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Abstract

In this paper, Hermite-Hadamard-Fejer type inequalities for quasi-convex via fractional integrals are ob-
tained.
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1 Introduction

The following definition for convex functions is well know in the mathematical literature:
A function f : I — R, @ #I C R is said to be convex on I if inequality

flix+(A-Hy) <tf(x)+ (1 -1 f(y)
holds forall x,y € I and ¢ € [0, 1].

The inequality
a+b 1t fla)+ f(b)
< < =" .
F(50) <5t [ Fooan < L5 (1)

which holds for all convex functions f : [2,b] — R, is known in the literature as Hermite-Hadamard'’s
inequality. More details, one can consult ([1]-[11]).

In [3], Fejer established the following Hermite-Hadamard Fejer inequality which is the weighted general-
ization of Hermite-Hadamard inequality.

Theorem 1.1. Let f : [a,b] — R be convex function. Then the inequality

b b b
f(a—;b)/g g(x)dxé/a f(x)g(x)dXSf(a);f(b)/ﬂ g(x)dx (1.2)

holds, where g : [a,b] — R is nonnegative, integrable and symmetric to (a +b) /2.

We recall that the notion of quasi-convex functions generalizes the notion of convex functions. More ex-
actly, a function f : [a,b] — R, is said quasi-convex on [g, b] if

fAx+ (1 =A)y) <sup{f(x),f(y)},Vxy € [ab]
forall x,y € [a,b] and A € [0, 1](see [10]).
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Furthermore, there exist quasi-convex functions which are not convex (see [5]).
In [8] Ozdemir et. al. represented Hermite-Hadamard’s inequalities for quasi-convex functions in frac-
tional integral forms as follows:

Theorem 1.2. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If |f'| is quasi convex on [a, b] and
« > 0, then the following inequality for fractional integrals holds

‘f(a);f(b) _ 2r((boa _+a1)) % (B)+ T f (a)] (1.3)

s (175 ) swp {17 @)

In [9] Set et. al. obtained the following lemma.

f o)}

7

Lemma 1.1. Let f : [a,b] — R be a differentiable mapping on (a,b) witha < b and let ¢ : [a,b] — R. If f',g €
L [a, ], then the following identity for fractional integrals holds:

(1.4)

2 2

(50 sy 8@+ T 8 ®)] = [Ty G0 @+ 12y G0 0
b

1 /
= /uk(t)f(t)dt

«)

where ,
(s —a)*1g(s)ds, te {a, #)

b
—/ (b—s)"""gls)ds, te |%tb).

In [11] Iscan proved the following lemma.

Lemma 1.2. Let f : [a,b] — R be a differentiable mapping on (a,b) and a < b with f' € L{a,b]. Ifg: [a,b] — Ris
integrable and symmetric to (a + b) /2 then the following equality for fractional integrals holds

FOITO )+ 18 @] - [ () )+ () (@) 5

b t b
- w5/ [/ =5ty ds— [ <s—a>“g<s>ds]f’<t>dt

with a > 0.
We give some neccessary definitions and mathematical preliminiaries of fractional calculus theory which
are used throughout this paper.

Lemma 1.3. ([6],[7])For 0 < a < 1and 0 < a < b, we have
la* — b%| < (b—a)~.

Definition 1.1. Let f € L [a,b]. The Riemann-Liouville integrals |5, f (x) and J;_ f (x) of oder & > 0 with a > 0 are
defined by

B@ =g [ o0 O > a

and

1 b .
RS0 =g [ =0 e x <
respectively, where T («) is the Gamma functions by T (a) = [5° e~ "t*~1dt and ]2+f (x) = Ig,f (x) = f (x).

