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Abstract

In the present work,a mixed quadrature rule of precision seven is constructed blending Gauss-Legendre

2-point rule, Fejer’s first and second 3-point rules each having precision three.The error analysis of the mixed

rule is incorporated.An algorithm is designed for adaptive integration scheme using the mixed quadrature

rule.Through some numerical examples,the effectiveness of adopting mixed quadrature rule in place of their

constituent rules in the adaptive integration scheme is discussed.

Keywords: Gauss-Legendre quadrature, Fejer’s quadrature, mixed quadrature and adaptive integration scheme

2010 MSC: 65D30, 65D32. c©2012 MJM. All rights reserved.

1 Introduction

In this article, we consider the following problem. Given a continuous function f (x) over a bounded

interval [a, b] and a prescribed tolerance ε, we seek to find an approximation Q( f ) using a mixed quadrature

rule to the integral

I( f ) =
∫ b

a
f (x)dx (1.1)

so that

|Q( f )− I( f )| ≤ ε (1.2)

This can be done following adaptive integration scheme (AIS)[1] [2] [3].

Conte and Boor[3] evaluated real definite integral (1.1) in the adaptive integration scheme using Simpson’s
1
3 rule as a base rule.They fix a termination criterion for adaptive integration scheme using Simpon’s 1

3

two panel rule and Simpson’s 1
3 four panel rule (composite rule). Recently, R.B.Dash and D.Das[7] [8] [9]

constructed some mixed quadrature rules and fix the termination criterion for adaptive integration using

the mixed quadrature rule and evaluated successfully various real definite integrals. Mixed quadrature [5]

[6] [7][8] [9] [10] [11] means a quadrature of higher precision which is formed by taking the linear/ convex

combination of two or more quadrature rules of equal lower precision.
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The idea of mixed quadrature was first given by R.N. Das and G. Pradhan (1996) [5], who constructed

a mixed quadrature rule of precision 5 blending Simpson’s 1
3 rule with Gauss- Legendre 2-point rule, each

having precision 3. Evaluating some real definite integrals on the whole interval, they showed the superiority

of the mixed quadrature rule over their constituent rules. N. Das and S.K. Pradhan(2004)[6] derived a mixed

quadrature rule of precision 7 by taking a linear combination of Simpson’s 1
3 rule,Simpson’s 3

8 rule and Gauss-

Legendre 2-point rule, each having precision 3. They also showed the superiority of the mixed quadrature

rule over their constituent rules by evaluating some real definite integrals in the whole interval method.

In this paper, we have constructed a mixed quadrature rule of precision 7 by mixing Gauss-Legendre 2-

point rule[4] with Fejer’s first and second 3-point rules[2] [10] each having equal precision (i.e. precision 3)

for approximating some real definite integrals in the adaptive integration scheme. The construction of mixed

quadrature rule is outlined in the following section.

2 Construction of the mixed quadrature rule of precision seven

A mixed quadrature rule of precision seven is constructed by using the following three well-known

quadrature rules.

(i) Gauss- Legendre 2-point rule

(ii) Fejer’s first 3-point rule

(iii) Fejer’s second 3- point rule

The Gauss-Legendre 2-point rule (RGL2( f )) is

I( f ) =
∫ b

a
f (x)dx =

∫ 1

−1
f (x)dx ≈ RGL2( f ) = f (− 1√

3
) + f (

1√
3
) (2.3)

The Fejer’s first 3-point rule (R1F3
( f )) is

I( f ) =
∫ b

a
f (x)dx =

∫ 1

−1
f (x)dx ≈ R1F3

( f ) =
1
9
[4 f (

−
√

3
2

) + 10 f (0) + 4 f (
√

3
2

)] (2.4)

The Fejer’s second 3-point rule (R2F3
( f )) is

I( f ) =
∫ b

a
f (x)dx =

∫ 1

−1
f (x)dx ≈ R2F3

( f ) =
2
3
[ f (

−1√
2
) + f (0) + f (

1√
2
)] (2.5)

Each of these rules (2.1), (2.2) and (2.3) is of precision 3. Let EGL2( f ), E1F3
( f ), E2F3

( f ) denote the errors in

approximating the integral I( f ) by the rules (2.1), (2.2) and (2.3) respectively.

Then,

I( f ) = RGL2( f ) + EGL2( f ) (2.6)
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I( f ) = R1F3
( f ) + E1F3

( f ) (2.7)

I( f ) = R2F3
( f ) + E2F3

( f ) (2.8)

Assuming f (x) to be sufficiently differentiable in −1 ≤ x ≤ 1 , and using Maclaurin’s expansion of function

f (x), we can express the errors associated with the quadrature rules under reference as

EGL2( f ) = 8
5!×9 f (iv)(0) + 40

7!×27 f (vi)(0) + 16
9!×9 f (viii)(0) + ...

