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Iterative solution of quadratic fractional integral
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Abstract
The present paper verifies and validates the factual and estimated outcomes of a certain quadratic fractional
integral equation involving the generalized Mittag-Leffler function via algorithm that representatively embodies
successive estimations under fragile partial fractional Lipschitz and compactness type circumstances. The
paper also validate the existence and convergence of a nonlinear quadratic fractional integral equation with the
generlized Mittag Leffler function which is the generalization of Mittag-Leffler function, on a closed and bounded
interval of the real line with the help of some conditions.
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1. Introduction
Linear and nonlinear integral equations establish an indis-

pensable class of problems in mathematics. The concept of
integral operators and integral equations is an essential part
of nonlinear analysis. It is commenced by the fact that this
concept is frequently applicable in other branches of math-
ematics and some equations describe mathematical models
in physics, engineering or biology also in describing prob-
lems connected by real world. Numerous researchers have
showed applications of fractional calculus in the nonlinear os-
cillation of earthquakes [13], fluid-dynamic traffic model [14],
to demonstrate frequency dependent damping performance
of countles viscoelastic materials [15, 16], continuum and
statistical mechanics [17], colored noise [18], solid mechan-

ics [19], economics [20], bioengineering [21–23], anomalous
transport [24], and dynamics of interfaces between nanopar-
ticles and substrates[25]. There are correspondingly such
equations whose relevance rests in another branch of pure
mathematics. Integral equations of fractional order generate
a thought-provoking and significant branch of the theory of
integral equations. The theory of such integral equations is
established intensively in recent years collectively with the
theory of differential equations of fractional order ([1–7]).
In contrast the theory of quadratic integral equations is also
rigorously researched and observes various applications in
describing real world problems ([8–11]). Let us indicate that
this theory was began by considering a quadratic integral
equation of Chandrasekhar type ([2, 11, 12]).In this paper we
demonstrate the existence along with approximations of the
solutions of a certain generalized quadratic integral equation
via an algorithm built on successive approximations under
weak partial Lipschitz and compactness type conditions.
On a closed and bounded interval J = [0,T ] of the real line R
for some T > 0, we take into account the quadratic fractional
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integral equation

x(t) = x(tq−1)Eγ,δ ,q
α,β ((t− s)q−1)+

1
Γ(q)

∫ t

0
(t− s)(q−1)

Eγ,δ ,q
α,β ((t− s)q−1) f (s,x(s))ds

(1.1)

where f : J×R→ R and q : J → R stand continuous
functions, 1≤ q < 2 and Γ is the Euler gamma function, and
Eγ,δ ,q

α,β (x) is generalized mittag leffler function.

By a solution of the QFIE (1.1) we necessitate a function
x∈C(J,R) that satisfies the equation (1.1) on J, where C(J,R)
is the space of continuous real-valued functions defined on J.

2. Preliminaries
The entire paper delineates the significant meaning of E as a
partially well-ordered real normed linear space with an order
relation � and the norm ‖ · ‖. It is recognized as E is regular
if {xn}n∈N is a nondecreasing (resp. nonincreasing) sequence
in E such that xn→ x∗ as n→ ∞, then xn � x∗ (resp. xn � x∗)
for all n ∈ N. Obviously, the partially ordered Banach space
C(J,R) is regular and the statistics prove its Regularity of
any partially ordered normed linear space which can be easily
notified and the relative references therein.

In this section,we exhibit some basic definitions and pre-
liminaries which are effective in further discussion.

Definition 2.1. (Mittag-Leffler Function) [28] The Mittag -
Leffler function of one parameter is expressed by Eα(z) and
defined as,

Eα(z) =
∞

∑
k=0

1
Γ(αk+1)

zk (2.1)

where z,α ∈C, Re(α)> 0.

