
Malaya Journal of Matematik 1(1)(2013) 70–85

Existence and controllability results for damped second order

impulsive neutral functional differential systems with

state-dependent delay in Banach spaces

N.Y. Nadafa and M. Mallika Arjunanb,∗

aDepartment of Mathematics, Anjuman Institute of Technology and Management, Bhatkal–581320, Karnataka, India.

bDepartment of Mathematics, C. B. M. College, Kovaipudur, Coimbatore–641 042, Tamil Nadu, India.

Abstract

In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive

neutral functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using

Sadovskii’s fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear

operators. Finally, an example is provided to illustrate the main results.
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1 Introduction

In this paper, we are interested to study the existence and controllability of mild solutions for a damped
second order impulsive neutral functional differential equation with state-dependent delay in Banach spaces.
First, we consider the following class of damped second order impulsive neutral functional differential equation
with state-dependent delay in the form:

d

dt
[x′(t)− g(t, xt)] = Ax(t) +Dx′(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (1.1)

x0 = ϕ ∈ B, x′(0) = η ∈ X, (1.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (1.3)

∆x′(ti) = Ji(xti), i = 1, 2, . . . , n, (1.4)

where A is the infinitesimal generator of a strongly continuous cosine function of bounded linear operator
(C(t))t∈R defined on a Banach space X; the function xs : (−∞, 0] → X, xs(θ) = x(s + θ), belongs to
some abstract phase space B described axiomatically; D is a bounded linear operator on a Banach space
X; 0 < t1 < · · · < tn < a are prefixed numbers; f, g : I × B → X, ρ : I × B → (−∞, a], Ii(·) : B → X,

Ji(·) : B → X are appropriate functions and the symbol ∆ξ(t) represents the jump of the function ξ(·) at t,
which is defined by ∆ξ(t) = ξ(t+)− ξ(t−).

The theory of impulsive differential equations appears as a natural description of several real processes
subject to certain perturbations whose duration is negligible in comparison with the total duration of the
process, such changes can be reasonably well approximated as being instantaneous changes of state, or in the
form of impulses. These process tend to be more suitably modeled by impulsive differential equations, which
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allow for discontinuities in the evolution of the state. For more details on this theory and on its applications,
we refer to the monographs of Lakshmikantham et al. [1], Samoilenko and Perestyuk [2], Bainov and Simeonov
[3], and the papers of [4, 5, 6, 7, 8, 9, 10, 11] and the references therein. Ordinary differential equations of first
and second order with impulses have been treated in several works, see for instance [12, 13]. Abstract partial
differential equations with impulses have been studied by Liu [9], Rogovchenko [10, 11], Chang et al. [4, 43],
and Hernández et al. [27, 28].

In control theory, one of the most important qualitative properties of dynamical systems is controllability.
The problem of controllability is to show the existence of a control function, which steers the solution of the
system from its initial state to final state, where the initial and final states may vary over the entire space.
Many authors has been studied the controllability of nonlinear systems with and without impulses, see for
instance [14, 15, 16, 17, 18, 19, 20]. In dynamical systems damping is another important issue; it may be
mathematically modelled as a force synchronous with the velocity of the object but opposite in direction to it.
Concerning first and second order differential equations with damped term we cite [21, 22, 23, 24, 25] among
some works.

On the other hand, functional differential equations with state-dependent delay appear frequently in ap-
plications as model of equations and for this reason the study of this type of equations has received much
attention in the recent years. The reader is referred to [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42] and
the references therein for some examples and applications. The literature related to second order impulsive
differential system with state-dependent delay is very limited, and related to this matter we only cite [43, 44].
To the best of our knowledge, the study of the existence and controllability system described in the abstract
form (1.1)-(1.4) is an untreated problem, and this fact is the main motivation of this paper.

This paper is organized as follows. In Section 2, we recall some notations, definitions and preliminary facts
which will be used throughout this paper. In Section 3, we establish sufficient conditions for the existence of
mild solutions for the problem (1.1)-(1.4) by using Sadovskii’s fixed point theorem combined with the theories
of a cosine family of bounded linear operators. In Section 4, we study controllability results for the problem
(1.1)-(1.4). In Section 5, we present some examples to show the application of the results.

2 Preliminaries

In this section, we recall briefly some notations, definitions and lemmas needed to establish our main results.
Throughout this paper, A is the infinitesimal generator of a strongly continuous cosine function of bounded

linear operators (C(t))t∈R on Banach space (X, ‖ · ‖).

Definition 2.1. A one parameter family (C(t))t∈R of bounded linear operators mapping the Banach space X
into itself is called a strongly continuous cosine family iff

(i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,

(ii) C(0) = I;

(iii) C(t)x is continuous in t on R for each fixed x ∈ X.

