Malaya Journal of Matematik

MIM

an international journal of mathematical sciences with computer applications...

www.malayajournal.org

On extended M- series

Dharmendra Kumar Singh,*

Department of Mathematics

 $University\ Institute\ of\ Engineering\ and\ Technology$

Chhatrapati Shahu Ji Maharaj University, Kanpur (U.P.) India.

Abstract

This paper deals with extended M-series, which is extension of the generalized M-series [12]. Mittag-Leffler function, ω hypergeometric function, generalized ω Gauss hypergeometric function, ω confluent hypergeometric function, Bessel-Maitland function can be deduced as special cases of our finding. Moreover, we obtain some theorem for extended M-series by using fractional calculus operators and many results associated with Riemann-Liouville, Weyl and Erdelyi-Kober operators. We begin our study from the following definitions.

Keywords: Extended M-series, Saigo- Meada operators, Pathway fractional integral operator.

2010 MSC: 26A33, 44A15, 33C60, 33E12.

©2012 MJM. All rights reserved.

1 Introduction

Fractional calculus operators $(I_{0+}^{\alpha,\beta,\eta}f)(x), (I_{-}^{\alpha,\beta,\eta}f)(x), (D_{0+}^{\alpha,\beta,\eta}f)(x)$ and $(D_{-}^{\alpha,\beta,\eta}f)(x)$ be defined for and complex $\alpha, \beta, \eta \in C$ and $x \in \Re_+$; by Saigo [10].

$$\left(I_{0+}^{\alpha,\beta,\eta}f\right)(x) = \frac{x^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} {}_2F_1\left(\alpha+\beta,-\eta;\alpha;1-\frac{t}{x}\right) f(t)dt \tag{1.1}$$

 $(\Re(\alpha) > 0);$

$$=\frac{d^n}{dx^n}\left(I_{0+}^{\alpha+n,\beta-n,\eta-n}f\right)(x)\tag{1.2}$$

 $(\Re(\alpha) \le 0; n = [\Re(-\alpha)] + 1);$

$$\left(I_{-}^{\alpha,\beta,\eta}f\right)(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} (t-x)^{\alpha-1} t^{-\alpha-\beta} {}_{2}F_{1}\left(\alpha+\beta,-\eta;\alpha;1-\frac{x}{t}\right) f(t)dt \tag{1.3}$$

 $(\Re(\alpha) > 0);$

$$= (-1)^n \frac{d^n}{dx^n} \left(I_-^{\alpha+n,\beta-n,\eta} f \right) (x) \tag{1.4}$$

 $(\Re(\alpha) \le 0; n = [\Re(-\alpha)] + 1)$ and

$$\left(D_{0+}^{\alpha,\beta,\eta}f\right)(x) = \left(I_{0+}^{-\alpha,-\beta,\alpha+\eta}f\right)(x) = \frac{d^n}{dx^n}\left(I_{0+}^{-\alpha+n,-\beta-n,\alpha+\eta-n}f\right)(x) \tag{1.5}$$

 $(\Re(\alpha) > 0; n = [\Re(\alpha)] + 1);$

$$\left(D_{-}^{\alpha,\beta,\eta}f\right)(x) = \left(I_{-}^{-\alpha,-\beta,\alpha+\eta}f\right)(x) = (-1)^{n}\frac{d^{n}}{dx^{n}}\left(I_{-}^{-\alpha+n,-\beta-n,\alpha+\eta}f\right)(x) \tag{1.6}$$

^{*}Corresponding author.

 $(\Re(\alpha) > 0; n = [\Re(\alpha)] + 1).$

When $\beta = -\alpha$, (1.1) and (1.3) coincide with the classical Riemann-Liouville and Weyl fractional integral of order $\alpha \in C$ shown below

$$\left(R_{0,x}^{\alpha}f\right)(x) = \left(I_{0+}^{\alpha,-\alpha,\eta}f\right)(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1} f(t) dt, (\Re(\alpha) > 0); \tag{1.7}$$

$$=\frac{d^n}{dx^n}\left(R_{0,x}^{\alpha+n}f\right)(x)\tag{1.8}$$

 $(0 < \Re(\alpha) + n \le 1; n = 1, 2, ...);$

$$\left(W_{x,\infty}^{\alpha}f\right)(x) = \left(I_{-}^{\alpha,-\alpha,\eta}f\right)(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} (t-x)^{\alpha-1} f(t) dt \tag{1.9}$$

 $(\Re(\alpha) > 0);$

$$= (-1)^n \frac{d^n}{dx^n} \left(W_{x,\infty}^{\alpha+n} f \right) (x) \tag{1.10}$$

 $(0 < \Re(\alpha) + n \le 1; n = 1, 2, ...);$

and equation (1.5) and (1.6) coincide with Riemann-Liouville fractional derivative of order $\alpha > 0$ is defined by

$$\left(D_{0+}^{\alpha}f\right)(x) = \left(D_{0+}^{\alpha,-\alpha,\eta}f\right)(x) = \left(\frac{d}{dx}\right)^n \frac{1}{\Gamma(n-\alpha)} \int_0^x \frac{f(t)dt}{(x-t)^{\alpha-n+1}}$$
(1.11)

 $(n = [\Re(\alpha)] + 1);$

$$\left(D_{-}^{\alpha}f\right)(x) = \left(D_{-}^{\alpha,-\alpha,\eta}f\right)(x) = \left(\frac{d}{dx}\right)^{n} \frac{(-1)^{n}}{\Gamma(n-\alpha)} \int_{x}^{\infty} \frac{f(t)dt}{(t-x)^{\alpha-n+1}}$$
(1.12)

 $(n = [\Re(\alpha)] + 1).$

While for $\beta = 0$, (1.1) and (1.3) coincide with the Erdelyi- Kober fractional calculus operators of order $\alpha \in C$

$$\left(E_{0,x}^{\alpha,\eta}f\right)(x) = \left(I_{0+}^{\alpha,0,\eta}f\right)(x) = \frac{x^{-\alpha-\eta}}{\Gamma(\alpha)} \int_0^x \left(x-t\right)^{\alpha-1} t^{\eta} f(t) dt \tag{1.13}$$

 $(\Re(\alpha) > 0);$

$$\left(K_{x,\infty}^{\alpha,\eta}f\right)(x) = \left(I_{-}^{\alpha,0,\eta}f\right)(x) = \frac{x^{\eta}}{\Gamma(\alpha)} \int_{x}^{\infty} (t-x)^{\alpha-1} t^{-\alpha-\eta} f(t) dt \tag{1.14}$$

 $(\Re(\alpha)>0).$

Now here the definition of the following generalized fractional integration and differentiation operators of any complex order involving Appell function $F_3(.)$ due to Saigo and Meada [11, p. 393, Eqs. (4.12) and (4.13)] in the kernal in the following form.