If we place α = 1 , then the above equation turn out to be

E1(z) =
∞

∑
k=0

zk

Γ(k+1)
=

∞

∑
k=0

zk

k!
= ez. (2.2)

Definition 2.2. (Mittag-Leffler Function for two parameters)
The generalization of Eα(z) was revised by Wiman (1905) [32]
, Agarwal [26] and Humbert and Agarwal [29] the function
as ,

Eα,β (z) =
∞

∑
k=0

1
Γ(αk+β )

zk (2.3)

where z,α,β ∈C, Re(α)> 0,Re(β )> 0,

In 1971,The additional generalized function is presented
by Prabhakar [37] as

Eγ

α,β ((z) =
∞

∑
k=0

(γ)kzk

Γ(αk+β )
. (2.4)

where z,α,β ,γ ∈C, Re(α)> 0,Re(β )> 0,Re(γ)> 0,
where γ 6= 0,γ)k = γ(γ+1)(γ+2)...(γ+k−1) is the Pochham-
mer symbol [30], and

(γ)k =
Γ(γ+k)

Γ(γ)

In 2007,Shulka and Prajapati [30] presented the function
which is defined as,

Eγ,q
α,β ((z) =

∞

∑
k=0

(γ)qkzk

k!Γ(αk+β )
. (2.5)

where z,α,β ,γ ∈C, min{Re(α),Re(β ),Re(γ)}> 0, and q ∈
(0,1)∪N

In 2012,supplementary generalization of Mittag - Leffler
function was stated by Salim [31] and Chauhan [27] as,

Eγ,δ ,q
α,β ((z) =

∞

∑
k=0

(γ)qkzk

(δ )(qk)Γ(αk+β )
. (2.6)

where z,α,β ,γ ∈C, min{Re(α),Re(β ),Re(γ)}> 0, and q ∈
(0,1)∪N

(γ)qk =
Γ(γ+qk)

Γ(γ) and (δ )qk =
Γ(δ+qk)

Γ(δ )

represent the generalized Pochhammer symbol [30] ,

Definition 2.3. A mapping T : E → E is named isotone or
nondecreasing if it preserves the order relation �, explicitly,
if x� y implies T x�T y for all x,y ∈ E.

Definition 2.4 ( [35]). A mapping T : E→ E is termed par-
tially continuous at a point a ∈ E if for ε > 0 there exists a
δ > 0 such that ‖T x−T a‖< ε whenever x is comparable
to a and ‖x‖< δ . T called partially continuous on E if it is
partially continuous at every point of it. It is certain that if
T is partially continuous on E, then it is continuous on every
chain C comprised in E.

Definition 2.5. A mapping T : E → E is named partially
bounded if T (C) is bounded for every chain C in E. T is
called uniformly partially bounded if all chains T (C) in E
are bounded by a unique constant. T is known as bounded
if T (E) is a bounded subset of E.

Definition 2.6. A mapping T : E→ E is identified partially
compact if T (C) is a relatively compact subset of E for all
totally ordered sets or chains C in E. T is known as uni-
formly partially compact if T (C) is a uniformly partially
bounded and partially compact on E. T is called partially
totally bounded if for any totally ordered and bounded subset
C of E, T (C) is a relatively compact subset of E. If T is
partially continuous and partially totally bounded, then it is
called partially completely continuous on E.

Definition 2.7 ( [35]). The order relation � and the metric d
on a non-empty set E are said to be compatible if {xn}n∈N is
a monotone, that is, monotone nondecreasing or monotone
nonincreasing sequence in E and if a subsequence {xnk}n∈N
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of {xn}n∈N converges to x∗ implies that the original sequence
{xn}n∈N converges to x∗. Similarly, given a partially ordered
normed linear space (E,�,‖ · ‖), the order relation � and
the norm ‖ · ‖ are said to be compatible if � and the metric d
defined through the norm ‖ · ‖ are compatible.

