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Abstract

This paper deals with extended M-series, which is extension of the generalized M-series [12]. Mittag-Leffler function,
w— hypergeometric function, generalized w— Gauss hypergeometric function, w— confluent hypergeometric function,
Bessel-Maitland function can be deduced as special cases of our finding. Moreover, we obtain some theorem for extended
M-series by using fractional calculus operators and many results associated with Riemann-Liouville, Weyl and Erdelyi-

Kober operators. We begin our study from the following definitions.
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1 Introduction

Fractional calculus operators (Igf’” )(@), (TP ) (), (Dgf’"f)(:r) and (D*?"f)(z) be defined for and
complex a, B, € C and © € Ry ; by Saigo [10].

(Iéxf’” ) (z) = xr_(aa_)ﬁ /OT (=) 5 Fy (a + 8, =l — i) f()at (1.1)
(R(a) > 0); N
- (I(tjx_:-mﬁ—nm—nf) (z) (1.2)
(R(a) < 05n = [R(=a)] +1);
(12075) @) = g [ (¢ =2 e (0 Bt = 7 Flo (13)
(R(a) > 0); )
= () () (a) (14)
(R(a) <0;n=[R(—a)]+1) and
(D5£75) () = (TP 07) @) = 2 (oot (o) (1.5)
(R(a) > 05n = [R(@)] + 1);
(D275) (@) = (1227 507) ) = (-1 (gzetnesonatag) (4) (16)
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(R(e) > 0;n = [R(a)] + 1).
When § = —a, (1.1) and (1.3) coincide with the classical Riemann-Liouville and Weyl fractional integral of
order o € C' shown below

o _ a,—a,m _ 1 * a— .
(Rs.) @) = (7°70) (0) = s / (x — )°"" £ (t) dt, (R(a) > 0); (L.7)
= R @) (1.9
0<R(@)+n<Lin=12..);
(W2ad) @) = (127) @) = s | T (1.9)
(R(a) > 0); .
= T w0 (1.10)

O<R@)+n<1Lin=12..);
and equation (1.5) and (1.6) coincide with Riemann- Liouville fractional derivative of order o > 0 is defined
by

@ _ a,—a,n z) = i " 1 * f(t)dt
(05.0) @) = DN 0 = (1) 1y ) e (L11)
(n = [R(a)] + 1);
NN A oV Y A {1
(D2 f) (z) = (D27 f) (w) = (m) I‘(n—a)/x TS (1.12)
(n = [R(a)] +1).
While for 8 =0, (1.1) and (1.3) coincide with the Erdelyi- Kober fractional calculus operators of order a € C
(Es2) @) = (15071) (0 = Ty [ @0 gy (1.13)
(R(e) > 0); R
(K2) (@) = (17077 (@) = F”ga) / (t — 2)* T == F (1) dt (1.14)
(R(a) > 0).

Now here the definition of the following generalized fractional integration and differentiation operators of any
complex order involving Appell function F3(.) due to Saigo and Meada [11, p. 393, Egs. (4.12) and (4.13)] in
the kernal in the following form.

Let a, o , 0, ﬁ/, v € C,z > 0, then the generalized fractional calculus operators involving the Appell function
F35 are defined by the following equations:

a,a/, ’ /’ x—a x _a/ .
(Io+ 8. ”f) @)= [ -

7)
< (0,0 8,855 = 11 5 ) £ (@)t (R) > 0) (1.15)
- (;‘% (15": gt f) () (1.16)

(Ia,a/ﬁ,ﬁ’,'yf) (z) = % /00 ot —a)

< (0,051 = 21 = 1) £ (0t (70) > 0) (1.17)
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= (- (z f> ()
(R(7) < 0:n=[-R(5)] +1) and

(D221 ) ) = (2= ) @)

L R e A
~ @ (IO+ f) (a):

dz™

(R(Y) > 0;n=[R(y)]+1);
(Dﬁ’a/’ﬁ’ﬂ/” f) (2) = (1:“7‘“"57‘57‘” f) (2)

n dn —a!\—a,—B ;= ftn,—v+n

— (-1 (1 )@
(R(y) > 0;n = [R(y)]+1).