We denote by (S(t))t∈R the sine function associated with (C(t))t∈R which is defined by S(t)x =
∫ t
0
C(s)xds, x ∈

X, t ∈ R and we always assume that N and N are positive constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ N ,
for every t ∈ I. The infinitesimal generator of a strongly continuous cosine family (C(t))t∈R is the operator
A : X → X defined by

Ax =
d2

dt2
C(t)x|t=0, x ∈ D(A),

where D(A) = {x ∈ X : C(t)x is twice differentiable in t}. Define E = {x ∈ X : C(t)x is once continuously
differentiable in t}.

The following properties are well known [45]:

(i) If x ∈ X then S(t)x ∈ E for every t ∈ R.

(ii) If x ∈ E then S(t)x ∈ D(A), ( ddt )C(t)x = AS(t)x and ( d
2

dt2 )S(t)x = S(t)x for every t ∈ R.
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(iii) If x ∈ D(A) then C(t)x ∈ D(A), and ( d
2

dt2 )C(t)x = AC(t)x = C(t)Ax for every t ∈ R.

(iv) If x ∈ D(A) then S(t)x ∈ D(A), and ( d
2

dt2 )S(t)x = AS(t)x = S(t)Ax for every t ∈ R.

In this paper, [D(A)] stands for the domain of the operator A endowed with the graph norm ‖x‖A = ‖x‖+‖Ax‖,
x ∈ D(A). Moreover, in this work, E is the space formed by the vectors x ∈ X for which C(·)x is of class C1

on R. It was proved by Kisinsky [46] that E endowed with the norm

‖x‖E = ‖x‖+ sup
0≤t≤1

‖AS(t)x‖, x ∈ E, (2.1)

is a Banach space. The operator valued function G(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of

bounded linear operators on the space E×X generated by the operator A =
[

0 I

A 0

]
defined on D(A)×E.

It follows from this that AS(t) : E → X is a bounded linear operator and that AS(t)x → 0, t → 0, for each
x ∈ E. Furthermore, if x : [0,∞) → X is a locally integrable function, then z(t) =

∫ t
0
S(t− s)x(s)ds defines an

E-valued continuous function. This is a consequence of the fact that∫ t

0

G(t− s)
[

0
x(s)

]
ds =

[ ∫ t

0

S(t− s)x(s) ds,
∫ t

0

C(t− s)x(s) ds
]T

defines an E ×X-valued continuous function.
The existence of solutions for the second order abstract Cauchy problem

x′′(t) = Ax(t) + h(t), 0 ≤ t ≤ a, (2.2)

x(0) = z, x′(0) = w, (2.3)

where h : I → X is an integrable function has been discussed in [45]. Similarly, the existence of solutions of
the semilinear second order abstract Cauchy problem it has been treated in [47]. We only mention here that
the function x(·) given by

x(t) = C(t)z + S(t)w +
∫ t

0

S(t− s)h(s)ds, 0 ≤ t ≤ a, (2.4)

is called mild solution of (2.2)-(2.3), and that when z ∈ E, x(·) is continuously differentiable and

x′(t) = AS(t)z + C(t)w +
∫ t

0

C(t− s)h(s)ds, 0 ≤ t ≤ a. (2.5)

For additional details about cosine function theory, we refer to the reader to [45, 47].
To consider the impulsive conditions (1.3)-(1.4), it is convenient to introduce some additional concepts and

notations.
A function u : [σ, τ ] → X is said to be a normalized piecewise continuous function on [σ, τ ] if u is piece-

wise continuous and left continuous on (σ, τ ]. We denote by PC([σ, τ ], X) the space of normalized piecewise
continuous functions from [σ, τ ] into X. In particular, we introduce the space PC formed by all normalized
piecewise continuous functions u : [0, a] → X such that u is continuous at t 6= ti, i = 1, . . . , n. It is clear that
PC endowed with the norm ‖ u ‖PC= sups∈I ‖ u(s) ‖ is a Banach space.

In what follows, we set t0 = 0, tn+1 = a, and for u ∈ PC we denote by ũi, for i = 0, 1, ..., n − 1, the
function ũi ∈ C([ti, ti+1];X) given by ũi(t) = u(t) for t ∈ (ti, ti+1] and ũi(ti) = limt→t+i

u(t). Moreover, for a

set B ⊆ PC, we denote by B̃i, for i = 0, 1, ..., n− 1, the set B̃i = {ũi : u ∈ B}.

Lemma 2.1. [48] A set B ⊆ PC is relatively compact in PC if, and only if, each set B̃i, i = 0, 1, · · · , n− 1, is
relatively compact in C([ti, ti+1], X).

In this work we will employ an axiomatic definition of the phase space B, which has been used in [48] and
suitably modified to treat retarded impulsive differential equations. Specifically, B will be a linear space of
functions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B and we will assume that B satisfies the
following axioms:



N. Y. Nadaf et al. / Existence results for ... 73

(A) If x : (−∞, σ + b] → X, b > 0, is such that xσ ∈ B and x|[σ,σ+b] ∈ PC([σ, σ + b], X), then for every
t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,

(ii) ‖ x(t) ‖≤ H ‖ xt ‖B,

(iii) ‖ xt ‖B≤ K(t− σ) sup{‖ x(s) ‖: σ ≤ s ≤ t}+M(t− σ) ‖ xσ ‖B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally bounded, and H,K,M
are independent of x(·).