Let $\alpha, \alpha', \beta, \beta', \gamma \in C, x > 0$, then the generalized fractional calculus operators involving the Appell function F_3 are defined by the following equations:

$$\left(I_{0+}^{\alpha,\alpha^{'},\beta,\beta^{'},\gamma}f\right)(x) = \frac{x^{-\alpha}}{\Gamma(\gamma)} \int_{0}^{x} t^{-\alpha^{'}} \left(x-t\right)^{\gamma-1}$$

$$\times F_3\left(\alpha, \alpha', \beta, \beta'; \gamma; 1 - \frac{t}{x}, 1 - \frac{x}{t}\right) f(t) dt, (\Re(\gamma) > 0); \tag{1.15}$$

$$=\frac{d^n}{dx^n}\left(I_{0+}^{\alpha,\alpha',\beta+n,\beta',\gamma+n}f\right)(x) \tag{1.16}$$

 $(\Re(\gamma) < 0; n = [-\Re(\gamma)] + 1);$

$$\left(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}f\right)(x) = \frac{x^{-\alpha'}}{\Gamma(\gamma)} \int_{x}^{\infty} t^{-\alpha} (t-x)^{\gamma-1}$$

$$\times F_{3}\left(\alpha,\alpha',\beta,\beta';\gamma;1-\frac{x}{t},1-\frac{t}{x}\right)f\left(t\right)dt,(\Re(\gamma)>0);\tag{1.17}$$

$$= (-1)^n \frac{d^n}{dx^n} \left(I_-^{\alpha, \alpha', \beta, \beta' + n, \gamma + n} f \right) (x) \tag{1.18}$$

 $(\Re(\gamma) \le 0; n = [-\Re(\gamma)] + 1)$ and

$$\left(D_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(I_{0+}^{-\alpha',-\alpha,-\beta',-\beta,-\gamma}f\right)(x) \tag{1.19}$$

$$= \frac{d^n}{dx^n} \left(I_{0+}^{-\alpha', -\alpha, -\beta'+n, -\beta, -\gamma+n} f \right) (x); \tag{1.20}$$

 $(\Re(\gamma) > 0; n = [\Re(\gamma)] + 1);$

$$\left(D_{-}^{\alpha,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(I_{-}^{\alpha',-\alpha,-\beta',-\beta,-\gamma}f\right)(x) \tag{1.21}$$

$$= (-1)^n \frac{d^n}{dx^n} \left(I_-^{-\alpha', -\alpha, -\beta', -\beta+n, -\gamma+n} f \right) (x) \tag{1.22}$$

 $(\Re(\gamma) > 0; n = [\Re(\gamma)] + 1).$

These operators reduce to that in (1.15)-(1.22) as the following.

$$\left(I_{0+}^{\alpha,0,\beta,\beta',\gamma}f\right)(x) = \left(I_{0+}^{\gamma,\alpha-\gamma,-\beta}f\right)(x)(\gamma \in C);$$
(1.23)

$$\left(I_{-}^{\alpha,0,\beta,\beta',\gamma}f\right)(x) = \left(I_{-}^{\gamma,\alpha-\gamma,-\beta}f\right)(x)(\gamma \in C);\tag{1.24}$$

$$\left(D_{0+}^{0,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(D_{0+}^{\gamma,\alpha'-\gamma,\beta'-\gamma}f\right)(x)(\Re(\gamma) > 0);$$
(1.25)

$$\left(D_{-}^{0,\alpha',\beta,\beta',\gamma}f\right)(x) = \left(D_{-}^{\gamma,\alpha'-\gamma,\beta'-\gamma}f\right)(x)(\Re(\gamma) > 0). \tag{1.26}$$

Our results are based on a preliminary assertion giving composition formulas of generalized fractional integrals (1.15) and (1.17) with a power function established by Saigo and Meada [11, p. 394, eqs. (4.18) and (4.19)], we also have

$$\left(I_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}x^{\rho-1}\right)(x) = \frac{\Gamma(\rho)\Gamma\left(\rho+\gamma-\alpha-\alpha'-\beta\right)\Gamma\left(\rho+\beta'-\alpha'\right)}{\Gamma\left(\rho+\gamma-\alpha-\alpha'\right)\Gamma\left(\rho+\gamma-\alpha'-\beta\right)\Gamma\left(\rho+\beta'\right)} \times x^{\rho-\alpha-\alpha'+\gamma-1},$$
(1.27)

where $\Re(\gamma) > 0, \Re(\rho) > \max[0, \Re(\alpha + \alpha' + \beta - \gamma), \Re(\alpha' - \beta')]$, and

$$\left(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}x^{\rho-1}\right)(x) = \frac{\Gamma\left(1+\alpha+\alpha'-\gamma-\rho\right)\Gamma\left(1+\alpha+\beta'-\gamma-\rho\right)\Gamma\left(1-\beta-\rho\right)}{\Gamma\left(1-\rho\right)\Gamma\left(1+\alpha+\alpha'+\beta'-\gamma-\rho\right)\Gamma\left(1+\alpha-\beta-\rho\right)} \times x^{\rho-\alpha-\alpha'+\gamma-1},$$
(1.28)

where $\Re(\gamma) > 0, \Re(\rho) < 1 + \min[\Re(-\beta), \Re(\alpha + \alpha' - \gamma), \Re(\alpha + \beta' - \gamma)].$

For fractional integrals (1.1) and (1.3) with a power function established by Saigo [10], given below (a) If $\alpha, \beta, \eta, \rho \in C$ are such that

$$\Re(\alpha) > 0, \Re(\rho) > \max\left[0, \Re(\beta - \eta)\right],\tag{1.29}$$

then

$$\left(I_{0+}^{\alpha,\beta,\eta}x^{\rho-1}\right)(x) = \frac{\Gamma(\rho)\Gamma(\rho+\eta-\beta)}{\Gamma(\rho-\beta)\Gamma(\rho+\alpha+\eta)}x^{\rho-\beta-1}(x>0).$$
(1.30)

(b) If $\alpha, \beta, \eta, \rho \in C$ are such that

$$\Re(\alpha) > 0, \Re(\rho) > -\min\left[\Re(\beta), \Re(\eta)\right],\tag{1.31}$$

then

$$\left(I_{-}^{\alpha,\beta,\eta}x^{-\rho}\right)(x) = \frac{\Gamma(\rho+\beta)\Gamma(\rho+\eta)}{\Gamma(\rho)\Gamma(\rho+\alpha+\beta+\eta)}x^{-\rho-\beta}(x>0).$$
(1.32)