In this paper, motivated by the recent results given in [11]], [9] , we established Hermite-Hadamard-Fejer
type inequalities for quasi convex functions via fractional integral.
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2 Main result

Throughout this paper, let I be an interval on R and let || g||[ b = SUPE (t), for the continuous function
P be(ab]

g:[ab] - R

Theorem 2.3. Let f : I — R be a differentiable mapping on I° and f' € L[a,b) witha < b and g : [a,b] — R is

continuous. If | f'|" is quasi convex on [a, b], q > 1, then the following inequality for fractional integrals holds:

2.6)
7(50) [y s )+I’E‘u§b)+g(b)} ey G @ I G 0]
a+1 1
e (sue {17 @I 0]}
with a > 0.
Proof. Since is |f'| is quasi-convex on [a, b] , we know that for ¢ € [a, b]
v o (b=t t—a \| AN RN
Fol = (b_awb_ab)\ <sup {|f' @|",|f' )]} @7)

Using Lemmal|l.]] u Power mean inequality and the quasi-convex of |f’|7, it follows that

]f(”*b) T8 ()+I<%) 20 - [ty 0@+ 1 1 0]
</ / s—a)* g(s)ds dt)lé (/a;b /at(s—a)“’lg(s)ds |f’(t)|th>}]
(/ /f(bs)“‘lg(s)ds l

a+b

IN

£ (1)) dt)

Hg” ath b ot
< ILWZ)]</a /u(s—a)”‘_lds dt
x (/5 /t(sa)”‘_lds ]f’(t)|th>q
18111zt 4] oo -3
i (][ emoraa)
X (/: /b(b s)* 1ds| | ’(t)|th>q
a+1 7% 1
< a+1 (2““ 1 ) (Sup{|f/(g)ql f/(b)|ff}>q
v % b %
{gll[,;]m (/a (t—a)“dt> + 18l fage 4] co (/b (b—t)”‘dt) }
- 1 ( )0¢+1 1_% (b _ a)ﬂHrl %
T Tla+1) \ 22 (a+1) 204 (a4 1)
< (1815 5t10 + 18l s 1,0) (s {17 @171 @)
(b= a)" 18l )00 , , 1
S Tarnrais Cw{lf @l el
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where it is easily seen that

a+b
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ok t b b
/ /(sfa)“_lds dt = / / (b—s)" Lds|dt
a a # t

(b_a>tx+1

20t (w4 1)
Hence, the proof is completed.

Corollary 2.1. If we choose g(x) = 1 and « = 1 in the inequality (2.6), then we have

/abf(x)dx—f( ) (Sup{‘f/ @\ 1f (b)’q})

We can state another inequality for g > 1 as follows:

a+b b—

2

a

1
< q

b—a

Theorem 2.4. Let f : I — R be a differentiable mapping on I° and f' € L[a,b] witha < b and g : [a,b] — R is
continuous. If | f'|1 is quasi convex on [a, b], q > 1, then the following inequality for fractional integrals holds:

() [y ¢
(b — )”1 181leo
2% (acp+1)ﬁ I'(x+1)

2.8)
a+b

@+ I 3] = [Ty U@+ T () 0)]

£ ®)'})

<=

q

7

(sup {|£ (@)

1,1 _
whereerq 1.

Proof. Using Lemmall.]] u Holder’s inequality and the quasi convexity of |f|7, it follows that

(57 Ve s

a+b

o

(5")-

@+ 8 O] = [Ty G0 @+ Iy () 0)]

b
= F(la) {/ / (s—a) T (s)ds||f (D]t
b b
+/M /t (b—s)""tg(s)ds yf'(t)|dt}
1 Gt X PP [ e / i
< T (a) (/ﬂ /ﬂ(S—a) 1g(s)ds dt) (/,1 ’f (t)‘th>
1 b b . P % b / %
+F(DC) (/ﬂ}rb /t (b—5s) 1g(s)ds dt) (/a;h |f (t)|th>
181lco 1a ozt [ f55 | pt b
= r(b](/ /ﬂ(s—a)“ds) (/ |f’<t>|th>
181l oo ot bo| b L !
+r&fh]<ﬁw | s tas ) (/;bU%ﬂWdQ
Igle ( 0—ayrt N7 [( 2 !
= T (a) ( P (wp + 1) al ) [(/a sup{|f f (b)|q}dt>

