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Abstract

This paper is concerned with the existence results of mild solution for an impulsive fractional order
stochastic differential equation with infinite delay subject to nonlocal conditions. The results are obtained
by using the fixed point techniques and solution operator generated by sectorial operator on a Hilbert space.
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1 Introduction

Recently, fractional differential equations have been proved to be valuable tools in the modeling of many
phenomena in various fields of engineering, physics, economics and science. Fractional models have various
applications such as nonlinear oscillations of earthquakes, viscoelasticity, electrochemistry, seepage flow in
porous media, and electromagnetic, etc. There has been a significant development in fractional differential
equations since last few years for more details one can see the papers ([7],[8],[9],[11],[14],[15],[19]) and
references cited therein.

The deterministic systems often fluctuate due to environmental noise due to this reason it is important and
necessary for researcher to study these systems. These systems are modeled as stochastic differential systems.
In many evolution processes impulsive effects exist in which states are changed abruptly at certain moments
of time. Therefore the stochastic differential equations with impulsive effects exist in real systems and provide
a more accurate mathematical model. For more details one can see the papers ([16],[17],[18]) and references
therein.

Further, if we combine the stochastic differential equation with a nonlocal initial condition strengthens
the model even further. These fact motivate us to study such model in this paper. The basic tools are
used in this paper including fixed-point techniques, the theory of linear semi-groups, results for probability
measures, and results for infinite dimensional stochastic differential equations. The results are important
from the viewpoint of applications since they cover nonlocal generalizations of integro-differential stochastic
differential equation arising in various fields such as electromagnetic theory, population dynamics, and heat
conduction in materials with memory, for more detail one can see the papers ([6],[13],[16],[23],[24],[25]) and
references therein.

In [4] Bahuguna, considered the following problem{
u′(t) + Au(t) = f (t, u(t), u(b1(t)), u(b2(t)), . . . , u(bm(t))), t ∈ (0, T],

h(u) = φ0 on [−τ, 0],
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and found the existence, uniqueness and continuation of a mild solution on the maximal interval of existence.
The author also proved some regularity results under various conditions. Chauhan et al. [5] considered the
following semi-linear fractional order differential equations with nonlocal condition

dα

dtα
x(t) + Ax(t) = f (t, x(t), x(a1(t)), . . . , x(am(t))), t ∈ [0, T], t 6= ti,

x(0) + g(x) = x0, ∆x(ti) = Ii(x(t−i )),

and discussed the existence and uniqueness results of solutions using the applications of classical fixed point
theorems.

Balasubramaniam et al. [2] studied the existence of solutions for the the following semi-linear neutral
stochastic functional differential equations

d[x(t) + F(t, x(t), x(b1(t)), . . . , x(bm(t)))] = Ax(t)dt + G(t, x(t), x(a1(t)), . . . , x(an(t)))dw(t), t ∈ J = [0, b],

x(0) = x0 + g(x),

where A is a infinitesimal generator of an analytic semigroup of bounded linear operators T(t), t ≥ 0, on
a separable Hilbert space. By using fractional power of operators and Sadovskii fixed point theorem, the
authors established the existence of mild and strong solutions.

Sakthivel et al. [22] considered the following impulsive fractional stochastic differential equations with
infinite delay in the form{

Dα
t x(t) = Ax(t) + f (t, xt, B1x(t)) + σ(t, xt, B2x(t)) dw(t)

dt , t ∈ [0, T], t 6= tk,

∆x(tk) = Ik(x(tk)), k = 1, 2, . . . , m x(t) = φ(t), φ(t) ∈ Bh,

and studied the existence results of mild solutions and established the sufficient conditions for the existence
of mild solutions by using fixed point techniques.

Motivated by the works of these author’s ([2],[4],[5],[22]), we study the existence of mild solutions of the
following semi-linear stochastic fractional functional differential equation of the form:

cDα
t x(t) = Ax(t) + f (t, xt, x(a1(t)), . . . , x(am(t)))

+σ(t, xt, x(a1(t)), . . . , x(am(t)))
dw(t)

dt
, t ∈ J, t 6= tk, (1.1)

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . , p, (1.2)

x(t) + g(x) = φ(t), t ∈ (−∞, 0], (1.3)

where J = [0, T] and cDα
t denotes the Caputo’s fractional derivative of order α ∈ (0, 1). A : D(A) ⊂H→H is

a closed linear sectorial operator defined on a Hilbert space (H, ‖ · ‖). The functions f , σ are given and satisfy
some assumptions to be defined later. We assume that xt : (−∞, 0] → H, xt(s) = x(t + s), s ≤ 0, belong to
an abstract phase space Bh. Here 0 ≤ t0 < t1 < · · · < tp < tp+1 ≤ T, Ik ∈ C(H, H), (k = 1, 2, . . . , p), are
bounded functions, ∆x(tk) = x(t+k )− x(t−k ), x(t+k ) = limh→0 x(tk + h) and x(t−k ) = limh→0 x(tk − h) represent
the right and left-hand limits of x(t) at t = tk, respectively, also we take x(t−i ) = x(ti).