$\mathbf{2}$ Extended M-Series

Extended M-series is the Special case of the generalized Wright function [9] as remarked by Saxena [16]. Since

$$\sum_{p+2}^{\omega} M_{q+2} \begin{bmatrix} a_1, \dots, a_p, (1, 1), (\tau, \omega) \\ b_1, \dots, b_q, (\delta, \omega), (\xi, \mu) \end{bmatrix} = \kappa_{p+2} \Psi_{q+2} \begin{bmatrix} (a_1, 1), \dots, (a_p, 1), (1, 1), (\tau, \omega) \\ (b_1, 1), \dots, (b_q, 1), (\delta, \omega), (\xi, \mu) \end{bmatrix} | z$$

$$= \sum_{k=0}^{\infty} \frac{(a_1)_k \dots (a_p)_k (1)_k \Gamma(\tau + \omega k)}{(b_1)_k \dots (b_q)_k \Gamma(\delta + \omega k) \Gamma(\xi + \mu k)} \frac{z^k}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{(a_1)_k \dots (a_p)_k \Gamma(\tau + \omega k)}{(b_1)_k \dots (b_q)_k \Gamma(\delta + \omega k) \Gamma(\xi + \mu k)} z^k, \tag{2.1}$$

where $_{p+2}\overset{\omega}{M}_{q+2}(.)$ is called omega M-series $(\omega-M \text{ series})$ and $\kappa=\frac{\Pi_{j=1}^q\Gamma(b_j)_k}{\Pi_{j=1}^p\Gamma(a_j)_k}; \tau, \xi, \mu, \delta \in C, \Re(\mu)>0, \Re(\omega)>0$ $0, p \le q + 1.$

$\mathbf{3}$ Special Cases

(i) If $\delta = \tau$ then equation (2.1) can be written in the following form

$${}_{p}^{\xi,\mu}M_{q}(z) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}...(a_{p})_{k}}{(b_{1})_{k}...(b_{q})_{k}\Gamma(\xi + \mu k)} z^{k}, \tag{3.1}$$

where $z, \xi, \mu \in C, \Re(\mu) > 0, p \le q + 1$ is known as generalized M-Series [12].

(ii) If we put $\xi = 1$ then from the above equation (3.1) called the M-series [12].

$${}_{p}\stackrel{\mu}{M}_{q}(z) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}...(a_{p})_{k}}{(b_{1})_{k}...(b_{q})_{k}\Gamma(1+\mu k)} z^{k}, \tag{3.2}$$

where $\mu \in C, p \leq q + 1$.

(iii) The ω -confluent hypergeometric function [13, 14]: when p=q=0 and $\xi=\mu=1$, we have

$$\frac{\Gamma(\tau)}{\Gamma(\delta)} {}_{1}^{\omega} \Phi_{1}(\tau; \delta; z) = \sum_{k=0}^{\infty} \frac{\Gamma(\tau + \omega k)}{\Gamma(\delta + \omega k) \Gamma(1+k)} z^{k} = \sum_{k=0}^{\infty} \frac{\Gamma(\tau + \omega k)}{\Gamma(\delta + \omega k) k!} z^{k}, \tag{3.3}$$

where $|z| < \infty, \omega > 0, (\delta + \omega k) \neq 0, -1, -2, \dots$

(iv) The ω -hypergeometric function [14]: For $p=1, q=0, \xi=\mu=1$, we have

$$\frac{\Gamma(\tau)}{\Gamma(\delta)} {}_{2}^{\omega} R_{1}(a,\tau;\delta;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(1)_{k} \Gamma(\tau + \omega k)}{\Gamma(\delta + \omega k) \Gamma(1+k)} \frac{z^{k}}{k!} = \sum_{k=0}^{\infty} \frac{(a)_{k} \Gamma(\tau + \omega k)}{\Gamma(\delta + \omega k) k!} z^{k}, \tag{3.4}$$

where $|z| < 1, \omega > 0$.

(v) The generalized ω -Gauss hypergeometric function [21]: If we take $p=2, q=1, \xi=\mu=1$, then we have

$$\frac{\Gamma(\tau)}{\Gamma(\delta)}{}_{3}^{\omega}R_{2}\left(a_{1},\underline{a_{2}},\tau;\underline{b_{1}},\delta;z\right) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}(a_{2})_{k}\Gamma(\tau+\omega k)}{(b_{1})_{k}\Gamma(\delta+\omega k)k!}z^{k},\tag{3.5}$$

where \underline{a} is defined to be $\frac{\Gamma(a+\omega k)}{\Gamma(a)}$ and |z|<1. (vi) When $p=0, q=1, \tau=\delta, b=1, \xi=\xi+1$ and z is replaced by -z, the function $\phi(\mu,\xi+1;-z)$ is denoted by $J_n^{\mu}(z)$:

$$J_{\xi}^{\mu}(z) \equiv \phi(\mu, \xi + 1; -z) = \sum_{k=0}^{\infty} \frac{1}{\Gamma(\xi + 1 + \mu k)} \frac{(-z)^k}{k!}$$
(3.6)

and such a function is known as the Bessel-Maitland function, or the Wright generalized Bessel function, See [20, p. 352] and [15, 8.3].

(vii) If we put p = 1, q = 1 and $\tau = \delta, b = 1$ in (2.1), then we have

$$E_{\xi,\mu}^{a}(z) = \sum_{k=0}^{\infty} \frac{(a)_k}{\Gamma(\xi + \mu k)} \frac{z^k}{k!},$$
(3.7)

where $\xi, \mu \in C, \Re(\xi) > 0, \Re(\mu) > 0$ and |z| < 1 is called generalized Mitteg- leffer function introduced by Prabhakar [19] and studied by Killbas. et. al. [1] and [3].

(viii) For $\xi = \mu = 1$ and $\tau = \delta$, we obtain

$${}_{p}F_{q}\left[\begin{array}{c}a_{1},...,a_{p}\\b_{1},...,b_{q}\end{array}\mid z\right] = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}...(a_{p})_{k}}{(b_{1})_{k}...(b_{q})_{k}\Gamma(1+k)}z^{k},\tag{3.8}$$

where $p \leq q + 1$ and |z| < 1 and ${}_{p}F_{q}(.)$ is known as generalized hypergeometric function [3].