(B) The space B is complete.

For more details about phase space axioms and examples, we refer the reader to [40].
Additional terminologies and notations used in the sequel are standard in functional analysis. In particular,

for Banach spaces (Z, ‖ · ‖Z), (W, ‖ · ‖W ), the notation L(Z,W ) stands for the Banach space of bounded linear
operators from Z into W and we abbreviate to L(Z) whenever Z = W . Additionally, Br(x,Z) denotes the
closed ball with center at x and radius r > 0 in Z.

Our main results are based upon the following well-known result.

Lemma 2.2. [49, Sadovskii’s Fixed Point Theorem] Let G be a condensing operator on a Banach space X. If
G(S) ⊂ S for a convex, closed and bounded set S of X, then G has a fixed point in S.

3 Existence Results

In this section we discuss the existence of mild solutions for the abstract system (1.1)-(1.4). We also suppose
that ρ : I × B → (−∞, a] is a continuous function. Additionally, we introduce following conditions.

(Hϕ) Let R(ρ−) = {ρ(s, ψ) : (s, ψ) ∈ I×B, ρ(s, ψ) ≤ 0}. The function t→ ϕt is well defined from R(ρ−) into B
and there exists a continuous and bounded function Jϕ : R(ρ−) → (0,∞) such that ‖ ϕt ‖B≤ Jϕ(t) ‖ ϕ ‖B
for every t ∈ R(ρ−).

(H1) The function f : I × B → X satisfies the following conditions:

(i) Let x : (−∞, a] → X be such that x0 = ϕ and x|I ∈ PC. The function t→ f(t, xρ(t,xt)) is measurable
on I and the function t→ f(s, xt) is continuous on R(ρ−) ∪ I for every s ∈ I.

(ii) For each t ∈ I, the function f(t, ·) : B → X is continuous.

(iii) There exist an integrable function m : I → [0,∞) and a continuous nondecreasing function W :
[0,∞) → (0,∞) such that for every (t, ψ) ∈ I × B

‖ f(t, ψ) ‖ ≤ m(t)W (‖ ψ ‖B), lim inf
ξ→∞

W (ξ)
ξ

= Λ <∞.

(H2) The function g : I × B → X is continuous and there exists Lg > 0 such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lg‖ψ1 − ψ2‖B, (t, ψi) ∈ I × B, i = 1, 2.

(H3) There exist positive constants c1, c2 such that ‖g(t, ψ)‖ ≤ c1‖ψ‖B + c2, for every (t, ψ) ∈ I × B.

(H4) There are positive constants LIi
, LJi

such that

‖Ii(ψ1)− Ii(ψ2)‖ ≤ LIi
‖ψ1 − ψ2‖B, ψj ∈ B, i = 1, 2, . . . , n,

‖Ji(ψ1)− Ji(ψ2)‖ ≤ LJi‖ψ1 − ψ2‖B, ψj ∈ B, i = 1, 2, . . . , n.

(H5) The maps Ii, Ji : B → X, i = 1, 2, . . . , n are completely continuous and there exist continuous nonde-
creasing functions λi, µi : [0,∞) → (0,∞), i = 1, 2, . . . , n, such that

‖Ii(ψ)‖ ≤ λi(‖ψ‖B), lim inf
ζ→+∞

λi(ζ)
ζ

= ζi <∞, and

‖Ji(ψ)‖ ≤ µi(‖ψ‖B), lim inf
ζ→+∞

µi(ζ)
ζ

= ηi <∞.
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Remark 3.1. The condition Hϕ is frequently satisfied by functions that are continuous and bounded. In
fact, assume that the space of continuous and bounded functions Cb((−∞, 0], X) is continuously included in
B. Then, there exists L > 0 such that

‖ ϕt ‖B≤ L
supθ≤0 ‖ ϕ(θ) ‖

‖ ϕ ‖B
‖ ϕ ‖B, t ≤ 0, ϕ 6= 0, ϕ ∈ Cb((−∞, 0] : X).

It is easy to see that the space Cb((−∞, 0], X) is continuously included in PCg(X) and PC0
g (X). Moreover,

if g(·) verifies (g-5)-(g-6) in [? ] and g(·) is integrable on (−∞,−r], then the space Cb((−∞, 0], X) is also
continuously included in PCr ×Lp(g;X). For complementary details related this matter, see Proposition 7.1.1
and Theorems 1.3.2 and 1.3.8 in [50].

If x(·) is a solution of (1.1)-(1.4), then from (2.4), we adopt the following concept of mild solution,

x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, xs)ds+
∫ t

0

S(t− s)[Dx′(s) + f(s, xρ(s,xs))]ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Inspired from the above expression, we present the following definition.