These operators reduce to that in (1.15)-(1.22) as the following.
(15277 1) @) = (187777 ) @)y € )

(122227 7) (@) = (127728 (@) € O):
(Dgf’ﬂﬁ'ﬂf> () = <D3f‘,‘7’5/‘”f> (£)(R(7) > 0);

(D2 2701 ) @) = (D222 ) )R > 0)

99

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

Our results are based on a preliminary assertion giving composition formulas of generalized fractional integrals
(1.15) and (1.17) with a power function established by Saigo and Meada [11, p. 394, eqs. (4.18) and (4.19)],

we also have

Ia,a,,ﬁ,ﬁ’gy p—1 _ F(p)r(p—l—’y—oz—a/—ﬁ)l‘(p+ﬁ/_a')
(0+ ) >(x CTpp+vy—a—-a)T(p+y—o —B)T(p+3)

’
P~ -‘,—w—l7

where R(v) > 0,R(p) > max[0,R(a + o’ + 53 —7), §R(C¥/ - /3’)], and

(Ia:a,ﬁﬁ/ﬁxp—l) (2) = F(1+a+0/ —V—p)F(1+a+6’ —’Y—,O)F(l—ﬁ—P)

rl—-pr(l4+a+ad +p —y—p)'(l+a—-pF-p)
X xp—a—a/ +v-1 ,

where R(7) > 0, R(p) < 1 +min[R(—8), R(a + o/ —7),R(a+ 5 —7)].
For fractional integrals (1.1) and (1.3) with a power function established by Saigo [10], given below
(a) If o, B,m, p € C are such that

R(a) > 0,R(p) > max [0, R(5 —n)],

then
L(p)T(p+n—p)

2P Pz .
(p—=B)L(p+a+n) >0

(B2 ) @) =
(b) If o, 8,1, p € C are such that
R(a) > 0, R(p) > —min [R(3), R(n)] ,

then
L(p+B)T(p+n)

(PT(p+a+p+n)

7P Pz > 0).

(If’ﬁ’nx_”) (x) = T

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)
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2 Extended M-Series

Extended M-series is the Special case of the generalized Wright function [9] as remarked by Saxena [16]

Since
et [ G G ) 1 ='<p+ﬂq+2[221:1531:1’2253335 S 1
> Je(DpT(r +wk)  2*
EZ: kF((S—I—wk) (& + pk) &Y
B ap)kF(T+Wk) Sk
Z (1) kr(6+wk) (& + pk) 2

(.) is called omega M-series (w — M series) and x = % 7,8, 1,0 € C,R(p) > 0, R(w) >
=1

w
where oMy
0,p<qg+1.

3 Special Cases

(i) If § = 7 then equation (2.1) can be written in the following form

e}
(ap)k k
z 3.1
My ( kz:o kr(f + k) (8:1)
where z, &, u € C,R(p) > 0,p < ¢+ 1 is known as generalized M-Series [12]
(ii) If we put £ = 1 then from the above equation (3.1) called the M-series [12]
o
(ap)k k.
z 3.2
where p € C;p < g+ 1.
(iii) The w-confluent hypergeometric function [13, 14]: when p = ¢ =0 and £ = = 1, we have
I(r) « (1 4+ wk) (1 + wk) k
P d; 3.3
121 (750:2) F(S—i—wk (1+k)° F6+wkk' ’ 33)

()

where |z| < co,w >0, (6 +wk) #0,—-1,-2,... .
(iv) The w-hypergeometric function [14]: For p=1,¢ =0, { = p =1, we have
(o)
k
Tt wk) i (3.4)

B 2 (a)k(1)pI (1 erk ) 2k
_Z w & Z (5—|—wk T L wk)k!

where |z| < 1,w > 0.
(v) The generalized w-Gauss hypergeometric function [21]: If we take p = 2,9 = 1, £ = u = 1, then we have
[o'e) ag)kF(T+CUk) k (35)

I(r) v _
I‘(5)3R2 (a1>a2>T b1, 6; Z = 2) )kF((S—&-wk)k'

)

where a is defined to be F(;-(‘r;))k) and |z| < 1.