The nonlocal condition g : H → H is defined as g(x) = ∑
p
k=1 ckx(tk) where ck, k = 1, . . . , p, are given

constants and 0 < t1 < t2 < · · · < tp < T. Such nonlocal conditions were first introduced by Deng [10]. The
initial data φ = {φ(t), t ∈ (−∞, 0]} is an F0-measurable, Bh-valued random variable independent of w(t)
with finite second moments.

To the best of our knowledge, the existence and uniqueness of mild solution for the system (1.1)− (1.3)
with non local condition is an untreated topic yet in the literature and this fact is the motivation of the present
work.

Our work is divided in four sections, Second section provides the basic definitions and preliminaries
results which are used in proving our main results. In the third section, we state and prove the existence
results of the considered problem in this the paper. The fourth section includes examples.

2 Preliminaries

Let H, K be two separable Hilbert spaces and L(K, H) be the space of bounded linear operators from K

into H. For convenience, we will use the same notation ‖ · ‖ to denote the norms in H, K and L(K, H), and
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use (·, ·) to denote the inner product of H and K without any confusion. Let (Ω,F , {Ft}t≥0, P) be a complete
filtered probability space satisfying that F0 contains all P-null sets of F . W = (Wt)t≥0 be a Q-Wiener process
defined on (Ω,F , {Ft}t≥0, P) with the covariance operator Q such that TrQ < ∞. We assume that there exists
a complete orthonormal system {ek}k≥1 in K, a bounded sequence of nonnegative real numbers λk such that
Qek = λkek, k = 1, 2, . . . , and a sequence of independent Brownian motions {βk}k≥1 such that

(w(t), e)K =
∞

∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ≥ 0.

Let L0
2 = L2(Q

1
2 K, H) be the space of all Hilbert Schmidt operators from Q

1
2 K to H with the inner product

< ϕ, ψ >L0
2
= Tr[ϕQψ∗].

Now, we introduce abstract space phase Bh. Assume that h : (−∞, 0] → (0, ∞) with l =
∫ 0
−∞ h(t)dt < ∞,

a continuous function. An abstract phase Bh defined by

Bh = {φ : (−∞, 0]→H, for any a > 0, (E|φ(θ)|2)1/2 is bounded and measurable function on[−a, 0] with

φ(0) = 0 and
∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|2)1/2ds < ∞}.

If Bh is endowed with the norm

‖φ‖Bh =
∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|2)1/2ds, φ ∈ Bh,

then (Bh, ‖ · ‖Bh) is a Banach space ([20],[21]).
Now we consider the space

B′h = {x : (−∞, T]→H such that x|Jk ∈ C(Jk, H) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, 2, . . . , p},

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, 2, . . . , p. The function ‖ · ‖B′h to be a semi-norm in
B′h, it is defined by

‖x‖B′h = ‖φ‖Bh + sup
s∈[0,T]

(E‖x(s)‖2)1/2, x ∈ B′h.

Lemma 2.1. ([2]) Assume that x ∈ B′h, then for t ∈ J, xt ∈ Bh. Moreover,

l(E‖x(t)‖2)1/2 ≤ l sup
s∈[0,t]

(E‖x(s)‖2)1/2 + ‖x0‖Bh , where l =
∫ 0

−∞
h(s)ds < ∞.

Definition 2.1. The Reimann-Liouville fractional integral operator for order α > 0, of a function f : R+ → R

and f ∈ L1(R+, X) is defined by

J0
t f (t) = f (t), Jα

t f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, α > 0, t > 0,

where Γ(·) is the Gamma function.

Definition 2.2. Caputo’s derivative of order α > 0 for a function f : [0, ∞)→ R is defined as

Dα
t f (t) =

1
Γ(n− α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds = Jn−α f (n)(t),

for n− 1 < α < n, n ∈ N. If 0 < α < 1, then

Dα
t f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α f (1)(s)ds.

Obviously, Caputo’s derivative of a constant is equal to zero.
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Definition 2.3. A two parameter function of the Mittag Lefller type is defined by the series expansion

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
=

1
2πι

∫
c

µα−βeµ

µα − z
dµ, α, β > 0, z ∈ C,

where c is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z| 1α counter clockwise. The
most interesting properties of the Mittag Lefller functions are associated with their Laplace integral∫ ∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα −ω
, Reλ > ω

1
α , ω > 0.