(ix) H-Function [2, 4, 8]: $\omega-M$ series can be represented as a special case of the Fox H-function $\sum_{p+2}^{\omega} M_{q+2} \begin{bmatrix} a_1...a_p, (1,1), (\tau,\omega) \\ b_1...b_q, (\delta,\omega), (\xi,\mu) \end{bmatrix} z \end{bmatrix}$

$${}_{p+2}{}^{\omega}M_{q+2}\left[\begin{array}{c}a_{1}...a_{p},(1,1),(\tau,\omega)\\b_{1}...b_{q},(\delta,\omega),(\xi,\mu)\end{array}\mid z\right]$$

$$=kH_{p+2,q+2}^{1,n+2}\left[\begin{array}{c} (1-a_1,1),...,(1-a_p,1),(0,1),(1-\tau,\omega)\\ (1-b_1,1),...,(1-b_q,1),(0,1),(1-\delta,\omega),(1-\xi,\mu) \end{array}\right],$$
(3.9)

where
$$k = \frac{\prod\limits_{j=1}^{q} \Gamma(b_j)_r}{\prod\limits_{j=1}^{p} \Pi(a_j)_r}$$
.

4 Left-Side Generalized Fractional Integration and Differentiation of Extended M-Series

Theorem 4.1. Let $\alpha, \alpha', \beta, \beta', \gamma \in C$ be a complex number such that $\Re(\gamma) > 0$ and let $\rho, \delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$ $0, p \le q+1$ and |x| < 1. If the condition

$$\Re(\rho) > \max[0, \Re(\alpha + \alpha' + \beta - \gamma), \Re(\alpha' - \beta')]$$

is satisfied then

$$\left[I_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{\rho-1}_{p+2}M_{q+2}(t)\right)\right](x) = x^{\rho+\gamma-\alpha-\alpha'-1} \times_{p+5}M_{q+5}\begin{pmatrix} a_1, ..., a_p, (1,1), (\tau,\omega), (\rho,1), \\ b_1, ..., b_q, (\delta,\omega), (\xi,\mu), (\rho+\gamma-\alpha-\alpha',1), \end{pmatrix} (\rho+\gamma-\alpha-\alpha'-\beta,1), (\rho+\beta'-\alpha',1) ; x \right).$$
(4.1)

Proof. From the equations (1.15) and (2.1), we have

$$\left\lceil I_{0+}^{\alpha,\alpha',\beta,\beta',\gamma} \left(t^{\rho-1}{}_{p+2} \overset{\omega}{M}_{q+2}(t) \right) \right\rceil (x)$$

$$= \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k \Gamma(\tau + \omega k)}{(b_1)_k ... (b_q)_k \Gamma(\delta + \omega k) \Gamma(\xi + \mu k) k!} \left[I_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} (t^{\rho + k - 1}) \right] (x). \tag{4.2}$$

Now using equation (1.27), we obtained

$$= x^{\rho + \gamma - \alpha - \alpha' - 1} \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k \Gamma(\rho + k)}{(b_1)_k ... (b_q)_k \Gamma(\rho + \gamma - \alpha - \alpha' + k)}$$

$$\times \frac{\Gamma(\rho + \gamma - \alpha - \alpha' - \beta + k)\Gamma(\rho + \beta' - \alpha' + k)\Gamma(\tau + \omega k)}{\Gamma(\rho + \gamma - \alpha' - \beta + k)\Gamma(\rho + \beta' + k)\Gamma(\delta + \omega k)\Gamma(\xi + \mu k)} \frac{x^k}{k!},$$
(4.3)

which is the required result.

Corollary 4.1. Let $\alpha, \beta, \eta, \rho \in C$ be such that condition (1.29) is satisfied, and further let $\delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$ and |x| < 1. Then by relation (1.23) and (1.30) there hold the formula

$$\left[I_{0+}^{\alpha,\beta,\eta}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= x^{\rho-\beta-1}{}_{p+4} \overset{\omega}{M}_{q+4} \left(\begin{array}{c} a_1, ..., a_p, (1,1), (\tau, \omega), (\rho,1), (\rho-\beta+\eta, 1) \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (\rho-\beta, 1), (\rho+\alpha+\eta, 1) \end{array} ; x \right). \tag{4.4}$$

Corollary 4.2. Let $\alpha, \rho \in C$ be such that $\Re(\alpha) > 0$ and $\Re(\rho) > 0$. Further let $\delta, \xi, \tau, \mu \in C$, and |x| < 1 then the relation (1.7) indicates that equation (4.4) reduces to the following result

$$\left[R_{0,x}^{\alpha}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= x^{\rho + \alpha - 1} {}_{p+3}^{\omega} M_{q+3} \begin{pmatrix} a_1, ..., a_p, (1, 1), (\tau, \omega), (\rho, 1) \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (\rho + \alpha, 1) \end{pmatrix}; x$$
(4.5)

Corollary 4.3. Let $\alpha, \eta, \rho \in C$ be such that $\Re(\alpha) > 0$ and $\Re(\rho) > 0$. Further let $\delta, \xi, \tau, \mu \in C$, and |x| < 1 then the relation (1.13) indicates that equation (4.4) reduces to the following result

$$\left[E_{0,x}^{\alpha,\eta}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= x^{\rho-1}{}_{p+3} \overset{\omega}{M}_{q+3} \left(\begin{array}{c} a_1, ..., a_p, (1,1), (\tau, \omega), (\rho + \eta, 1) \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (\rho + \alpha + \eta, 1) \end{array} ; x \right). \tag{4.6}$$

Theorem 4.2. Let $\alpha, \alpha', \beta, \beta', \gamma \in C$ be a complex number such that $\Re(\gamma) > 0$ and let $\rho, \delta, \xi, \tau, \mu \in C$, $\Re(\rho) > 0, p \leq q+1$ and |x| < 1. If the condition

$$\Re(\rho) > \max[0, \Re(\gamma - \alpha - \alpha' - \beta'), \Re(\beta - \alpha)]$$

is satisfied then

$$\left[D_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)=x^{\rho-\gamma+\alpha+\alpha'-1}$$

$$\times_{p+5} \overset{\omega}{M}_{p+5} \bigg(\begin{array}{c} a_1, ..., a_p, (1,1), (\tau, \omega), (\rho, 1), \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (\rho - \gamma + \alpha + \alpha', 1), \end{array}$$

$$(\rho - \gamma + \alpha + \alpha' + \beta', 1), (\rho - \beta + \alpha, 1) ; x).$$

$$(\rho - \gamma + \alpha + \beta', 1), (\rho - \beta, 1) ; x).$$

$$(4.7)$$

Proof. By using equations (1.20) and (2.1), we have

$$\left[D_{0+}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{\rho-1}{}_{p+2}\stackrel{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$=\left(\frac{d}{dx}\right)^{m}\sum_{k=0}^{\infty}\frac{(a_{1})_{k}...(a_{p})_{k}(1)_{k}\Gamma(\tau+\omega k)}{(b_{1})_{k}...(b_{q})_{k}\Gamma(\delta+\omega k)\Gamma(\xi+\mu k)k!}$$

$$\times\left[I_{0+}^{-\alpha',-\alpha,-\beta'+m,-\beta,-\gamma+m}(t^{\rho+k-1})\right](x).$$
(4.8)