([

2

ﬂww}m>
S (sup {lr @

sup{|f

)zx+1

18leo (0 —
20 (ap+ DYPT (w+1
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Here we use

bt P b b P
/ / (s —a)* Lds| dt = / / (b—s)*"lds
a a # t

atb
b—

[ lrora < s {if @

(b o a)Dép+l
207+ (ap +1) P

dt =

q

IN

f )7}

7

q

N

Nf @)}

[rwre < s {lr @

Hence the inequality is proved.
Corollary 2.2. If we choose g (x) = 1 and a = 1 in the inequality (2.8), then we have

|b1aA5fWNU—f<a;beé = (sup {1f' (@)

o] ARG

Theorem 2.5. Let f : I — R be a differentiable mapping on 1° and f' € L[a,b] with a < b. If |f'| is quasi convex

on [a,b] and g : [a,b] — R is continuous and symmetric to (Hb) , then the following inequality for fractional integrals
holds:
IO (g 0+ T 0] - [ () 0)+ - () @) 29)
2(b—a)"*! 1 , ,
(i + 1))r ( |f|1) (1 - z) sup {|f' (a)|,|f' (B)[}
with & > 0.
Proof. From Lemma we have
T (g )+ g @) = 12 () )+ - () @] @10)
b t b
ﬁ / / (b—s)""'g(s)ds — /t (s—a)* ' g(s)ds| £ (t)]dt.
Since |f’| is quasi convex on [, b], we know that for t € [a,b]
If ()] =|f < ! +bbb>‘§sup{|f’(a) "(b)]} (2.11)

and since g : [4,b] — R is continuous and symmetric to (a + b) /2 we write
b a+b—t
/ (s—a)* lg(s)ds = / (b—s)""g(a+b—s)ds
t a
a+b—t
/ (b—s)""1g(s)ds.
a

Then we get

(2.12)
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A combination of (2.10), 2.11) and(2.12), we get

’f( );ﬂb) Jarg ) +Jy-g (@] = [J3+ (f8) (b) + Jy- (f8) (a)] (2.13)
b a+b— t
<t </ bs)“‘lg@\ds) (sup {|1" @11 ©)]}) at
t
tta fo ([ 0= s 0] s (17 @1 )
< l8llesup {IF @], 1" (D)}

T («)

X /a2 (/ta+b_t’(b—s)“l‘ds> dt—i—ﬁ: </ﬂibt‘(b—s)"‘1‘ds> dt]

181l sup {1f" ()], 1f" (B)[}
I'(a+1)

atb b

x /2 [(b—t)“—(t—a)“]dt+ﬁ+b [(t—a)“—(b—t)“]dt].

Since
/aa;b (b— ) dt = /; (t—ayde = ‘ng(f:l)— 1 o
and
/fb (t—a)*dt = /ib (b—t)"dt = m (2.15)

2

Hence, if we use (2.14) and (2.15) in , we obtaion the desired result. This completes the proof.

Remark 2.1. In Theorem([1.5} if we take g (x) = 1, then inequality (2.9), becomes inequality of Theorem

Theorem 2.6. Let f : [ — R be a differentiable mapping on I° and f' € L[a,b] witha < b. If |f'|7, ¢ > 1, is quasi

convex on [a,b] and g : [a,b] — R is continuous and symmetric to (Hh) , then the following inequality for fractional
integrals holds
a)+ f(b
(D) (g 0+ T @] - [ () 61+ - () @] @16

q

b a+1 / / %
o (1) e {Ir @111 @17})

where o > 0.
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Proof. Using Lemma (1.2} Power mean inequality, (2.12) and the quasi convexity of |f’|7, it follows that

(P s 0+ g @) = 12 () @)+ - (£) @) @17)

1 b 1-5
ey (/ ‘”)

a+b—t
| o= tgsas If @m)

a+b—t
(/t ’(b —s) g (s)‘ ds) dt

IN

a+b—t
/ (b—s)"" g (s)ds
t

IN
=1
g#—\
S~—
| e— |
a\

20— ) gl /
(oc+1§l"(v¢fl) (1_21“> (sup {1 (@)

where it is easily seen that

a+b

/aT (/ta+bt ‘(bs)“‘1’d5> dt+/; (/ﬂibt ’(bs)"‘_l’ds> dt
- A (s

Hence if we use (2.14) and (2.15) in (2.17), we obtain the desired result. This completes the proof.
We can state another inequality for g > 1 as follows:

Theorem 2.7. Let f : I — R be a differentiable mapping on 1° and f' € L{a, bl witha < b. If |f'|", g > 1,is
quasi convex on [a,b] and g : [a,b] — R is continuous and symmetric to (a + b) /2, then the following inequality for
fractional integrals holds

(i)
‘ (W> a8 (0) +T5-8 (@)] = [Jz+ (f8) (0) + Ji- (f3) (a)] ‘
2r I8l (b —a)*" 1\7 NPT
) 1 T ’ b 2.18
_(OCP+1)P1"(04+1)< 2P> (sup {I£' @)|",1F ®)}) 218)
with a > 0.
(i)
‘ (W> Ures ©)+Ji-g (@] = [z (£9) (0) + Ji- (f8) (@)] ‘
I8l (b —a)* " / / .
s oirary @Oy -

(@p+1)PT (a+1)
forO0 <a <1,wherel/p+1/q=1.
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Proof. (i) Using Lemma Holder’s inequality, (2.12) and the quasi convexity of |f’|7, it follows that

(PO g0+ g g 00) - [ () 0+ - () @) @20

N g
dt) (/b |f’(t)|"dt>

a+b—t
_/ (b—5)*"g(s)ds
t

IN
—
S
~
a\
<>

ub b ’
< Fé%(/u [(bt)“(ta)“]pdt+/a;b [(ta)“(bt)“]”dt)
b 7
x(ﬂ wp{V%Mq,f%wV}>
b— q)%t! 1 1 %
- Hg|f~°((a+f)) (/0 [(1—t)”‘—t"‘]pdt+/; [t“—(l—t)"‘]”dt)
x (sup {|f @] [ ®)]"})’
b— g)*t! 1 1 v
< |g”;°((a+f)) (/0 [(1—t)"‘p—t"‘P]dt+/% [t“r’_(1—t)”‘ﬂdt>
x (sup {|f" @], £ ®)|"})"
27 gl (b — @)+ 1\7 R NTALY.
< (15 Jf (b :
- F(a+1)(0¢p+1)P( 2") (SUP{V @[ 17 ®) })

Here we use

(=) =] < (1= — o0
fort e {O, %} and

[ —(1-0)*P <P — (11"

fort € [%, 1} which follows from (A — B)7 < A7 — Bf forany A > B > 0 and g4 > 1. Hence the inequality

(2.18) is proved.
(ii) The inequality (2.19) is easily proved using the inequality (2.20) and Lemma

References

[1] S. S. Drogamir and C.E.M. Pearce, Selected Topics on Hermite- Hadamard Inequalities and Applications,
RGMIA Monographs, Victoria Universty, 2000.

[2] J. Hadamard, Etude sur les proprietes des functions entieres et en particulier d"une fonction consideree
par Riemann, J. Math. Pures Appl., 58 (1893), 171-215.

[3] L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906), 369-390, (in
Hungarian).

[4] M. Z. Sarikaya, E. Set, H. Yaldiz and N.Basak, Hermite Hadamards inequalities for fractional integrals
and related fractional inequalities, Mathematical and Computer Modelling, 57(9)(2013), 2403-2407.

[5] D. A.Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals
of University of Craiova, Math. Sci. Ser., 34(2007), 82-87.



Erhan Set et al. / Hermite Hadamard-Fejer type inequalities 249

[6] A.P.Prudnikov, Y. A. Brychkov and O. I. Marichev, Integral and series. In: Elementary Functions, vol. 1.
Nauka, Moscow, 1981

[7] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard-type inequalitiesand applications to
special means, J. Inequal. Appl., 2013(325) (2013), 15 pages.

[8] M. E. Ozdemir and Cetin Yildiz, The Hadamard’s inequality for quasi-convex functions via fractional
integrals, Annals of University of Craiova, Math. and Computer Sci. Ser., 40 (2)(2013), 167-173.

[9] E. Set, 1. iscan, M. E. Ozdemir and M. Z. Sariyaka, On new Hermite-Hadamard-Fejer type inequalities
for convex functions via fractional integrals, Applied Mathematics and Computation, 259(2015), 875-881.

[10] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications,
Academic Press, Inc, Boston/London, 1992.

[11] I. Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals,
arXiv:1404.7722v1.

Received: December 18, 2014; Accepted: April 25,2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/



	Introduction
	Main result