Definition 2.4. [12] A closed and linear operator A is said to be sectorial if there are constants ω ∈ R, θ ∈
[π

2 , π], M > 0, such that the following two conditions are satisfied:

(1) ∑(θ,ω) = {λ ∈ C : λ 6= ω, |arg(λ−ω)| < θ} ⊂ ρ(A),

(2) ‖R(λ, A)‖L(X) ≤ M
|λ−ω| , λ ∈ ∑(θ,ω).

Definition 2.5. [1] Let A be a closed and linear operator with the domain D(A) defined in a Banach space X.
Let ρ(A) be the resolvent set of A. We say that A is the generator of an α-resolvent family if there exist ω ≥ 0
and a strongly continuous function Tα : R+ → L(X), where L(X) is a Banach space of all bounded linear
operators from X into X and the corresponding norm is denoted by ‖.‖, such that {λα : Reλ > ω} ⊂ ρ(A)

and
(λα I − A)−1 =

∫ ∞

0
eλtTα(t)xdt, Reλ > ω, x ∈ X,

where Tα(t) is called the α-resolvent family generated by A.

Definition 2.6. [11] Let A be a closed and linear operator with the domain D(A) defined in a Banach space X
and α > 0. We say that A is the generator of a solution operator if there exist ω ≥ 0 and a strongly continuous
function Sα : R+ → L(X), such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λα I − A)−1 =
∫ ∞

0
eλtSα(t)xdt, Reλ > ω, x ∈ X,

where Sα(t) is called the solution operator generated by A.

Theorem 2.1. [26](Schauder fixed point theorem) If U is a closed , bounded, convex subset of a Banach space
X and the mapping T : U → U is completely continuous, then T has a fixed point in U.

Definition 2.7. A measurable Ft− adapted stochastic process x : (−∞, T]→H is called a mild solution of the
system (1.1)-(1.3) if x(0) = φ(0)− g(x) ∈ Bh on (−∞, 0], ∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , p, the restriction of
x(·) to the interval [0, T)\t1, . . . , tp, is continuous and x(t) satisfies the following fractional integral equation

x(t) =



Sα(t)(φ(0)− g(x)) +
∫ t

0 Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

0 Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))] +
∫ t

t1
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[x(t−p ) + Ip(x(t−p ))] +
∫ t

tp
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (tp, T],

(2.4)

where

Sα(t) =
1

2πi

∫
Γ

eλtλα−1(λα I − A)−1dλ, Tα(t) =
1

2πi

∫
Γ

eλt(λα I − A)−1dλ,

are called analytic solutions operator and α−resolvent family and Γ is a suitable path lying on ∑θ,ω for more
details one can see [11].

Further we introduce the following assumptions to establish our results:
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(H0) If α ∈ (0, 1) and A ∈ Aα(θ0, ω0) then for any x ∈ H and t > 0 we have ‖Tα(t)‖ ≤ Meωt and ‖Sα(t)‖ ≤
Ceωt(1 + tα−1), ω > ω0. Thus we have

‖Tα(t)‖ ≤ M̃T and ‖Sα(t)‖ ≤ tα−1M̃S,

where M̃T = sup0≥t≥T ‖Tα(t)‖ and M̃S = sup0≥t≥T Ceωt(1 + t1−α)(for more details, see [12]).

(H1) There exist a constants Lg > 0, such that E‖g(x)− g(y)‖2
H ≤ Lg‖x− y‖2

H.

(H2) The nonlinear maps f : J ×Bh ×Hm → H and σ : J ×Bh ×Hm → L(K, H) are continuous and there
exist constants L f , Lσ, such that

E‖ f (t, ϕ, x1, x2, . . . , xm)− f (t, ψ, y1, y2, . . . , ym)‖2
H ≤ L f [‖ϕ− ψ‖2

Bh
+

m

∑
i=1

E‖xi − yi‖2
H],

E‖σ(t, ϕ, x1, x2, . . . , xm)− σ(t, ψ, y1, y2, . . . , ym)‖2
L(K,H) ≤ Lσ[‖ϕ− ψ‖2

Bh
+

m

∑
i=1

E‖xi − yi‖2
H],

for all (x1, x2, . . . , xm) and (y1, y2, . . . , ym) ∈Hm , t ∈ J and ϕ, ψ ∈ Bh.

(H3) The functions Ik : H→H are continuous and there exists Lk > 0, such that

E‖Ik(x)− Ik(y)‖2
H ≤ LkE‖x− y‖2

H,

x, y ∈H, k = 1, 2, . . . , p, L = max{Lk} > Lg.

3 Existence and uniqueness of solutions

Theorem 3.2. Let the assumptions (H0)-(H3) are satisfied and

Θ =

[
3M̃2

S(1 + L) + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m)

]
< 1,

then the problem (1.1)-(1.3) has a unique mild solution x ∈H on J.