E1F3
( f ) = − 1

5!×2 f (iv)(0)− 5
8! f (vi)(0)− 17

9!×32 f (viii)(0)− ...

E2F3
( f ) = 1

3×5! f (iv)(0) + 5
6×7! f (vi)(0) + 5

4×9! f (viii)(0) + ...

Now multiplying the Eqs (2.4), (2.5) and (2.6) by 27, 32 and -24 respectively, then adding the results we

obtain,

I( f ) = 1
35 (27RGL2( f ) + 32R1F3

( f )− 24R2F3
( f )) + 1

35 (27EGL2( f ) + 32E1F3
( f )− 24E2F3

( f ))

I( f ) = RGL21F3 2F3
( f ) + EGL21F3 2F3

( f ) (2.9)

Where

RGL21F3 2F3
( f ) =

1
35

(27RGL2( f ) + 32R1F3
( f )− 24R2F3

( f )) (2.10)

And

EGL21F3 2F3
( f ) =

1
35

(27EGL2( f ) + 32E1F3
( f )− 24E2F3

( f )) (2.11)

Eq.(2.8) expresses the desired mixed quadrature rule for the approximate evaluation of I( f ) and Eq (2.9)

expresses the error generated in this approximation.

Hence,

EGL21F3 2F3
( f ) =

1
9!× 35

f (viii)(0) + ... (2.12)

As the first term of EGL21F3 2F3
( f ) contains 8th order derivative of the integrand, the degree of precision of the

mixed quadrature rule is 7. It is called a mixed type rule as it is constructed from three different types of rules

of equal precision.

3 Error analysis of the mixed quadrature rule

An asymptotic error estimate and an error bound of the rule (2.8) are given in theorems 3.1 and 3.2

respectively.
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Theorem-3.1

Let f (x) be a sufficiently differentiable function in the closed interval [−1, 1]. Then the error EGL21F3 2F3
( f )

associated with the mixed quadrature rule RGL21F3 2F3
( f ) is given by

|EGL21F3 2F3
( f )| ≈ 1

9!×35 | f
(viii)(0)|

Proof The proof follows from the Eq (2.10).

Theorem 3.2

The bound for the truncation error EGL21F3 2F3
( f ) = I( f )− RGL21F3 2F3

( f ) is given by

EGL21F3 2F3
( f ) ≤ 2M

175

whereM = max−1≤x≤1| f (v)(x)|

Proof

EGL2( f ) = 8
5!×9 f (iv)(η1), η1 ∈ [−1, 1]

E1F3
( f ) = − 1

5!×2 f (iv)(η2), η2 ∈ [−1, 1]

E2F3
( f ) = 1

5!×3 f (iv)(η3), η3 ∈ [−1, 1]

EGL21F3 2F3
( f ) = 1

35 [27EGL2( f ) + 32E1F3
( f )− 24E2F3

( f )]

= 24
5!×35 f (iv)(η1)− 16

5!×35 f (iv)(η2)− 8
5!×35 f (iv)(η3)

Let K = maxx∈[−1,1]| f (iv)(x)| and k = minx∈[−1,1]| f (iv)(x)| . As f (iv)(x) is continuous and [−1, 1] is compact,

there exist points b and a in the interval [−1, 1] such that K = f (iv)(b) and k = f (iv)(a). Thus

EGL21F3 2F3
( f ) ≤ 24

5!×35 f (iv)(b)− 16
5!×35 f (iv)(a)− 8

5!×35 f (iv)(a)

= 24
5!×35 [ f (iv)(b)− f (iv)(a)]

= 1
175

∫ b
a f (v)(x)dx

= 1
175 (b− a) f (v)(ξ) f or some ξ ∈ [−1, 1] by mean value theorem.

Hence by choosing |(b− a)| ≤ 2

we have EGL21F3 2F3
( f ) ≤ 1

175 |(b− a)|| f (v)(ξ)| ≤ 2M
175
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Where M = max−1≤x≤1| f (v)(x)|

4 Algorithm for adaptive quadrature routine

Applying the constituent rules (RGL2( f ), R1F3
( f ), R2F3

( f )) and the mixed quadrature rule (RGL21F3 2F3
( f )) ,

one can evaluate real definite integrals of the type I( f ) =
∫ b

a f (x)dx in adaptive integration scheme. In the

adaptive integration scheme, the desired accuracy is sought by progressively subdividing the interval of

integration according to the computed behavior of the integrand, and applying the same formula over each

subinterval. A simple adaptive strategy is outlined using the mixed quadrature rule (RGL21F3 2F3
( f )) in the

following four step algorithm.