(vi) When p=0,g=1,7=0,b=1,£ =&+ 1 and z is replaced by -z, the function ¢(u, & + 1; —z) is denoted
_ Nk

(=2) (3.6)

by .
Ji(2) = d(p, §+ 1 —= kzzor5+1+uk:) k!

by J} (2) :
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and such a function is known as the Bessel-Maitland function, or the Wright generalized Bessel function, See
[20, p. 352] and [15, 8.3].
(vii) f we put p=1,¢g=1and 7 =6, b=1in (2.1), then we have

k

z

o = 3.7

Enl kz §+ ,m ) kD (3.7)

where £, € C;R(E) > 0,R(x) > 0 and |z| < 1 is called generalized Mitteg- leffer function introduced by
Prabhakar [19] and studied by Killbas. et. al. [1] and [3].

(viii) For € = p =1 and 7 = §, we obtain

I PRanE B e )

..., k:O

where p < ¢+ 1 and |z| < 1 and ,F,(.) is known as generalized hypergeometric function [3].
(ix) H-Function [2, 4, 8]: w — M series can be represented as a special case of the Fox H-function

w ay...ap, (1,1), (1, w)
realles | b (6,0), (6 ) 'Z]

1n+2 (1-as,1),...,(1—ap1),(0,1),(1-7w)
o kHP+2Tq+2 [ (1 — by, 1),.1.., (1= by, 1),(0,1), (1 = 6,w), (1 =& p) (=2 (3.9)

4 Left-Side Generalized Fractional Integration and Differentiation of Extended
M-Series

Theorem 4.1. Let a,a, 3,8 ,v € C be a complex number such that R(y) > 0 and let p,6,&, 7,1 € C,R(p) >
0,p<q+1 and |x| < 1. If the condition
R(p) > max [0, R(a+ o' + 5 —7),R(a" — )]
is satisfied then
[I&f"ﬂ"“ (t”‘lp+2f4q+z<t))] () = grtr-a=a’1

o +5]u\14_ +5< a17...7(lp,(171)a(7—aw)a(pv 1)7
p a bl;..-;bQ7(§aw)v(€vﬂ)7(p+’yia70/’1)’

(p+’y_a_a/_ﬁal)’(p"'ﬂ/_alvl) .
(0t —a —B.1).(p+ 1) x) 1)

Proof. From the equations (1.15) and (2.1), we have

7 / Y
|:IOO¢J,FO¢ 8,87y <tP1p+2Mq+2(t)):| (‘T)

3 ap)k (DKL (T+ k) oo’ 580
,;) b1 kr(5+:k) T(E + ph)kl [fo+ S gt 1)} (). (4.2)

Now using equation (1.27), we obtained

_xp+'y a— a/—li ) ( )kr(p+k)
b1 kF(p—i—v—a—a +k)

XF(p+7*a*a’*6+k)F(p+ﬁ'*a’+k) (T+wk)g
Llp+y—a =B+ET(p+ 3 + k)T +wk)T(€ + pk) k!’

which is the required result. O

(4.3)
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Corollary 4.1. Let o, 3,m, p € C be such that condition (1.29) is satisfied, and further let 0,&,7,u € C,R(p) >
0 and |z| < 1. Then by relation (1.23) and (1.80) there hold the formula

[I&ﬁ,n (tplpﬂ]U\JJqH(t))} (z)
e tp, (1,1), (1,0), (0, 1), (p = B+m,1)
g (0,w), (&, 1), (p = B, 1), (p+a+m,1) 7 ) (4.4)