Definition 2.8 ( [33]). A upper semi-continuous and mono-
tone nondecreasing function ψ : R+ → R+ is called a D-
function provided ψ(r) = 0 iff r = 0. Let (E,�,‖ · ‖) be a
partially ordered normed linear space. A mapping T : E→ E
is called partially nonlinear D-Lipschitz if there exists a D-
function ψ : R+→ R+ such that

‖T x−T y‖ ≤ ψ(‖x− y‖) (2.7)

for all comparable elements x,y ∈ E. If ψ(r) = k r, k > 0,
then T is called a partially Lipschitz with a Lipschitz constant
k.

Consider (E,�,‖ · ‖) be a partially ordered normed linear
algebra. Denote

E+ =
{

x ∈ E | x� θ , where θ is the zero element of E
}

and

K = {E+ ⊂ E | uv ∈ E+ for all u,v ∈ E+}. (2.8)

The elements of K are called the positive vectors of
the normed linear algebra E. The following lemma pursues
instantaneously from the definition of the set K and which
is frequently used in the applications of hybrid fixed point
theory in Banach algebras.

Lemma 2.9 ([34]). If u1,u2,v1,v2 ∈K are such that u1 � v1
and u2 � v2, then u1u2 � v1v2.

Definition 2.10. An operator T : E→ E is supposed to be
positive if the range R(T ) of T is such that R(T )⊆K .

Theorem 2.11 ( [36]). Let
(
E,�,‖ · ‖

)
be a regular partially

ordered complete normed linear algebra such that the order
relation� and the norm ‖·‖ in E are compatible in every com-
pact chain of E. Let A ,B : E →K be two nondecreasing
operators such that

(a) A is partially bounded and partially nonlinear D-
Lipschitz with D-functions ψA ,

(b) B is partially continuous and uniformly partially com-
pact, and

(c) MψA (r)< r, r > 0,
where M = sup{‖B(C)‖ : C is a chain in E}, and

(d) there exists an element x0 ∈ X such that x0 � A x0 +
Bx0 or x0 �A x0 +Bx0.

Then the operator equation

A x+Bx = x (2.9)

has a solution x∗ in E and the sequence {xn} of successive iter-
ations defined by xn+1 =A xn +Bxn, n = 0,1, . . . , converges
monotonically to x∗.

3. Main Results
The Freactional integral equation (1.1) is counted in the func-
tion space C(J,R) of continuous real-valued functions on J.
We classify a norm ‖ · ‖ and the order relation ≤ in C(J,R)
by

‖x‖= sup
t∈J
|x(t)| (3.1)

and

x≤ y ⇐⇒ x(t)≤ y(t) (3.2)

for all t ∈ J correspondingly. Evidently, C(J,R) is a Banach
algebra in connection with above supremum norm and is
also partially ordered w.r.t. the above partially order relation
≤. The following lemma in this connection follows by an
application of Arzelá scoli theorem.

Lemma 3.1. Let
(
C(J,R),≤,‖ · ‖

)
be a partially ordered

Banach space along with the norm ‖ · ‖ and the order relation
≤ stated by (3.1) and (3.2) respectively. Then ‖ · ‖ and ≤ are
compatible in each partially compact subset of C(J,R).

Definition 3.2. A function v ∈ C(J,R) is supposed to be a
lower solution of the fractional integral equation (1.1) if it
fulfills

v(t)≤ v(tq−1)Eγ,δ ,q
α,β ((t− s)q−1)+

1
Γ(q)

∫ t

0
(t− s)(q−1)

Eγ,δ ,q
α,β ((t− s)q−1) f (s,v(s))ds

for all t ∈ J. In the same way, a function u ∈C(J,R) is sup-
posed to be an upper solution of the fractional integral equa-
tion (1.1) if it satisfies the above inequalities with opposite
sign.

We consider the following set of statements in what fol-
lows:

(A1) The functions f : J×R→ R+,q : J→ R+ where q is
continuous function.

(A2) There are constants M f ,M > 0 such that 0≤ f (t,x)≤
M f and x(t)Eγ,δ ,q

α,β ((t− s)q−1) < M for all t ∈ J and
x ∈ R.

(A3) There exists a D-function ψ f such that

0≤ f (t,x)− f (t,y)≤ ψ f (x− y)

for all t ∈ J and x,y ∈ R,x≤ y.