Input: Function F : [a, b] −→ R and the prescribed tolerance ε .

Output: An approximation Q( f ) to the integral I( f ) =
∫ b

a f (x)dx such that |Q( f )− I( f )| ≤ ε .

Step-1: The mixed quadrature rule (RGL21F3 2F3
( f )) is applied to approximate the integral I( f ) =

∫ b
a f (x)dx .

The approximate value is denoted by (RGL21F3 2F3
[a, b]).

Step-2 : The interval of integration [a, b] is divided into two equal pieces, [a, c] and [c, b]. The mixed

quadrature rule (RGL21F3 2F3
( f )) is applied to approximate the integral I1( f ) =

∫ c
a f (x)dx and the approximate

value is denoted by (RGL21F3 2F3
[a, c]). Similarly, the mixed quadrature rule (RGL21F3 2F3

( f )) is applied to

approximate the integral I2( f ) =
∫ b

c f (x)dx and the approximate value is denoted by (RGL21F3 2F3
[c, b]) .

Step-3:(RGL21F3 2F3
[a, c] + (RGL21F3 2F3

[c, b]) is compared with (RGL21F3 2F3
[a, b]) to estimate the error in

(RGL21F3 2F3
[a, c] + (RGL21F3 2F3

[c, b]).

Step-4: If |estimated error| ≤ ε
2 (termination criterion) then (RGL21F3 2F3

[a, c] + RGL21F3 2F3
[c, b]) is accepted as

an approximation to I( f ) =
∫ b

a f (x)dx . Otherwise the same procedure is applied to [a, c] and [c, b], allowing

each pieces a tolerance of ε
2 . If the termination criterion is not satisfied on one or more of the sub intervals,

then those sub-intervals must be further subdivided and the entire process repeated. When the process stops,

the addition of all accepted values yields the desired approximate value Q( f ) of the integral I( f ) such that

|Q( f )− I( f )| ≤ ε.

N:B: In this algorithm we can use any quadrature rule to evaluate real definite integrals in adaptive

integration scheme.
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5 Numerical verification

Table 5.1: Comparative study among the quadrature rule RGL2( f ), R1F3
( f ) and R2F3

( f )

for approximation of some real definite integrals without using adaptive integration scheme
Approximate Value (Q( f )) by

Integrals Exact Value I( f ) RGL2( f ) R1F3
( f ) R2F3

( f )

I1( f ) =
∫ 1

0
4

1+x2 dx π ≈ 3.14159265358 3.14754 3.1379 3.14336

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.4761463020 0.7939 0.2752 0.5673

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.1997146621 0.2398 0.2955 0.3898

I4( f ) =
∫ 1

0.04
1√
x dx 1.6 1.5116 1.620 1.5419

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.4713993943 3.9753 4.9022 4.4155

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.1140744942 1.4263 0.8665 1.2698

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.038197427067 2.0366 2.0389 2.0375

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.8998922 4.6016 5.0588 4.7760

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241328 0.7465 0.7469 0.7467

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487883725279 -0.5999 -1.7966 -0.8318

I11( f ) =
∫ 2

0

√
4x− x2dx π 3.1844 3.1312 3.1683

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834792077 8.2627 8.1420 8.2171

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729870 0.8595 0.8715 0.8646

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.6023373578 0.6097 0.6005 0.6069

Table 5.2: Comparative study among the quadrature/mixed quadrature rules (RGL3( f ),R2F5
( f ) and

RGL21F3 2F3
( f )) for approximation of integrals (table 5.1) without using adaptive integration scheme

Approximate Value (Q( f )) by

Integrals Exact Value I( f ) RGL3( f ) R2F5
( f ) RGL21F3 2F3

( f )

I1( f ) =
∫ 1

0
4

1+x2 dx π ≈ 3.14159265358 3.14106 3.14147 3.1415979

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.4761463020 0.4415 0.4659 0.4751

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.1997146621 0.3913 0.2326 0.1878

I4( f ) =
∫ 1

0.04
1√
x dx 1.6 1.5667 1.5844 1.5905

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.4713993943 4.6629 4.5628 4.5209

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.1140744942 1.1304 1.0498 1.0219

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.038197427067 2.03810 2.03817 2.03819762

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.8998922 4.8862 4.8968 4.90003

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241328 0.746814 0.746822 0.74682421

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487883725279 -1.1196 -1.43307 -1.5350

I11( f ) =
∫ 2

0

√
4x− x2dx π 3.1560 3.1492 3.1468

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834792077 8.1882 8.1847 8.1836

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729870 0.8675 0.8670 0.866965

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.6023373578 0.6048 0.6036 0.6032