Definition 3.1. A function x : (−∞, a] → X is called a mild solution of the abstract Cauchy problem (1.1)-
(1.4) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, xs)ds+
j−1∑
i=0

[S(t− ti+1)Dx(t−i+1)− S(t− ti)Dx(t+i )]

− S(t− tj)Dx(t+j ) +
∫ c

0

C(t− s)Dx(s)ds+
∫ t

0

S(t− s)f(s, xρ(s,xs))ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Remark 3.2. In the rest of this paper, y : (−∞, a] → X is the function defined by y(t) = ϕ(t) on (−∞, 0]
and y(t) = C(t)ϕ(0) + S(t)ζ for t ∈ I. In addition, ‖ y ‖a, Ma, Ka, and Jϕ0 are the constants defined by
‖ y ‖a= sup

s∈[0,a]

‖ y(s) ‖, Ma = sup
s∈[0,a]

M(s), Ka = sup
s∈[0,a]

K(s) and Jϕ0 = sup
t∈R(ρ−)

Jϕ(t).

Lemma 3.1. [51, Lemma 2.1] Let x : (−∞, a] → X be a function such that x0 = ϕ and x|I ∈ PC. Then

‖ xs ‖B≤ (Ma + Jϕ0 ) ‖ ϕ ‖B +Ka sup{ ‖ x(θ) ‖; θ ∈ [0, max{0, s}] }, s ∈ R(ρ−) ∪ I.

Theorem 3.1. Let conditions (Hϕ), (H1)− (H4) be hold and assume that S(t) is compact for every t ∈ R. If

Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi
+NLJi

)
]
< 1,

then the problem (1.1)-(1.4) has at least one mild solution on (−∞, a].

Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform convergence topology, we define
the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ c

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and our assumptions on ϕ,
we infer that Γx ∈ PC.
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Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds

+
n∑
i=1

N(LIi‖x̄ti − yti‖B + ‖Ii(yti)‖) +
n∑
i=1

N(LJi‖x̄ti − yti‖B + ‖Ji(yti)‖)

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKar +N

∫ tr

0

(c1‖ys‖B + c2)ds+ 3N‖D‖r + aN‖D‖r

+NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka ‖ y ‖a)
∫ a

0

m(s)ds

+
n∑
i=1

N(LIi
Kar + ‖Ii(yti)‖) +

n∑
i=1

N(LJi
Kar + ‖Ji(yti)‖),

and hence

1 ≤ Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi +NLJi)
]
,

which is contrary to our assumption.
Let r > 0 be such that Γ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove that Γ is a condensing map on

Br(y|I , Y ) into Br(y|I , Y ). We introduce the decomposition Γ = Γ1 + Γ2 where

Γ1x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ a

0

C(t− s)Dx̄(s)ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti).

Γ2x(t) =
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds.

From the proof of [39, Theorem 3.4], we conclude that Γ2 is completely continuous. Moreover, from the estimate

‖Γ1x− Γ1z‖PC ≤ aNLgKa‖x− z‖PC + 3N‖D‖‖x− z‖PC + aN‖D‖‖x− z‖PC

+Ka

n∑
i=1

(NLIi
+NLJi

)‖x− z‖PC

≤ Ka[aNLg +
1
Ka

(3N + aN)‖D‖+
n∑
i=1

(NLIi
+NLJi

)]‖x− z‖PC .

It follows that Γ1 is contraction on Br(y|I , Y ), which implies that Γ is a condensing operator on Br(y|I , Y ).
Finally, from Lemma 2.2, we infer that there exists a mild solution of (1.1)-(1.4). The completes the

proof.

Theorem 3.2. Let conditions (Hϕ), (H1)− (H3) and (H5) be hold and assume that S(t) is compact for every
t ∈ R. If

Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
]
< 1,

then there exists a mild solution of (1.1)-(1.4).
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Proof. On the space Y = {x ∈ PC : u(0) = ϕ(0)} endowed with the uniform convergence topology, we define
the operator Γ : Y → Y by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ c

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

where x̄ : (−∞, a] → X is such that x̄0 = ϕ and x̄ = x on I. From axiom (A) and our assumptions on ϕ, we
infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1 we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+N
n∑
i=1

‖Ii(x̄ti)‖+N
n∑
i=1

‖Ji(x̄ti)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka ‖ y ‖a)
∫ a

0

m(s)ds

+N
n∑
i=1

λi(‖x̄ti‖B) +N
n∑
i=1

µi(‖x̄ti‖B).

Since λi and µi are nondecreasing operators, we have

r < NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW ((Ma + Jϕ0 )‖ϕ‖B +Kar +Ka ‖ y ‖a)
∫ a

0

m(s)ds

+N
n∑
i=1

λi(r∗) +N
n∑
i=1

µi(r∗),

where ‖x̄ti‖B ≤ r∗ = (Ma + Jφ0 )‖ϕ‖B +Ka(r + ‖y‖a)
and hence

1 ≤ Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
]
,

which contradicts to our assumption.
Arguing as in the proof of Theorem 3.1, we can prove that Γ(·) is a condensing map on Br(y|I , Y ) and, from

Lemma 2.2, we conclude that there exists a mild solution x(·) for (1.1)-(1.4). The proof is now complete.