Corollary 4.2. Let o, p € C be such that R(a) > 0 and R(p) > 0. Further let 6,&, 7, € C, and |x| < 1 then
the relation (1.7) indicates that equation (4.4) reduces to the following result

75 (1 iail0)) | @)

— ppta—l ]‘(4 ala-“aapa(lal) ( ) (pvl) . 4
ettt (0 e ay ): (4.5)

w
=P Pl M, a1,
p+4 q+4 ( blv b

Corollary 4.3. Let a,n,p € C be such that R(a) > 0 and R(p) > 0. Further let 6,&, 7,4 € C, and |z| < 1
then the relation (1.13) indicates that equation (4.4) reduces to the following result

52 (07 paba0) | @)

_ p—1 © ay, aapv(lal) ( ) (p+7771) .
v ”+3Mq+3< bt o by (0,0, (6, 10), (p+ a4 1) P2 (46)

Theorem 4.2. Let a,a/,ﬁ,ﬁl,v € C be a compler number such that R(vy) > 0 and let p,6,&,7,u € C,
R(p) > 0,p<q+1 and |z| < 1. If the condition
§R(p) > max [Oa m(f}/ - O/ - /6/)3 §R(/6) - O‘)}
1s satisfied then
[ngral’ﬁﬁw <tplp+2j\u/[q+2(t)>} (x) = P ytata’—1

o +5]¢\d4_ +5< al,...,CL;m(171)5(T7W)5(p71)7
p P b1,~~~,bqa(5»w),(&M)a(ﬂ_'y‘ko‘""a/?l)’

(p—’y—|—0¢+0/+ﬂ/,1)7(/0—5+0‘71).x) (4.7)

(p77+a+ﬂ/71)’(p75,1)

Proof. By using equations (1.20) and (2.1), we have

[D(O)(jra 8,8 Y (tp_1p+2Mq+2(t>>:| (x)

NEARES (a1)k--(ap)p(1)k D (T + wk)
N <d$> Z (b1)k---(bg) T (0 + wk)T (€ + pk)k!

k=0

> {Iof ,—a,—B'+m,— 8, ’Y+m(tp+k 1)} (l’) (4.8)

Now using equation (1.27), we obtained

Z Je(Dpl'(r +wk) 1

B bq k;F((S-i-wkZ) (& + pk) k!
Flp+EI(p+k—v+a+od +0)(p+k—F+a)

Fp+k—v+m+a+)Tp+k—v+a+0)(p+k-0)

d m
NG xp+k—'y+m+a+a'—1
dx
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. dm ™ . F(n+1) n—m
Using the formula %7 = Th—miD) ¥

,n > m, we have

oo

_ grorratal 1§ (a1)---(ap)r(1)eL(p + k)
= (01)k--(bgkL'(p =y + o+ o’ + k)

Xr(p—7+a+o/+,6"+/~c)r(p—ﬂ+a+k)r(r+wk) z*

—. 4.9
Llp—v+a+f +k)I(p— B+ k(6 +wk)'(€+ pk) k! (4.9)
Which is the required result. U
If we set o = 0 in (4.7) we arrive at
Corollary 4.4. Let a,3,n,p € C be such that R(a) > 0,
R(p) > —min [0, R(e + B+ )],
and further let 6,&,7,u € C,R(p) > 0. Then by the relation (1.25) there hold the formula
D57 (1 ralya))] )
I L1),(r,w), (p, 1), (p+a+B+mn,1)
— zp‘f’ﬁ 1 M < at, 70';0)( s L)\ s\ L)y ) : ) 4.10
peMast by () (€0). (0 + 8.1), (. 1) (410

Corollary 4.5. Let a,p € C be such R(«) > 0, and further let §,§,7,u € C, R(p) > 0. Then by the relation
(1.11) there hold the formula