Now using equation (1.27), we obtained

$$= \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k \Gamma(\tau + \omega k)}{(b_1)_k ... (b_q)_k \Gamma(\delta + \omega k) \Gamma(\xi + \mu k)} \frac{1}{k!} \times \frac{\Gamma(\rho + k) \Gamma(\rho + k - \gamma + \alpha + \alpha' + \beta') \Gamma(\rho + k - \beta + \alpha)}{\Gamma(\rho + k - \gamma + m + \alpha + \alpha') \Gamma(\rho + k - \gamma + \alpha + \beta') \Gamma(\rho + k - \beta)} \times \left(\frac{d}{dx}\right)^m x^{\rho + k - \gamma + m + \alpha + \alpha' - 1}.$$

Using the formula $\frac{d^m x^n}{dx^m} = \frac{\Gamma(n+1)}{\Gamma(n-m+1)} x^{n-m}, n \geq m$, we have

$$= x^{\rho - \gamma + \alpha + \alpha' - 1} \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k \Gamma(\rho + k)}{(b_1)_k ... (b_q)_k \Gamma(\rho - \gamma + \alpha + \alpha' + k)} \times \frac{\Gamma(\rho - \gamma + \alpha + \alpha' + \beta' + k) \Gamma(\rho - \beta + \alpha + k) \Gamma(\tau + \omega k)}{\Gamma(\rho - \gamma + \alpha + \beta' + k) \Gamma(\rho - \beta + k) \Gamma(\delta + \omega k) \Gamma(\xi + \mu k)} \frac{x^k}{k!}.$$

$$(4.9)$$

Which is the required result.

If we set $\alpha = 0$ in (4.7) we arrive at

Corollary 4.4. Let $\alpha, \beta, \eta, \rho \in C$ be such that $\Re(\alpha) \geq 0$,

$$\Re(\rho) > -\min\left[0, \Re(\alpha + \beta + \eta)\right],$$

and further let $\delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$. Then by the relation (1.25) there hold the formula

$$\left[D_{0+}^{\alpha,\beta,\eta}\left(t^{\rho-1}_{p+2}\stackrel{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= x^{\rho+\beta-1}_{p+4}\stackrel{\omega}{M}_{q+4}\left(\begin{array}{c}a_{1},...,a_{p},(1,1),(\tau,\omega),(\rho,1),(\rho+\alpha+\beta+\eta,1)\\b_{1},...,b_{q},(\delta,\omega),(\xi,\mu),(\rho+\beta,1),(\rho+\eta,1)\end{array};x\right).$$
(4.10)

Corollary 4.5. Let $\alpha, \rho \in C$ be such $\Re(\alpha) \geq 0$, and further let $\delta, \xi, \tau, \mu \in C$, $\Re(\rho) > 0$. Then by the relation (1.11) there hold the formula

$$\left[D_{0+}^{\alpha} \left(t^{\rho-1}{}_{p+2} \stackrel{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= x^{\rho-\alpha-1}{}_{p+3} \stackrel{\omega}{M}_{q+3} \left(\begin{array}{c} a_1, ..., a_p, (1,1), (\tau, \omega), (\rho, 1) \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (\rho - \alpha, 1) \end{array}; x\right).$$
(4.11)

5 Right -Side Generalized Fractional Integration and Differentiation of Extended M-Series

Theorem 5.1. Let $\alpha, \alpha', \beta, \beta', \gamma \in C$ be a complex number such that $\Re(\gamma) > 0$ and further let $\tau, \delta, \xi, \mu \in C$, $\Re(\rho) > 0$, $p \leq q+1$ and |x| < 1. If the condition

$$\Re(\rho)<1+\min\left[\Re(-\beta),\Re(\alpha+\alpha^{'}-\gamma),\Re(\alpha+\beta^{'}-\gamma)\right]$$

is satisfied then

$$\left[I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{-\rho-1}{}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x) = x^{-\rho+\gamma-\alpha-\alpha'-1} \times_{p+5}M_{q+5}\begin{pmatrix} a_1,...,a_p,(1,1),(\tau,\omega),(1+\rho-\gamma+\alpha+\alpha',1),\\ b_1,...,b_q,(\delta,\omega),(\xi,\mu),(1+\rho,1), \end{pmatrix}$$

$$\frac{(1+\rho-\beta,1), (1+\rho-\gamma+\beta'+\alpha,1)}{(1+\rho+\alpha-\beta,1), (1+\rho+\alpha+\alpha'+\beta'-\gamma,1)}; \frac{1}{x}$$
 (5.1)

Proof. Proof of the theorem is similar to that of Theorem 1.

Corollary 5.1. Let $\alpha, \beta, \eta, \rho \in C$ be such that condition (1.31) is satisfied, and further let $\delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$ and |x| < 1. Then by relation (1.24) and (1.32) there hold the formula

$$\left[I_{-}^{\alpha,\beta,\eta}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x)$$

$$= x^{-\rho-\beta-1}_{p+4}M_{q+4}\begin{pmatrix} a_1, \dots, a_p, (1,1), (\tau, \omega), \\ b_1, \dots, b_q, (\delta, \omega), (\xi, \mu), \end{pmatrix}$$

$$\frac{(1+\rho+\beta, 1), (1+\rho+\eta, 1)}{(1+\rho, 1), (1+\rho+\alpha+\beta+\eta, 1)}; \frac{1}{x}.$$
(5.2)

.

Corollary 5.2. Let $\alpha, \rho \in C$ be such that $\Re(\alpha) > 0$ and $\Re(\rho) > 0$. Further let $\delta, \xi, \tau, \mu \in C$ and |x| < 1 then the relation (1.9) indicates that equation (5.2) reduces to the following result

$$\left[W_{x,\infty}^{\alpha} \left(t^{-\rho-1}{}_{p+2} \stackrel{\omega}{M}_{q+2} \left(\frac{1}{t}\right)\right)\right](x)$$

$$= x^{-\rho+\alpha-1}{}_{p+3} \stackrel{\omega}{M}_{q+3} \left(\begin{array}{c} a_1, \dots, a_p, (1,1), (\tau, \omega), (1+\rho-\alpha, 1) \\ b_1, \dots, b_q, (\delta, \omega), (\xi, \mu), (1+\rho, 1) \end{array}; \frac{1}{x}\right).$$
(5.3)