4 Controllability results

In this section, we shall establish sufficient conditions for the controllability of mild solutions for a damped
second order impulsive neutral functional differential equation with state-dependent delay. More precisely, we
consider the following abstract control system in the form:

d

dt
[x′(t)− g(t, xt)] = Ax(t) +Dx′(t) +Bu(t) + f(t, xρ(t,xt)), t ∈ I = [0, a], (4.1)
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x0 = ϕ ∈ B, x′(0) = η ∈ X, (4.2)

∆x(ti) = Ii(xti), i = 1, 2, . . . , n, (4.3)

∆x′(ti) = Ji(xti), i = 1, 2, . . . , n, (4.4)

where A,D, f, Ii and Ji are defined as in equations (1.1)-(1.4), the control function u(·) given in L2(I, U), a
Banach space of admissible control functions with U as a Banach space and B : U → X is a bounded linear
operator on a Banach space X with D(D) ⊂ D(A).

Furthermore, we assume the following conditions:

(H1)′ The function f : I × B → X satisfies the following conditions:

(i) The function f : I × B → X is completely continuous.

(ii) For every positive constant r, there exists an αr ∈ L1(r) such that

sup
‖ψ‖≤r

‖f(t, ψ)‖ ≤ αr(t).

(H6) B is continuous operator from U to X and the linear operator W : L2(I, U) → X, defined by

Wu =
∫ a

0

S(a− s)Bu(s)ds,

has a bounded invertible operator, W−1 which takes the values in L2(I, U)/KerW such that ‖B‖ ≤ M1 and
‖W−1‖ ≤M2 for some positive integers M1,M2.

Definition 4.1. The system (4.1)-(4.4) is said to be controllable on the interval [0, a] if for every x0 = ϕ ∈
B, x′(0) = η ∈ X and x1 ∈ X, there exists a control u ∈ L2(J, U) such that the mild solution x(t) of (4.1)-(4.4)
satisfies x(a) = x1.

Definition 4.2. A functions x : (−∞, a] → X is called a mild solution of the abstract Cauchy problem (4.1)-
(4.4) if x0 = ϕ, xρ(s,xs) ∈ B for every s ∈ I;x(·)|I ∈ PC and

x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, xs)ds+
j−1∑
i=0

[S(t− ti+1)Dx(t−i+1)− S(t− ti)Dx(t+i )]

− S(t− tj)Dx(t+j ) +
∫ t

0

C(t− s)Dx(s)ds+
∫ t

0

S(t− s)
[
Bu(s) + f(s, xρ(s,xs))

]
ds

+
∑

0<ti<t

C(t− ti)Ii(xti) +
∑

0<ti<t

S(t− ti)Ji(xti), t ∈ I.

Theorem 4.1. Let conditions (Hϕ), (H1)−(H6) and (H1)′ be hold. Then the system (4.1)-(4.4) is controllable
on (−∞, a] provided that

(1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi +NLJi)
)]

< 1,

Proof. Consider the space Y = {x ∈ PC;u(0) = ϕ(0)} endowed with the uniform convergence topology. Using
the assumption (H6), for an arbitrary function x(·), we define the control

u(t) = W−1
[
x1 − C(a)ϕ(0)− S(t)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, xs)ds−
j−1∑
i=0

[S(a− ti+1)Dx(t−i+1)

− S(a− ti)Dx(t+i )] + S(a− tj)Dx(t+j )−
∫ a

0

C(a− s)Dx(s)ds−
∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
∑

0<ti<a

C(a− ti)Ii(xti)−
∑

0<ti<a

S(a− ti)Ji(xti)
]
(t).

Using this control, we shall show that the operator Γ : Y → Y defined by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)
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−S(t− ti)Dx̄(t+i )]− S(t− tj)Dx̄(t+j ) +
∫ t

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds

+
∫ t

0

S(t− ξ)BW−1
[
x1 − C(a)ϕ(0)− S(a)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, x̄s)ds

−
j−1∑
i=0

[S(a− ti+1)Dx̄(t−i+1)− S(a− ti)Dx̄(t+i )] + S(a− tj)Dx̄(t+j )−
∫ a

0

C(a− s)Dx̄(s)ds

−
∑

0<ti<a

C(a− ti)Ii(x̄ti)−
∑

0<ti<a

S(a− ti)Ji(x̄ti)
]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system (4.1)-(4,4). Clearly, (Γx)(a) =
x1, which means that the control u steers the system from the initial state ϕ to x1 in time a, provided we
obtain a fixed point of the operator which implies that the system is controllable. Here x̄ : (−∞, a] → X is
such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and our assumptions on ϕ, we infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B

+N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+
n∑
i=1

N(LIi
‖x̄ti − yti‖B + ‖Ii(yti)‖)

+
n∑
i=1

N(LJi
‖x̄ti − yti‖B + ‖Ji(yti)‖)

]
+

n∑
i=1

N(LIi
‖x̄ti − yti‖B + ‖Ii(yti)‖)