5, (1 railina)) | @)

o w 1,1), (r,w), (p, 1)
= 2Pl M, o dp (L 1), (1) (0 1) ) 411
pH3ats ( bla"'7bQ7 7“))7(57#)’@—0571) ( )

9 Right -Side Generalized Fractional Integration and Differentiation of Extended
M-Series

Theorem 5.1. Let a,o/,ﬁ,ﬁl,v € C be a complex number such that R(y) > 0 and further let 7,6,&, u €
C,R(p) >0,p < q+1 and |z| < 1. If the condition

R(p) <1+ min [éR(—ﬂ), Ra+a —7), R+ —7)
1s satisfied then
{Ia’alﬁ’ﬁw (t_p_1p+2Mq+2 (1))} (r) = g e

., ( at, .., ap, (L,1), (r,w), L+ p—v+a+da,1),
pofats b17"'7bq7(67w)7(£au)3(1+p71)7
(I+p=081),Q+p—7+f +a,l) 1
, ) = . (5.1)
(I+p+ta=51),0+p+a+d +0 -71) =
Proof. Proof of the theorem is similar to that of Theorem 1. O

Corollary 5.1. Let o, 3,m, p € C be such that condition (1.81) is satisfied, and further let 0,&,7,u € C,R(p) >
0 and |z| < 1. Then by relation (1.24) and (1.32) there hold the formula

et ()

. oy, (1,1), (T,w)
=g P B-1 M ( a1, aajl”( (AN ’
praMgya b1, ..., by, (0, w), (&, 1),

(1+p+6,1),0+p+n,1) .1>.

1+p1),QA+p+a+8+n1) z
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Corollary 5.2. Let o, p € C be such that R(a) > 0 and R(p) > 0. Further let §,&,7,u € C and |x| < 1 then
the relation (1.9) indicates that equation (5.2) reduces to the following result

[Wgﬁfw <t91p+2J°\J4q+2 (1))] ()

— p—pta-1 ]bh at, .., ap, (1,1), (1,w), (1 + p — o, 1) ,1>. 53
v e ‘”‘”’( bivo by, (B.0), (E00), (L4 p 1) 2 (5:3)

Corollary 5.3. Let a,m,p € C be such that R(a) > 0 and R(p) > 0. Further let 6,{,7,u € C, and |z| < 1
then the relation (1.14) indicates that equation (5.2) reduces to the following result

{Kg;go <tﬂ1p+2f4q+z (1))] (2)
a, ..., ap, (1,1), (r,w), (1 4+ p+n,1) .1), (5.4)

:zfpfl M ). ) :
= ‘”3( b1,y by (Bw), (&), (L+p+a+n,1) 'z

Theorem 5.2. Let a,o/,ﬁ, ﬁ,,’y € C be a complex number such that R(y) > 0 and further let p,d,7,&, 1 €
C,R(p) >0,p < q+1 and |z| < 1. If the condition

’

R(p) < 14 min {8?(6 ), R(y —a — o — k), R(v — o —ﬂ)}

is satisfied then

’ ’ w 1 ,
[Df’a BBy <tplp+2Mq+2 <t)>} (x) — ppty—a—a’—1

L at, .y ap, (1, 1), (Cw), L4+ p+v—a—a,1),
p+5q+5 b1,...,bq,(57w)7(777ﬂ)7(1+p71)’

(1+p+ﬁlvl)a(1+p+’7_a/_ﬁvl) l (55)
(I+p+8 —a 1),(I+p-a—ao —B+71) "z '
Proof. 1t is similar to the previous Theorem. O

Corollary 5.4. Let o, 3,m,p € C be such R(a) > 0,
R(p) > —min [R(—8 —n), R (a+n)],

n=[R(a)] + 1, and further let 6,&,7,u € C,R(p) > 0. Then by the relation (1.26) there hold the formula

e ()