(A4) f (t,x) is nondecreasing in x for all t ∈ J.

(A5) The FIE (1.1) consumes a lower solution v ∈C(J,R).
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Theorem 3.3. Suppose that hypotheses (A1)-(A5) holds
then the FIE (1.1) has a solution x∗ on J and the sequence
{xn}n∈N∪{0} of successive approximations defined by

xn+1(t) = xn(tq−1)Eγ,δ ,q
α,β ((t− s)q−1)+

1
Γ(q)

∫ t

0
(t− s)(q−1)

Eγ,δ ,q
α,β ((t− s)q−1) f (s,xn(s))ds

(3.3)

for all t ∈ J, where x0 = v, converges monotonically to x∗.

Proof. Put E =C(J,R). Then, from Lemma 3.1 it obeys that
each compact chain in E possesses the compatibility property
regarding the norm ‖ · ‖ and the order relation ≤ in E.

Consider two operators A and B on E by

A x(t) = x(tq−1)Eγ,δ ,q
α,β ((t− s)q−1), t ∈ J, (3.4)

Bx(t)=
1

Γ(q)

∫ t

0
(t−s)q−1Eγ,δ ,q

α,β ((t− s)q−1) f (s,x(s))ds, t ∈ J,

(3.5)

since the continuity of the integral and the hypotheses
(A1)-(A5), it ensues that A and B define the maps A ,B :
E →K . Now by characterizations of the operators A and
B, the FIE (1.1) is equivalent to the operator equation

A x(t)+Bx(t) = x(t), t ∈ J. (3.6)

We intend to demonstrate that the operators A and B
persuade all the conditions of Theorem 2.11. This is attained
in the series of subsequent steps.

Step I: A and B are nondecreasing on E.

Let x,y ∈ E be such that x ≤ y. Then by hypothesis
(A3)and (A4), we acquire

A x(t) = x(tq−1)Eγ,δ ,q
α,β ((t− s)q−1)

≤ y(tq−1)Eγ,δ ,q
α,β ((t− s)q−1) = A y(t),

and

Bx(t) =
1

Γ(q)

∫ t

0
(t− s)q−1Eγ,δ ,q

α,β ((t− s)q−1) f (s,x(s))ds,

≤ 1
Γ(q)

∫ t

0
(t− s)q−1Eγ,δ ,q

α,β ((t− s)q−1) f (s,y(s))ds,

= By(t) t ∈ J,

for all t ∈ J. This illustrates that A and B are nonde-
creasing operators on E into E. Hence, A and B stand
nondecreasing positive operators on E into itself.

Step II: A is partially bounded and partially D-Lipschitz
on E.

Permit x ∈ E be arbitrary. Then by (A2),

|A x(t)| ≤
∣∣xn(tq−1)Eγ,δ ,q

α,β ((t− s)q−1)
∣∣≤M,

for all t ∈ J. Captivating supremum over t, we get ‖A x‖ ≤
M and consequently, A is bounded. This added that A is
partially bounded on E. Now, let x,y ∈ E be such that x≤ y.
Therefore, by hypothesis,

|A x(t)−A y(t)|=∣∣x(tq−1)Eγ,δ ,q
α,β ((t− s)q−1)− y(tq−1)Eγ,δ ,q

α,β ((t− s)q−1)
∣∣

≤ Eγ,δ ,q
α,β ((t− s)q−1|x(tq−1)− y(tq−1)|

≤M(|x− y|),

for all t ∈ J. Taking supremum over t, we attain

‖A x−A y‖ ≤M(‖x− y‖)

for all x,y ∈ E with x ≤ y. Hence A is partially nonlinear
D-Lipschitz operators on E which further means that it is also
a partially continuous on E into itself.

Step III: B is a partially continuous operator on E.