+
n∑
i=1

N(LJi
‖x̄ti − yti‖B + ‖Ji(yti)‖)

r ≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW
(
(Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a

)∫ a

0

m(s)ds

+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds

+N
∫ tr

0

(c1‖ys‖B + c2)ds+ 3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds

+
n∑
i=1

N(LIi
Kar + ‖Ii(yti)‖) +

n∑
i=1

N(LJi
Kar + ‖Ji(yti)‖)

]
+

n∑
i=1

N(LIiKar + ‖Ii(yti)‖) +
n∑
i=1

N(LJiKar + ‖Ji(yti)‖),

and hence

1 ≤ (1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(NLIi +NLJi)
)]
,

which contradicts to our assumption.
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Let r > 0 be such that Γ(Br(y|I , Y )) ⊂ Br(y|I , Y ). In order to prove that Γ is a condensing map on
Br(y|I , Y ) into Br(y|I , Y ). We introduce the decomposition Γ = Γ1 + Γ2 where

Γ1x(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)− S(t− ti)Dx̄(t+i )]

−S(t− tj)Dx̄(t+j ) +
∫ a

0

C(t− s)Dx̄(s)ds+
∑

0<ti<t

C(t− ti)Ii(x̄ti) +
∑

0<ti<t

S(t− ti)Ji(x̄ti).

Γ2x(t) =
∫ t

0

S(t− s)
[
f(s, x̄ρ(s,x̄s)) +Bu(s)

]
ds.

Now

‖Bu(s)‖ ≤ ‖B‖‖W−1‖
[
‖x1‖+ ‖C(a)‖‖ϕ(0)‖+ ‖S(t)‖

[
‖η‖+ ‖g(0, ϕ)‖

]
+
∫ a

0

‖C(a− s)‖‖g(s, x̄s)ds‖

+
j−1∑
i=0

[‖S(a− ti+1)‖‖D‖‖x̄(t−i+1)‖+ ‖S(a− ti)‖‖D‖‖x̄(t+i )]‖+ ‖S(a− tj)‖‖D‖‖x̄(t+j )‖

+
∫ a

0

‖C(a− s)‖‖D‖‖x̄(s)‖ds+
∫ a

0

‖S(a− s)‖‖f(s, x̄ρ(s,x̄s))‖ds+
∑

0<ti<a

‖C(a− ti)‖‖Ii(x̄ti)‖

+
∑

0<ti<a

‖S(a− ti)‖‖Ji(x̄ti)‖
]

≤M1M2

[
‖x1‖+NH‖ϕ‖B +N

[
‖η‖+ c1‖ϕ‖+ c2

]
+N

∫ a

0

(c1‖x̄s‖+ c2)ds+ 3N‖D‖r + aN‖D‖r

+N

∫ a

0

αr(s)ds+N
n∑
i=1

λi‖x̄ti‖+
n∑
i=1

µi‖x̄ti‖
]

≤M1M2

[
‖x1‖+NH‖ϕ‖B +N

[
‖η‖+ c1‖ϕ‖+ c2

]
+ aN(c1r + c2) + 3N‖D‖r + aN‖D‖r

+N

∫ a

0

αr(s)ds+
n∑
i=1

r(Nλi +Nµi)
]

= A0.

Here by applying the same technique that is used in the proof of [16, Lemma 3.1], we arrived that Γ2 is
completely continuous.

Next, we show that Γ1 is contraction on Br(y|I , Y ). Indeed, x, z ∈ Br(y|I , Y ), we have

‖Γ1x− Γ1z‖PC ≤ aN‖D‖‖x− z‖PC + aNLgKa‖x− z‖PC + 3N‖D‖‖x− z‖PC +
n∑
i=1

NLIi
Ka‖x− z‖PC

+
n∑
i=1

NLJi
Ka‖x− z‖PC

≤ Ka

[
aNLg +

1
Ka

(3N + aN)‖D‖+
n∑
i=1

(NLIi +NLJi)
]
‖x− z‖PC .

It follows that Γ1 is a contraction on Br(y|I , Y ) which implies that Γ is a condensing operator on Br(y|I , Y ).
Finally, from the Sadovskii’s Fixed Point Theorem, Γ has a fixed point on Y . This means that any fixed

point of Γ is a mild solution of the problem (4.1)-(4.4). This completes the proof.

Theorem 4.2. Let conditions (Hϕ), (H1) − (H3), (H5) and (H1)′ be hold. Then the system (4.1)-(4.4) is
controllable on (−∞, a] provided that

(1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
)]

< 1.

Proof. Consider the space Y = {x ∈ PC;u(0) = ϕ(0)} endowed with the uniform convergence topology. Using
the assumption (H6), for an arbitrary function x(·), we define the control

u(t) = W−1
[
x1 − C(a)ϕ(0)− S(t)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, xs)ds−
j−1∑
i=0

[S(a− ti+1)Dx(t−i+1)
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− S(a− ti)Dx(t+i )] + S(a− tj)Dx(t+j )−
∫ a

0

C(a− s)Dx(s)ds−
∫ a

0

S(a− s)f(s, xρ(s,xs))ds

−
∑

0<ti<a

C(a− ti)Ii(xti)−
∑

0<ti<a

S(a− ti)Ji(xti)
]
(t).