Corollary 5.3. Let $\alpha, \eta, \rho \in C$ be such that $\Re(\alpha) > 0$ and $\Re(\rho) > 0$. Further let $\delta, \xi, \tau, \mu \in C$, and |x| < 1 then the relation (1.14) indicates that equation (5.2) reduces to the following result

$$\left[K_{x,\infty}^{\alpha,\eta} \left(t^{-\rho-1}{}_{p+2} \overset{\omega}{M}_{q+2} \left(\frac{1}{t}\right)\right)\right](x)$$

$$= x^{-\rho-1}{}_{p+3} \overset{\omega}{M}_{q+3} \left(\begin{array}{c} a_1, ..., a_p, (1,1), (\tau, \omega), (1+\rho+\eta, 1) \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (1+\rho+\alpha+\eta, 1) \end{array}; \frac{1}{x}\right).$$
(5.4)

Theorem 5.2. Let $\alpha, \alpha', \beta, \beta', \gamma \in C$ be a complex number such that $\Re(\gamma) > 0$ and further let $\rho, \delta, \tau, \xi, \mu \in C$, $\Re(\rho) > 0$, $p \le q + 1$ and |x| < 1. If the condition

$$\Re(\rho) < 1 + \min\left[\Re(\beta^{'}), \Re(\gamma - \alpha - \alpha^{'} - k), \Re(\gamma - \alpha^{'} - \beta)\right]$$

is satisfied then

$$\left[D_{-}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x) = x^{-\rho+\gamma-\alpha-\alpha'-1} \\
\times_{p+5}M_{q+5}\begin{pmatrix} a_1, ..., a_p, (1,1), (\zeta,\omega), (1+\rho+\gamma-\alpha-\alpha', 1), \\ b_1, ..., b_q, (\delta,\omega), (\eta,\mu), (1+\rho, 1), \end{pmatrix} \\
\frac{(1+\rho+\beta', 1), (1+\rho+\gamma-\alpha'-\beta, 1)}{(1+\rho+\beta'-\alpha', 1), (1+\rho-\alpha-\alpha'-\beta+\gamma, 1)}; \frac{1}{x}.$$
(5.5)

Proof. It is similar to the previous Theorem.

Corollary 5.4. Let $\alpha, \beta, \eta, \rho \in C$ be such $\Re(\alpha) \geq 0$,

$$\Re(\rho) > -\min\left[\Re(-\beta - n), \Re(\alpha + n)\right].$$

 $n = [\Re(\alpha)] + 1$, and further let $\delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$. Then by the relation (1.26) there hold the formula

$$\left[D_{-}^{\alpha,\beta,\eta}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x)$$

$$= x^{-\rho+\beta-1}_{p+4}M_{q+4}\begin{pmatrix} a_{1},...,a_{p},(1,1),(\tau,\omega),\\ b_{1},...,b_{q},(\delta,\omega),(\xi,\mu),\\ (1+\rho-\beta,1),(1+\rho+\alpha+\eta,1)\\ (1+\rho,1),(1+\rho+\eta-\beta,1) \end{cases}; \frac{1}{x} \right).$$
(5.6)

Corollary 5.5. Let $\alpha, \rho \in C$ be such $\Re(\alpha) \geq 0$ and further let $\delta, \xi, \tau, \mu \in C$, $\Re(\rho) > 0$. Then by the relation (1.12) there hold the formula

$$\left[D_{-}^{\alpha}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x)$$

$$= x^{-\rho-\alpha-1}_{p+3}M_{q+3}\begin{pmatrix} a_{1},...,a_{p},(1,1),(\tau,\omega),(1+\rho+\alpha,1)\\ b_{1},...,b_{q},(\delta,\omega),(\xi,\mu),(1+\rho,1) \end{pmatrix};\frac{1}{x}\right).$$
(5.7)

6 Fractional Integro-Differentiation of Extended M Series

Theorem 6.1. Let $\alpha, \alpha', \beta, \beta', \gamma \in C$ be a complex number such that $\Re(\gamma) > 0$ and let $\rho, \delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$, $p \leq q+1$ and |x| < 1. If the condition

$$\Re(\rho) > \max[0, \Re(\alpha + \alpha' + \beta - \gamma), \Re(\alpha' - \beta')]$$

is satisfied then

$$\left[I_{0+}^{\alpha,\alpha',\beta,\beta',\gamma} \left(t^{\rho-1}{}_{p+2} \stackrel{\omega}{M}_{q+2}(t) \right) \right] (x) = x^{\rho+\gamma-\alpha-\alpha'-1} \\
\times_{p+5} \stackrel{\omega}{M}_{q+5} \left(\begin{array}{c} a_1, ..., a_p, (1,1), (\tau,\omega), (\rho,1), \\ b_1, ..., b_q, (\delta,\omega), (\xi,\mu), (\rho+\gamma-\alpha-\alpha',1), \\ (\rho+\gamma-\alpha-\alpha'-\beta,1), (\rho+\beta'-\alpha',1) \\ (\rho+\gamma-\alpha'-\beta,1), (\rho+\beta',1) \end{array} ; x \right).$$
(6.1)

Proof. To prove (6.1) using equation (1.16) which represent integro-differentiation operator and applying the same reasoning similar to the Theorem 1. Therefore we omit detail.

If we take $\alpha' = 0$ (6.1), we arrive at

Corollary 6.1. Let $\alpha, \beta, \eta, \rho \in C$ be such that condition (1.29) is satisfied, and further let $\delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$ and |x| < 1. Then by relation (1.2) and (1.30) there hold the formula

$$\left[I_{0+}^{\alpha,\beta,\eta}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= x^{\rho-\beta-1}{}_{p+4}\overset{\omega}{M}_{q+4}\left(\begin{array}{c}a_{1},...,a_{p},(1,1),(\tau,\omega),(\rho,1),(\rho-\beta+\eta,1)\\b_{1},...,b_{q},(\delta,\omega),(\xi,\mu),(\rho-\beta,1),(\rho+\alpha+\eta,1)\end{array};x\right).$$
(6.2)

Theorem 6.2. Let $\alpha, \alpha', \beta, \beta', \gamma \in C$ be a complex number such that $\Re(\gamma) > 0$ and further let $\tau, \delta, \xi, \mu \in C, \Re(\rho) > 0, p \leq q+1$ and |x| < 1. If the condition

$$\Re(\rho) < 1 + \min\left[\Re(-\beta), \Re(\alpha + \alpha' - \gamma), \Re(\alpha + \beta' - \gamma)\right]$$

is satisfied then

$$\left[I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x) = x^{-\rho+\gamma-\alpha-\alpha'-1} \\
\times_{p+5}M_{q+5}\begin{pmatrix} a_1, ..., a_p, (1,1), (\tau,\omega), (1+\rho-\gamma+\alpha+\alpha', 1), \\ b_1, ..., b_q, (\delta,\omega), (\xi,\mu), (1+\rho, 1), \end{pmatrix} \\
\frac{(1+\rho-\beta, 1), (1+\rho-\gamma+\beta'+\alpha, 1)}{(1+\rho+\alpha-\beta, 1), (1+\rho+\alpha+\alpha'+\beta'-\gamma, 1)}; \frac{1}{x}.$$
(6.3)