Suppose {xn}n∈N be a sequence in a chain C of E such
that xn→ x for all n ∈ N. Then, by dominated convergence
theorem, we have

lim
n→∞

Bxn(t)

= lim
n→∞

1
Γ(q)

∫ t

0
(t− s)q−1Eγ,δ ,q

α,β ((t− s)q−1) f (s,xn(s))ds,

=
1

Γ(q)

∫ t

0
(t− s)q−1Eγ,δ ,q

α,β ((t− s)q−1)
[

lim
n→∞

f (s,xn(s))
]

ds

=
1

Γ(q)

∫ t

0
(t− s)q−1Eγ,δ ,q

α,β ((t− s)q−1) f (s,x(s))ds

= Bx(t),

for all t ∈ J. This indicates that Bxn converges monotoni-
cally to Bx pointwise on J. Afterwards, we will express that
{Bxn}n∈N is an equicontinuous sequence of functions in E.
Let t1, t2 ∈ J with t1 < t2. Then

∣∣∣Bx(t2)−Bx(t1)
∣∣∣

≤
∣∣∣∣ 1
Γ(q)

∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t2− s)q−1) f (s,x(s))ds

− 1
Γ(q)

∫ t1

0
(t1− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣
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≤ 1
Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t2− s)q−1) f (s,x(s))ds

−
∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds

−
∫ t1

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t1

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds

−
∫ t1

0
(t1− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

≤ 1
Γ(q)

∫ t2

0
(t2− s)q−1....∣∣∣Eγ,δ ,q

α,β ((t2− s)q−1)−Eγ,δ ,q
α,β ((t1− s)q−1)

∣∣∣ | f (s,x(s))|ds

+
1

Γ(q)

∣∣∣∣∫ t2

t1
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∫ t1

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣ ....
Eγ,δ ,q

α,β ((t1− s)q−1) | f (s,x(s))|ds

≤ 1
Γ(q)

∫ T

0
(t2− s)q−1....

...
∣∣∣Eγ,δ ,q

α,β ((t2− s)q−1)−Eγ,δ ,q
α,β ((t1− s)q−1)

∣∣∣M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)α−1∣∣ ...
...Eγ,δ ,q

α,β ((t1− s)q−1)M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣ ...
...Eγ,δ ,q

α,β ((t1− s)q−1)M f ds

≤
M f

Γ(q)

(∫ T

0

∣∣(t2− s)q−1∣∣2 ds
)1/2

....(∫ T

0

∣∣∣Eγ,δ ,q
α,β ((t2− s)q−1)−Eγ,δ ,q

α,β ((t1− s)q−1)
∣∣∣2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣2 ds
)1/2

....(∫ T

0

∣∣∣Eγ,δ ,q
α,β ((t1− s)q−1)

∣∣∣2 ds
)1/2 M f

Γ(q)

−→ 0 as t1→ t2,

Meanwhile the functions Eγ,δ ,q
α,β , q are continuous on compact

interval J and interval is continuous on compact set J×J, they

are uniformly continuous there. Therefore, from the above
inequality it follows that

Bxn(t2)−Bxn(t1)| → 0 as n→ ∞

uniformly for all n ∈ N. This shows that the convergence
Bxn→Bx is uniform and hence B is partially continuous
on E.
Step IV: B is uniformly partially compact operator on E.

Consider C be an arbitrary chain in E. We demonstrate that
B(C) is a uniformly bounded and equicontinuous set in E.
Initially we express that B(C) is uniformly bounded. So let
y ∈B(C) be any element. Then there is an element x ∈C be
such that y = Bx. Now, by hypothesis (A1),

|y(t)| ≤
∣∣∣∣ 1
Γ(q)

∫ t

0
(t− s)q−1Eγ,δ ,q

α,β ((t2− s)q−1) f (s,x(s))ds
∣∣∣∣

≤ r

for all t ∈ J. Selecting the supremum over t, we get ‖y‖ ≤
‖Bx‖ ≤ r for all y ∈ B(C). Hence, B(C) is a uniformly
bounded subset of E. Moreover, ‖B(C)‖ ≤ r for all chains
C in E. Consequently, B is a uniformly partially bounded
operator on E.
Thereafter, we will express that B(C) is an equicontinuous
set in E. Let t1, t2 ∈ J with t1 < t2. Then, for any y ∈B(C),
one has∣∣∣Bx(t2)−Bx(t1)

