x(t− r2)− x∗(t− r2)| dt+
∫ T

r2

|x(t− r2)− x∗(t− r2)| dt

]
=

= ρ

[
|x0 − x∗0|

∫ r1

0

dt+ ‖x− x∗‖+ |x0 − x∗0|
∫ r2

0

dt+ ‖x− x∗‖
]

≤ ρ(r1 + r2) |x0 − x∗0|+ 2ρ ‖x− x∗‖

which implies

‖x− x∗‖ ≤ ρ(r1 + r2)
1− 2ρ

|x0 − x∗0|

and prove that

|x0 − x∗0| ≤ δ ⇒ ‖x− x∗‖ ≤ ε =
ρ(r1 + r2)

1− 2ρ
δ

and the theorem is proved.

5 Equilibrium Points and their asymptotic stability

The equilibrium points of (2.8) are the solution of the equation

ρ xeq (1− xeq) = xeq

which are

(xeq)1 = 0,

(xeq)2 = 1− 1
ρ
.

The equilibrium point of (2.8) is locally asymptotically sable if all the roots λ of the equation,

1 = ρ
[
(1− xeq)λ−r1 − xeq λ

−r2
]
, (5.13)

satisfy |λ| < 1 (see [10]).
Then the equilibrium point xeq = 0 is locally asymptotically sable if ρ < 1 , while the second equilibrium point
xeq = 1− 1

ρ is locally asymptotically sable if all the roots λ of the equation,

λr2 − λr2−r1 + (ρ− 1) = 0. (5.14)

satisfy |λ| < 1.
The equilibrium point xeq = 0 is locally asymptotically sable if ρ < 1 , which is the same as in the discrete
case (2.10). Also, when r2 = r1 = 1, we deduce that the equilibrium point xeq = 1 − 1

ρ , ρ > 1 is locally
asymptotically sable if 1 < ρ < 3, which is the same as in the discrete case (2.10).
In studying (2.8)− (2.9) it may be useful to study the difference equations (2.10) and (2.11).
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6 Bifurcation and Chaos

In this section, some numerical simulations results are presented to show that dynamics behaviors of the
discontinuous dynamical system (2.8)− (2.9) change for different values of r1, r2 and T . To do this, we will
use the bifurcation diagrams as follow:-
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Figure 6.1 Figure 6.2

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = r2 = 1 and t ∈ [0, 200]. respect to ρ, r1 = 1, r2 = 2 and t ∈ [0, 200].
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Figure 6.3 Figure 6.4

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = 0.1, r2 = 0.3 and t ∈ [0, 200]. respect to ρ, r1 = 0.25, r2 = 0.75 and t ∈ [0, 200].
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Figure 6.5 Figure 6.6

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = 1, r2 = 2 and t ∈ [0, 50]. respect to ρ, r1 = 0.25, r2 = 0.75 and t ∈ [0, 50].
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Figure 6.7 Figure 6.8

Bifurcation diagram of map (2.8)-(2.9) with Bifurcation diagram of map (2.8)-(2.9) with

respect to ρ, r1 = 0.5, r2 = 1 and t ∈ [0, 100]. respect to ρ, r1 = 0.1, r2 = 0.2 and t ∈ [0, 20].

From Figures (6.1-6.8) we deduce that the change of r1, r2 and T effect of stability of the Logistic equation
model, occurs of a bifurcation point, parameter sets for which aperiodic behavior occur and parameter sets for
which a chaotic behavior occur.

7 Conclusions

Discrete dynamical system of the Logistic equation model describes the dynamical properties for the case
r1 = r2 and the time is discrete t = 1, 2, 3, 4, · · · .
On the other hand, discontinuous dynamical system of the Logistic equation model describes the dynamical
properties for different values of the delayed parameters r1 and r2 and the time is continuous. Figures
(6.1),(6.2) agrees with standard results. This confirms the correctness of our computation. The results of the
other figures are new behavior (there is no analytic explanation for this behavior). From figures (6.2),(6.7) and
(6.8), it locks like that there is a scale that gives identical chaos behavior.
This shows the richness of the models of discontinuous dynamical systems.
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