Using this control, we shall show that the operator Γ : Y → Y defined by

Γx(t) = C(t)ϕ(0) + S(t)[η − g(0, ϕ)] +
∫ t

0

C(t− s)g(s, x̄s)ds+
j−1∑
i=0

[S(t− ti+1)Dx̄(t−i+1)

−S(t− ti)Dx̄(t+i )]− S(t− tj)Dx̄(t+j ) +
∫ t

0

C(t− s)Dx̄(s)ds+
∫ t

0

S(t− s)f(s, x̄ρ(s,x̄s))ds

+
∫ t

0

S(t− ξ)BW−1
[
x1 − C(a)ϕ(0)− S(a)[η − g(0, ϕ)]−

∫ a

0

C(a− s)g(s, x̄s)ds

−
j−1∑
i=0

[S(a− ti+1)Dx̄(t−i+1)− S(a− ti)Dx̄(t+i )] + S(a− tj)Dx̄(t+j )−
∫ a

0

C(a− s)Dx̄(s)ds

−
∑

0<ti<a

C(a− ti)Ii(x̄ti)−
∑

0<ti<a

S(a− ti)Ji(x̄ti)
]
(ξ)dξ +

∑
0<ti<t

C(t− ti)Ii(x̄ti)

+
∑

0<ti<t

S(t− ti)Ji(x̄ti), t ∈ I,

has a fixed point x(·). This fixed point x(·) is then a mild solution of the system (4.1)-(4,4). Clearly, (Γx)(a) =
x1, which means that the control u steers the system from the initial state ϕ to x1 in time a, provided we
obtain a fixed point of the operator which implies that the system is controllable. Here x̄ : (−∞, a] → X is
such that x̄0 = ϕ and x̄ = x on I. From the axiom (A) and our assumptions on ϕ, we infer that Γx ∈ PC.

Next, we prove that there exists r > 0 such that Γ(Br(y|I , Y )) ⊆ Br(y|I , Y ). If we assume this property is
false, then for every r > 0 there exist xr ∈ Br(y|I , Y ) and tr ∈ I such that r < ‖Γxr(tr)− y(tr)‖. Then, from
Lemma 3.1, we get

r < ‖Γxr(tr)− y(tr)‖

≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B

+N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+N
n∑
i=1

λi(‖x̄ti‖B)

+N
n∑
i=1

µi(‖x̄ti‖B)
]

+N
n∑
i=1

λi(‖x̄ti‖B) +N
n∑
i=1

µi(‖x̄ti‖B).

Since λi and µi are non-decreasing operators, we have

r ≤ NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds+N

∫ tr

0

(c1‖ys‖B + c2)ds

+3N‖D‖r + aN‖D‖r +NW
(
(Ma + Jϕ0 )‖ϕ‖B +Kar +Ka‖y‖a

)∫ a

0

m(s)ds

+NM1M2

∫ tr

0

[
‖x1‖+NH‖ϕ‖B +N [‖η‖+ ‖g(0, ϕ)‖] +NLgKa

∫ tr

0

‖xr − y‖sds

+N
∫ tr

0

(c1‖ys‖B + c2)ds+ 3N‖D‖r + aN‖D‖r +N

∫ tr

0

m(s)W (‖xrρ(s,(xr)s)‖B)ds+N
n∑
i=1

λi(r∗)

+N
n∑
i=1

µi(r∗)
]

+N
n∑
i=1

λi(r∗) +N
n∑
i=1

µi(r∗),
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where ‖x̄ti‖B ≤ r∗ = (Ma + Jφ0 )‖ϕ‖B +Ka(r + ‖y‖a)
and hence

1 ≤ (1 + aNM1M2)
[
Ka

(
aNLg +

1
Ka

(3N + aN)‖D‖+N lim inf
ξ→∞

W (ξ)
ξ

∫ a

0

m(s)ds+
n∑
i=1

(Nζi +Nηi)
)]
,

which contradicts to our assumption.
Arguing as in the proof of Theorem 4.1, we can prove that Γ(·) is a condensing map on Br(y|I , Y ) and,

from Lemma 2.2, we conclude that there exists a mild solution x(·) for (4.1)-(4.4). The proof is now completed.

5 An example

In this section, we consider an application of our abstract results. We choose the space X = L2([0, π]),B =
PC0×L2(g,X) is the space introduced in [50] and A : D(A) ⊂ X → X is the operator defined by Au = u′′ with
domain D(A) = {u ∈ X : u′′ ∈ X,u(0) = u(π) = 0}. It is well-known that A is the infinitesimal generator of
a strongly continuous cosine family (C(t))t∈R on X. Furthermore, A has a discrete spectrum, the eigenvalues
are −n2, for n ∈ N, with corresponding eigenvectors zn(τ) =

(
2
π

)1/2 sin(nτ), and the following properties hold.