Proof. In view of (1.18) and (2.1), we have

$$\left[I_{-}^{\alpha,\alpha',\beta,\beta',\gamma}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x)$$

$$= (-1)^{n}\frac{d^{n}}{dx^{n}}x^{-\alpha-\alpha'+\gamma+n-1}\sum_{k=0}^{\infty}\frac{(a_{1})_{k}...(a_{p})_{k}(1)_{k}\Gamma(\zeta+\omega k)}{(b_{1})_{k}...(b_{q})_{k}\Gamma(\delta+\omega k)\Gamma(\eta+\mu k)k!}$$

$$\times \left[I_{0+}^{\alpha,\alpha',\beta,\beta'+n,\gamma+n}\left(t^{1+\alpha+\alpha'-\gamma-n+\rho+k-1}\right)\right]\left(\frac{1}{x}\right).$$
(6.4)

With the help of equation (1.27) we arrive at

$$= \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k}{(b_1)_k ... (b_q)_k} \frac{1}{k!}$$

$$\times \frac{\Gamma(1+\rho+k+\alpha+\alpha'-\gamma-n)\Gamma(1+\rho+k-\beta)\Gamma(1+\rho+k+\alpha+\beta'-\gamma)\Gamma(\zeta+\omega k)}{\Gamma(1+\rho+k)\Gamma(1+\rho+k+\alpha-\beta)\Gamma(1+\rho+\alpha+\alpha'-\gamma+\beta')\Gamma(\delta+\omega k)\Gamma(\eta+\mu k)} \\ \times \left(1+\rho+k+\alpha+\alpha'-\gamma-n\right)_{n} x^{-\rho-k-\alpha-\alpha'+\gamma+n-1}.$$

Finally using formula $(a)_n = \frac{\Gamma(a+n)}{\Gamma(a)}, a \neq 0$, the above expression becomes

$$= x^{-\rho+\gamma-\alpha-\alpha'-1} \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k}{(b_1)_k ... (b_q)_k} \frac{\Gamma(1+\rho+k+\alpha+\alpha'-\gamma)}{\Gamma(1+\rho+k)\Gamma(1+\rho+k+\alpha-\beta)}$$

$$\times \frac{\Gamma(1+\rho+k-\beta)\Gamma(1+\rho+k+\alpha+\beta'-\gamma)\Gamma(\zeta+\omega k)}{\Gamma(1+\rho+\alpha+\alpha'-\gamma+\beta')\Gamma(\delta+\omega k)\Gamma(\eta+\mu k)} \frac{x^{-k}}{k!}, \tag{6.5}$$

which is the required result.

If we take $\alpha' = 0$ in (6.3), then the following result holds:

Corollary 6.2. Let $\alpha, \beta, \eta, \rho \in C$ be such that condition (1.31) is satisfied, and further let $\delta, \xi, \tau, \mu \in C, \Re(\rho) > 0$ and |x| < 1. Then by relation (1.4) there hold the formula

$$\left[I_{-}^{\alpha,\beta,\eta}\left(t^{-\rho-1}_{p+2}M_{q+2}\left(\frac{1}{t}\right)\right)\right](x)$$

$$= x^{-\rho-\beta-1}_{p+4}M_{q+4}\begin{pmatrix} a_1,...,a_p,(1,1),(\tau,\omega),(1+\rho+\beta,1),(1+\rho+\eta,1)\\ b_1,...,b_q,(\delta,\omega),(\xi,\mu),(1+\rho,1),(1+\rho+\alpha+\beta+\eta,1) \end{pmatrix}; \frac{1}{x} \right).$$
(6.6)

7 Usual Differentiation of the Extended M-Series

It is know that for the natural $\alpha = m \in N$, the Riemann-Liouville fractional derivative (1.11) is the usual derivative of order m, while (1.12) coincides with the usual derivative of order m with exactness to the multiplier $(-1)^m$ for example see [18, section 2 and 5]:

$$\left(D_{0+}^{m}f\right)(x) = \left(\frac{d}{dx}\right)^{m} f(x),$$

$$\left(D_{-}^{m}f\right)(x) = (-1)^{m} \left(\frac{d}{dx}\right)^{m} f(x) (x > 0);$$

There hold the following result.

Theorem 7.1. Let $m \in N$ and let $\delta, \xi, \tau, \mu \in C, \rho > 0$. Then for $z \in C(z \neq 0)$ there hold the formula

$$\left(\frac{d}{dx}\right)^{m} \left(z^{\rho-1}{}_{p+2} \stackrel{\omega}{M}_{q+2}(z)\right)$$

$$= z^{\rho-m-1}{}_{p+3} \stackrel{\omega}{M}_{q+3} \left(\begin{array}{c} a_{1}, ..., a_{p}, (1,1), (\tau, \omega), (\rho, 1) \\ b_{1}, ..., b_{q}, (\delta, \omega), (\xi, \mu), (\rho - m, 1) \end{array}; z\right),$$
(7.1)

and

$$\left(\frac{d}{dx}\right)^m \left(z^{-\rho-1}{}_{p+2} \stackrel{\omega}{M}_{q+2} \left(\frac{1}{z}\right)\right)$$

$$= (-1)^m z^{-\rho - m - 1} {}_{p+3}^{\omega} M_{q+3} \begin{pmatrix} a_1, \dots, a_p, (1, 1), (\tau, \omega), (1 + \rho + m, 1) \\ b_1, \dots, b_q, (\delta, \omega), (\xi, \mu), (1 + \rho, 1) \end{pmatrix}; \frac{1}{z}$$
(7.2)

Proof. With the help of corollaries 4.5 and 5.5 we deduce the differentiation formulas for the extended M-series (2.1). Therefore these relations can be extended from x > 0 to any complex $z \in C$, expect z = 0, and the condition for their validity can be omitted.