RGL3( f ):Gauss-Legendre 3-point rule

R2F5
( f ): Fejer’s second 5-point rule
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Table 5.3: Comparison of the results following from the Gauss-Legendre 2-point rule, Fejer’s first 3-point rule

and Fejer’s second 3-point rule for approximating integrals using the adaptive integration scheme

Approximate value (Q( f )) by

Integrals (RGL2( f )) #steps (R1F3
( f )) #steps (R2F3

( f )) #steps

I1( f ) =
∫ 1

0
4

1+x2 dx 3.141592690 17 3.141592653573 15 3.14159265359 15

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.47614627 41 0.476146256 35 0.476146332 35

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.199714693 51 0.199714686 43 0.19971459 39

I4( f ) =
∫ 1

0.04
1√
x dx 1.59999986 39 1.6000001 35 1.59999986 31

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.471399346 53 4.471399461 49 4.471399326 43

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.114074589 51 1.114074448 43 1.114074503 41

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.0381974132 23 2.0381974183 17 2.0381974106 15

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.899892102 43 4.899892237 39 4.899892026 29

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241276 15 0.746824114 13 0.746824120 11

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487882018 57 -1.5487884508 51 -1.5487882663 47

I11( f ) =
∫ 2

0

√
4x− x2dx 3.1415929475 45 3.141592395 37 3.141592855 39

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834793329 31 8.18347908 27 8.183479317 25

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729661 15 0.86697299 15 0.866972942 13

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.602337696 29 0.602337112 25 0.602337592 25

N:B:The prescribed tolerance(ε)=0.000001

# Steps: No. of Steps
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Table 5.4: Comparison of the results following from the Gauss-Legendre 3-

point rule, Fejer’s second 5-point rule and mixed quadrature rule RGL21F3 2F3
( f ) for

approximating integrals (given in table 5.3) using the adaptive integration scheme
Approximate Value (Q( f )) by

Integrals (RGL3( f )) #steps (R2F5
( f )) # steps (RGL21F3 2F3

( f )) #steps

I1( f ) =
∫ 1

0
4

1+x2 dx 3.14159265347 7 3.141592651 3 3.141592653589621 3

I2( f ) =
∫ 3

0
sin2x
1+x2 dx 0.4761463032 15 0.4761463085 11 0.4761463008 5

I3( f ) =
∫ 3

0 (sin4x)e−2xdx 0.1997146667 19 0.1997146587 13 0.1997146616 9

I4( f ) =
∫ 1

0.04
1√
x dx 1.599999987 17 1.599999985 13 1.599999998 9

I5( f ) =
∫ 2

0
1

x2+ 1
10

dx 4.4713993946 17 4.471399387 15 4.471399396 11

I6( f ) =
∫ 2

1
2π

sin( 1
x )dx 1.114074506 21 1.114074477 19 1.114074495 11

I7( f ) =
∫ π

2
0 (x2 + x + 1)cosxdx 2.0381974267 7 2.0381974227 3 2.03819742776 1

I8( f ) =
∫ 5

0
x3

ex−1 dx 4.8998921534 13 4.8998921579 7 4.899892158 3

I9( f ) =
∫ 1

0 e−x2
dx 0.7468241324 3 0.7468241327 3 0.7468241329 1

I10( f ) =
∫ 4

0 13(x− x2)e−
3x
2 dx -1.5487883665 21 -1.548788353 13 -1.5487883721 9

I11( f ) =
∫ 2

0

√
4x− x2dx 3.1415928159 25 3.1415928990 19 3.141592813 19

I12( f ) =
∫ 6

1 [2 + sin(2
√

x)]dx 8.1834792212 9 8.1834792108 9 8.1834792081 5

I13( f ) =
∫ 1

0
1

1+x4 dx 0.8669729873 7 0.886972987 7 0.8669729873 3

I14( f ) =
∫ 1

0 sin(
√

x)dx 0.602337586 17 0.602337475 17 0.60233758 15
N:B:The prescribed tolerance(ε)=0.000001

All the computations are done using ‘C’ Program[8].

6 Conclusion

We observe from Tables-5.1 and 5.2, that the mixed quadrature rule gives more accurate result in

comparison to their constituent rules. Gauss-Legendre 3-point rule and Fejer’s second 5-point rule when

integrals (I1 − I14) are evaluated without using adaptive integration scheme. Tables-5.3 and 5.4, reveal that

when these integrals are evaluated using the adaptive integration scheme, the mixed qudrature rule reduces

the number of steps to achieve the prescribed accuracy and gives more accurate result in comparison to the

their constituent rules, Gauss-Legendre 3-point rule and Fejer’s second 5-point rule.
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