∣∣∣
≤
∣∣∣∣ 1
Γ(q)

∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t2− s)q−1) f (s,x(s))ds

− 1
Γ(q)

∫ t1

0
(t1− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

≤ 1
Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t2− s)q−1) f (s,x(s))ds

−
∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t2

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds

−
∫ t1

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∣∣∣∣∫ t1

0
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds

−
∫ t1

0
(t1− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

≤ 1
Γ(q)

∫ t2

0
(t2− s)q−1.....∣∣∣Eγ,δ ,q

α,β ((t2− s)q−1)−Eγ,δ ,q
α,β ((t1− s)q−1)

∣∣∣ | f (s,x(s))|ds

61



Iterative solution of quadratic fractional integral equation involving generalized Mittag Leffler function — 62/63

+
1

Γ(q)

∣∣∣∣∫ t2

t1
(t2− s)q−1Eγ,δ ,q

α,β ((t1− s)q−1) f (s,x(s))ds
∣∣∣∣

+
1

Γ(q)

∫ t1

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣ .....
Eγ,δ ,q

α,β ((t1− s)q−1) | f (s,x(s))|ds

≤ 1
Γ(q)

∫ T

0
(t2− s)q−1.....∣∣∣Eγ,δ ,q

α,β ((t2− s)q−1)−Eγ,δ ,q
α,β ((t1− s)q−1)

∣∣∣M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)α−1∣∣ .....
Eγ,δ ,q

α,β ((t1− s)q−1)M f ds

+
1

Γ(q)

∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣ .....
Eγ,δ ,q

α,β ((t1− s)q−1)M f ds

≤
M f

Γ(q)

(∫ T

0

∣∣(t2− s)q−1∣∣2 ds
)1/2

.....(∫ T

0

∣∣∣Eγ,δ ,q
α,β ((t2− s)q−1)−Eγ,δ ,q

α,β ((t1− s)q−1)
∣∣∣2 ds

)1/2

+2
(∫ T

0

∣∣(t2− s)q−1− (t1− s)q−1∣∣2 ds
)1/2

.....(∫ T

0

∣∣∣Eγ,δ ,q
α,β ((t1− s)q−1)

∣∣∣2 ds
)1/2 M f

Γ(q)

−→ 0 as t1→ t2,

uniformly for all y ∈B(C). Thus B(C) is an equicontinu-
ous subset of E. Now, B(C) is a uniformly bounded and
equicontinuous set of functions in E, as a result it is compact.
Accordingly, B is a uniformly partially compact operator on
E into itself.

Step V: v satisfies the operator inequality v≤A v +Bv.

By supposition (A5), the FIE (1.1) consumes a lower solu-
tion v on J. Then, we possess

v(t)≤ v(tq−1)Eγ,δ ,q
α,β ((t− s)q−1).....

+
1

Γ(q)

∫ t

0
(t− s)(q−1)Eγ,δ ,q

α,β ((t− s)q−1) f (s,v(s))ds

(3.7)

for all t ∈ J. Since the definitions of the operators A , B
and C it gives that v(t)≤A v(t) +Bv(t) for all t ∈ J. Thus
v≤A v +Bv.

Step VI: The D-functions ψA meet the growth condition
MψA (r)< r, for r > 0.

Lastly, the D-function ψA of the operator A meet the

inequality given in hypothesis (d) of Theorem 2.11, viz.,

MψA (r)< r

for all r > 0.

Hence A and B fulfills all the conditions of Theorem 2.11
and we conclude that the operator equation A x +Bx = x
holds a solution. Therefore the FIE (1.1) has a solution x∗

defined on J. Moreover, the sequence {xn}n∈N of successive
approximations descibed by (3.3) converges monotonically to
x∗. This completes the proof.
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