8 Pathway Fractional Integration of Extended M-Series

The Pathway model is introduced by Mathai [5] and studied further by Mathai and Haubold [6], [7] and Seema S. Nair [17]. Let $f(x) \in L(a,b), \eta \in C, \Re(\eta) > 0, a > 0$ and let us take a pathway parameter $\alpha < 1$. Then the pathway fractional integration operator, as an extension of (1.7) is defined as follows:

$$\left(P_{0+}^{(\eta,\alpha)}f\right)(x) = x^{\eta} \int_{0}^{\left[\frac{x}{a(1-\alpha)}\right]} \left[1 - \frac{a\left(1-\alpha\right)t}{x}\right]^{\frac{\eta}{(1-\alpha)}} f(t)dt.$$
(8.1)

Theorem 8.1. Let $f(x) \in L(a,b), \eta, \rho \in C, \Re(\eta) > 0, \Re(\rho) > 0, a > 0$ and pathway parameter $\alpha < 1$. Further let $\tau, \delta, \xi, \mu \in C, p \leq q+1$. Then for the pathway fractional integral $P_{0,+}^{(\eta,\alpha)}$ the following formula holds for the image of extended M series

$$\left[P_{0+}^{(\eta,\alpha)}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$= \frac{x^{\rho+\eta}}{(a(1-\alpha))^{\rho}} {}^{p+3}M_{q+3} \begin{pmatrix} a_1, ..., a_p, (1,1), (\tau, \omega), (\rho, 1) \\ b_1, ..., b_q, (\delta, \omega), (\xi, \mu), (\rho + \frac{\eta}{(1-\alpha)} + 1, 1) \end{pmatrix}; \frac{x}{a(1-\alpha)}$$
(8.2)

Proof. From Equation (8.1) and (2.1) we have

$$\begin{split} \left[P_{0+}^{(\eta,\alpha)} \left(t^{\rho-1}{}_{p+2} \overset{\omega}{M}_{q+2}(t) \right) \right] (x) \\ &= x^{\eta} \int_{0}^{\left[\frac{x}{\alpha(1-\alpha)} \right]} \left[1 - \frac{a \left(1 - \alpha \right) t}{x} \right]^{\frac{\eta}{(1-\alpha)}} \\ &\times \left(\sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k \Gamma(\tau + \omega k)}{(b_1)_k ... (b_q)_k \Gamma(\delta + \omega k) \Gamma(\xi + \mu k)} \frac{t^{\rho+k-1}}{k!} \right) dt. \end{split}$$

Interchanging the order of integration and summation which is permissible under the condition and which is stated with the above theorem

$$= x^{\eta} \sum_{k=0}^{\infty} \frac{(a_1)_k ... (a_p)_k (1)_k \Gamma(\tau + \omega k)}{(b_1)_k ... (b_q)_k \Gamma(\delta + \omega k) \Gamma(\xi + \mu k)} \frac{1}{k!} \int_0^{\left[\frac{x}{a(1-\alpha)}\right]} \left[1 - \frac{a(1-\alpha)t}{x}\right]^{\frac{\eta}{(1-\alpha)}} t^{\rho+k-1} dt.$$

If we substitute $\frac{a((1-\alpha)t)}{x} = u$ in the above integral, and using Type-1 beta family i.e. B(m, n), it reduced to

$$\left[P_{0+}^{(\eta,\alpha)}\left(t^{\rho-1}{}_{p+2}\overset{\omega}{M}_{q+2}(t)\right)\right](x)$$

$$=\frac{x^{\rho+\eta}}{(a(1-\alpha))^{\rho}}\sum_{k=0}^{\infty}\frac{(a_1)_k...(a_p)_k(1)_k\Gamma(\tau+\omega k)\Gamma(\rho+k)}{(b_1)_k...(b_q)_k\Gamma(\delta+\omega k)\Gamma(\xi+\mu k)\Gamma\left(\rho+\frac{\eta}{(1-\alpha)}+1+k\right)}$$

$$\times\frac{x^k}{(a(1-\alpha))^k}\frac{1}{k!},$$
(8.3)

which is the required result.

Remark 8.1. When $\alpha = 0, a = 1$, then replacing η by $\eta - 1$ in (8.3) the integral operator get the form of equation (4.5).

Acknowledgment

The author is very thankful to the referee for his/her valuable comments and suggestion.

References

- [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Elsevier, North Holland Math. Studies, 204, Amsterdam etc, 2006.
- [2] A. M. Mathai and R. K. Saxena, *The H-function with Applications in Statistics and other Disciplines*, Halsted Press, New York-London-Sydney-Toronto, 1978.
- [3] A. M. Mathai and H. J. Habould, Special Functions for Applied Scientists, Springer, New York, 2008.
- [4] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-function: Theory and Applications, Springer, New York, 2010.
- [5] A. M. Mathai, A pathway to matrix-variate gamma and normal densities, *Linear Algebra and Its Applications*, 396(2005), 317-328.
- [6] A. M. Mathai and H. J. Haubold, On generalized distributions and path-ways, *Physics Letter*, 372(2008), 2109-2113.
- [7] A. M. Mathai and H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, *Physica A*, 375(2007), 110-122.
- [8] C. Fox, The G and H-functions as symmetrical Fourier Kernels, Trans. Amer. Math. Soc., 98(1961), 395-429.
- [9] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10(1935), 287-293.
- [10] M. Saigo, A Remark on integral operators involving the Gauss Hypergeometric functions, Math. Rep. College General Ed. Kyushu Univ., 11(1978), 135-143.
- [11] M. Saigo and N. Meada, More generalization of fractional calculus, In: Transform Methods and Special Functions (Eds: P. Ruse v, I. Dimovski, V. Kiryakova, Proc. 2nd Int. workshop, Varna, 1996), Sofia, 1998, 386-400.
- [12] M. Sharma and Renu Jain, A note on generalized M-Series as a special function of fractional calculus, *Fract. Calc. Appl. Anal.*, 12(4)(2009), 449-452.
- [13] N. A. Virchenko, S. L. Kalla and A. Al-Zamel, Some results on a generalized hypergeometric function, Integral Transform Spec. Funct., 12(1)(2001), 89-100.
- [14] N. A. Virchenko, On some generalizations of the functions of hypergeometric type, Fract. Calc. Appl. Anal., 2(3)(1999), 233-244.
- [15] O. I. Marichev, Handbook of Integral Transforms and Higher Transcendental Functions. Theory and Algorithmic Tables, Ellis Horwood, Chichester [John Wiley and Sons], New York, 1983.
- [16] R. K. Saxena, A remark on a paper on M-series, Fract. Calc. Appl. Anal., 12(1)(2009), 109-110.
- [17] Seema S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12(3)(2009), 237-252.
- [18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993.
- [19] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, *Yokohama Math. J.*, 19(1971), 7-15.
- [20] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series No. 301, Longman and J. Wiley, Harlow and New York, 1994.

[21] Y. Ben Nakhi and S. L. Kalla, A generalized beta function and associated probability density, *Int. J. Math. Math. Sci.*, 30(8)(2002), 467-478.

Received: October 16, 2012; Accepted: January 17, 2012

UNIVERSITY PRESS