(a) The set of functions {zn : n ∈ N} forms an orthonormal basis of X.

(b) If x ∈ D(A), then Ax = −
∑∞
n=1 n

2〈x, xn〉xn, for ϕ ∈ D(A).

(c) For x ∈ X, C(t)x =
∑∞
n=1 cos (nt)〈x, xn〉xn and the associated sine family is

S(t)x =
∞∑
n=1

sin(nt)
n

〈x, xn〉xn,

which implies that the operator S(t) is compact, for all t ∈ R and that ‖C(t)‖ = ‖S(t)‖ = 1, for all t ∈ R.

(d) If G is the group of translations on X defined by G(t)x(ζ) = x̃(ζ + t), where x̃(·) is the extension of x(·)
with period 2π, then C(t) = 1

2

[
Φ(t) + Φ(−t)

]
and A = B2, where B is the infinitesimal generator of Φ

and E = {x ∈ H1(0, π) : x(0) = x(π) = 0} ( see [52] for details).

5.1 Second order neutral system
Consider the following second order damped impulsive neutral differential system with state-dependent

delay

∂

∂t

[ ∂
∂t
w(t, ζ) +

∫ t

−∞

∫ π

0

b(t− s, η, ζ)w(s, η)dηds
]

=
∂2

∂ζ2
w(t, ζ) + α

∂

∂t
w(t, ζ) +

∫ π

0

β(s)
∂

∂t
w(t, s)ds

+
∫ t

−∞
k(s− t)w(s− ρ1(t)ρ2(‖w(t)‖), ζ)ds, t ∈ I, ζ ∈ [0, π] (5.1)

w(t, 0) = w(t, π) = 0, t ∈ I (5.2)
∂

∂t
w(0, ζ) = ζ(π), (5.3)

w(τ, ζ) = ϕ(τ, ζ), τ ≤ 0, 0 ≤ ζ ≤ π (5.4)

4w(ti)(ζ) =
∫ ti

−∞
bi(ti − s)w(s, ζ)ds, i = 1, 2, . . . , n, (5.5)

4w′(ti)(ζ) =
∫ ti

−∞
b̃i(ti − s)w(s, ζ)ds, i = 1, 2, . . . , n, (5.6)

where we assume that ϕ ∈ B with the identity ϕ(s)(ζ) = ϕ(s, ζ), ϕ(0, ·) ∈ H1([0, π]) and 0 < t1 < t2 < · · · < a.
Here α is a prefixed real number and β ∈ L2([0, π]).

Let the functions ρi : [0,∞) → [0,∞), i = 1, 2, ; k : R → R are continuous, Lf =
( ∫ 0

−∞
(a2(s))
g(s) ds

) 1
2
< ∞,

and that the following conditions hold:
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(a) The functions bi, b̃i ∈ C(R,R) and LIi
:=
(∫ 0

−∞
b2i (s)
g(s) ds

) 1
2
, LJi

:=
(∫ 0

−∞
b̃2i (s)
g(s) ds

) 1
2
, i = 1, · · · , n, are

finite.

(b) The functions b(s, η, ζ), ∂b(s,η,ζ)∂ζ are measurable, b(s, η, π) = b(s, η, 0) = 0 and

Lg = max


(∫ π

0

∫ 0

−∞

∫ π

0

1
g(s)

(
∂ib(s, η, ζ)

∂ζi

)2

dηdsdζ

) 1
2

: i = 0, 1

 <∞.

Define the functions D : X → X, g, f : J × B → X, ρ : I × B → X, Ii : B → X and Ji : B → X by

Dψ(ζ) = αψ(t, ζ) +
∫ π

0

β(s)ψ(t, s)ds,

f(ψ)(ζ) =
∫ 0

−∞
k(s)ψ(s, ζ)ds,

g(ψ)(ζ) =
∫ 0

−∞

∫ π

0

b(s, ν, ζ)ψ(s, ν)dνds,

ρ(s, ψ) = s− ρ1(s)ρ2(‖ψ(0)‖),

Ii(ψ)(ζ) =
∫ 0

−∞
bi(−s)ψ(s, ζ)ds, i = 1, 2, . . . , n,

Ji(ψ)(ζ) =
∫ 0

−∞
b̃i(−s)ψ(s, ζ)ds, i = 1, 2, . . . , n.

With the choice of A,D, f, g, ρ, Ii and Ji, the system (1.1)-(1.4) is the abstract formulation of (5.1)-(5.6).
Moreover, the maps D, g, f, Ii, Ji, i = 1, 2, . . . , n are bounded linear operators with

‖D‖L(X) ≤ |α|+ ‖β‖L2(0,a), ‖g(t, ·)‖L(B,X) ≤ Lg, ‖f(t, ·)‖L(B,X) ≤ Lf , ‖Ii‖L(B,X) ≤ LIi , ‖Ji‖L(B,X) ≤ LJi .
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