B w 1,1), (1,w)
= p+6—1 M < at, 7apa( s L)\ )
prafatd blv’“qua(évw),(ga:u’)v

)

(1+Pﬂvl)a(1+l’+0¢+7}a1).1> (56)
(1+p1),AI+p+n-41) 'z '

Corollary 5.5. Let a,p € C be such R(a) > 0 and further let §,§,7,u € C, R(p) > 0. Then by the relation

(1.12) there hold the formula
w 1
[Df <tp1p+2Mq+2 <t>>} (z)

:xfpfailp w ( al,...,ap,(l,l),(T,W)a(1‘1',0"‘04,1) . 1> . (57)

bi, .y, (0,w), (&, ), (1+p,1) 'z
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6 Fractional Integro-Differentiation of Extended M Series

Theorem 6.1. Let a,a/,ﬁ, ﬂ/,v € C be a complex number such that R(v) > 0 and let p,§,&, 7,10 € C,R(p) >
0,p < q+1 and |z| < 1. If the condition

R(p) > max [0, R(a+ o' + 5 —7),R(a’ — )]
1s satisfied then

7 ’ w /
15 (7 b)) | () = e

X +5]“\’4 +5< ar, ,.,ap,(Ll),(T,W),(p, 1),
P q bl,...,bq,(§,w)7(§7ﬂ)7(P+7_O‘_0/71)’

(p+ty—a—a =p,1),(p+ 5 —a'1)
(p+7—a = B,1),(p+5.1) ””) (6.1)

Proof. To prove (6.1) using equation (1.16) which represent integro-differentiation operator and applying the
same reasoning similar to the Theorem 1. Therefore we omit detail. O

If we take o' = 0 (6.1), we arrive at

Corollary 6.1. Let o, 3,m,p € C be such that condition (1.29) is satisfied, and further let 6,&, 7, € C,R(p) >
0 and |z| < 1. Then by relation (1.2) and (1.80) there hold the formula

150 (071 oM (1) ) | (@)
5 ( )

_ —B—-1 by a17~--7a'pa(171)a(Taw)a(pv 1)7(p_6+7771) . >
= (A e ) ) (62

Theorem 6.2. Let a,o/,ﬁ,ﬁ/,v € C be a complex number such that R(y) > 0 and further let 7,6,&,u €
C,R(p) >0,p < q+1 and |z| < 1. If the condition

R(p) < 1+ min [R(=5), R(a +a’ =), Ra + F — )|

a,a’ ’ —p— @ 1 —pty—a—a’—1
[I’ B (’5 P raMyyo (t))] (x) =2

> ]L\Z— a17~'~7apv(171)7(va)7(1+p7’y+a+0/71)7
proTats blw"abqa(éaw)v(g,ﬂ)a(l+p71)a

A4p=081),0+p—v+f +a1) .1>, (6.3)

1s satisfied then

)

(I+pta—B1).(1+ptata +§ 1) "z

Proof. In view of (1.18) and (2.1), we have

a.o! ’ o w ]_
e o)

_ A" oo’ +yne ap)k(D)l'(C + wk)
=V g o 12 61 kr(5+wk) (1 + pk)k!

! ’ ’ 1
% [Igf 8.8 +n,y+n (t1+a+a —"/—n+p+k—1)} (x> . (6.4)

With the help of equation (1.27) we arrive at
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Fl4+p+k+a+ad —y—nT(1+p+k—BTA+p+k+a+ 3 —y)I((+wk)
Fl+p+E)I1+p+k+a—-BT1+p+a+a —v+ )0+ wk)'(n+ pk)

X (1 +p+k+tat+a —y— n) gmPhmaza dydn-l
n

Finally using formula (a),, = F(Fa(‘;)” ) a # 0, the above expression becomes

oo

_ grtrmama-1§ (a)g-(ap)k(De T +p+k+tat+a —9)
bl)km(bq)lc F(1+p+/€)F(1+p+k+a—ﬁ)

TA+p+k=BTA+p+tk+a+f — NI +wk)a™
IF'l4+p+a+o —vy+ 30 +wk)'(n+ pk) k!’

which is the required result. O

If we take o/ =0 in (6.3), then the following result holds:

Corollary 6.2. Let o, 3,n,p € C be such that condition (1.31) is satisfied, and further let 6,&, 7, € C,R(p) >
0 and |z| < 1. Then by relation (1.4) there hold the formula

e () o

(L 1), (rw), (L4 p+ B,1), (L4 p+ . 1) .1). (6.6)

A1y ...y @
b

v q“(zn,...,bq,(,w),( w,(A+p1),(A+ptatftnl) a

7 Usual Differentiation of the Extended M-Series

It is know that for the natural @« = m € N, the Riemann- Liouville fractional derivative (1.11) is the
usual derivative of order m, while (1.12) coincides with the usual derivative of order m with exactness to the
multiplier (—1)™ for example see [18, section 2 and 5]:

o) @)= (1) fto)

There hold the following result.

Theorem 7.1. Let m € N and let §,&, 7, € C,p > 0. Then for z € C(z # 0) there hold the formula

(;;)m <Zp1p+2j(4q+2 (2)>

e w 1,1), (r,w), (p, 1)
_ Zp m—1 M ( ai, 7apa( ) 9 ) ) ) 2, 71
pollass (g, by (6, (€10, (o — m 1) =

(@) (it ()

), (Tyw), (1 + p+m, 1).1>. (7.2)

and

w 1,1
— (-1 mz—p—m—l M ALy ey p7( 5 :
= praftass (e oy
Proof. With the help of corollaries 4.5 and 5.5 we deduce the differentiation formulas for the extended M-series
(2.1). Therefore these relations can be extended from x > 0 to any complex z € C, expect z = 0, and the
condition for their validity can be omitted. O
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8 Pathway Fractional Integration of Extended M-Series

The Pathway model is introduced by Mathai [5] and studied further by Mathai and Haubold [6], [7] and
Seema S. Nair [17]. Let f(z) € L(a,b),n € C,R(n) > 0,a > 0 and let us take a pathway parameter o < 1.
Then the pathway fractional integration operator, as an extension of (1.7) is defined as follows:

(szm f) (z) = 2" /O few==] [1 - “(1_‘”’5} o F(t)dt. (8.1)

T

Theorem 8.1. Let f(z)e L(a,b),n,p € C,R(n) > 0,R(p) > 0,a > 0 and pathway parameter oo < 1. Further
let 7,6,6,p € Cop < g+ 1. Then for the pathway fractional integral Pél’a) the following formula holds for the
image of extended M series

P (¢ b)) | @)

_ PN w al,...,ap,(l,l),(T,w),(p,l) oz
_ (a(1_a))f'p+3Mq+3< b, oo by (8,0, (€, 11) (0 + 1y +1,1) 7a(1_a)> (8.2)

Proof. From Equation (8.1) and (2.1) we have

P (1 bl | @)

3 (a1)k--(ap) e (1) (7 + wk) tptk—1
X (I;) ( k-- (bq)kr((5+wk) (€+Mk) Kl ) dt.

Interchanging the order of integration and summation which is permissible under the condition and which is
stated with the above theorem

o0 ap)k(Dp (T +wk) 1 [75=] a(l—a)t = o
g pcyicEas e A e G

If we substitute M = u in the above integral, and using Type-1 beta family i.e. B(m, n), it reduced to
[P (0 a0 )

zr Z (a1)g---(ap)s (Dl (7 + wk)T (p + k)
@ (1= )" 52 Bk (B )kT (0 + WRIT(E + k)T (p+ iy + 1+ )

xk 1
e —a) R -

which is the required result. O

Remark 8.1. When a = 0,a = 1, then replacing n by n — 1 in (8.3) the integral operator get the form of
equation (4.5).
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