Proof. First we convert the problem (1.1)-(1.3) into a fixed point problem. Consider the operator P : B′h → B′h
defined by

(Px)(t) =



Sα(t)(φ(0)− g(x)) +
∫ t

0 Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

0 Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[x(t−1 ) + I1(x(t−1 ))] +
∫ t

t1
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[x(t−p ) + Ip(x(t−p ))] +
∫ t

tp
Tα(t− s) f (s, xs, x(a1(s)), . . . , x(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, xs, x(a1(s)), . . . , x(am(s)))dw(s), t ∈ (tp, T].

Let y(.) : (−∞, T]→H be the function defined by

y(t) =

{
φ(t), t ∈ (−∞, 0]

0, t ∈ J,
then y0 = φ.

For each z : J →H with z |tk∈ C(Jk, H), k = 1, . . . , p and z(0) = 0, we denote by z the function defined by

z =

{
0, t ∈ (−∞, 0]

z(t), t ∈ J.
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If x(·) satisfies the system (2.4), then we can decompose x(·) as x(t) = y(t) + z(t), which implies xt = yt + zt
for t ∈ J and the function z(·) satisfies

z(t) =



Sα(t)(φ(0)− g(y + z)) +
∫ t

0 Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)),

. . . , y(am(s)) + z(am(s)))ds +
∫ t

0 Tα(t− s)σ(s, ys + zs,

y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))]

+
∫ t

t1
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[y(t−p ) + z(t−p ) + Ip(y(t−p ) + z(t−p ))]

+
∫ t

tp
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (tp, T].

Set B′′h , such that z0 = 0 and for any z ∈ B′′h , we have

‖z‖B′′h = ‖z0‖Bh + sup
t∈J

(E‖z(t)‖2)
1
2 = sup

t∈J
(E‖z(t)‖2)

1
2 .

Thus (B′′h , ‖ · ‖B′′h ) is a Banach space. Define an operator N : B′′h → B′′h by

(Nz)(t) =



Sα(t)(φ(0)− g(y + z)) +
∫ t

0 Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)),

. . . , y(am(s)) + z(am(s)))ds +
∫ t

0 Tα(t− s)σ(s, ys + zs,

y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))]

+
∫ t

t1
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[y(t−p ) + z(t−p ) + Ip(y(t−p ) + z(t−p ))]

+
∫ t

tp
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (tp, T].

In order to prove existence results, it is enough to show that N has a unique fixed point. Let z, z∗ ∈ B′′h
then for t ∈ [0, t1], we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ 3E‖Sα(t)[g(y + z)− g(y + z∗)]‖2

H

+3E‖
∫ t

0
Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

− f (s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]ds‖2
H

+3E‖
∫ t

0
Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

−σ(s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]dw(s)‖2
H,

by applying assumptions, we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ (3M̃2

SLg + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m))‖z− z∗‖2

B′′h
.
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For t ∈ (t1, t2], we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ 3E‖Sα(t− t1)[z(t−1 )− z∗(t−1 ) + I1(y(t−1 ) + z(t−1 ))− I1(y(t−1 ) + z∗(t−1 ))]‖

2
H

+3E‖
∫ t

t1

Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

− f (s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]ds‖2
H

+3E‖
∫ t

t1

Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

−σ(s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]dw(s)‖2
H.

by applying assumptions, we obtain

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ (3M̃2

S(1 + L1) + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m))‖z− z∗‖2

B′′h
.

Similarly, for t ∈ (tp, T], we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ 3E‖Sα(t− tp)[z(t−p )− z∗(t−p ) + Ip(y(t−p ) + z(t−p ))− Ip(y(t−p ) + z∗(t−p ))]‖2

H

+3E‖
∫ t

tp
Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(an(s)) + z(an(s)))

− f (s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]ds‖2
H

+3E‖
∫ t

t1

Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))

−σ(s, ys + z∗s , y(a1(s)) + z∗(a1(s)), . . . , y(am(s)) + z∗(am(s)))]dw(s)‖2
H,

by applying assumptions, we have

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤ (3M̃2

S(1 + Lp) + 3M̃2
T

T2α

α2 L f (l + m) + 3M̃2
T

T2α−1

2α− 1
Lσ(l + m))‖z− z∗‖2

B′′h
.

Thus for all t ∈ [0, T], we estimate

E‖(Nz)(t)− (Nz∗)(t)‖2
H ≤

{
3M̃2

S(1 + L) + 3M̃2
T

T2α

α2 L f (l + m) +3M̃2
T

T2α−1

2α− 1
Lσ(l + m)

}
‖z− z∗‖2

B′′h
,

≤ Θ‖z− z∗‖2
B′′h

.

Since Θ < 1 as in the Theorem 3.2, therefore N is a contraction. Hence N has a unique fixed point by Banach
contraction principle. This completes the proof of the theorem.

The second result is proved by using the Schauder fixed point theorem. For this we take the following
assumptions

(H4) There exist a constants M1 > 0, such that E‖g(x)‖2
H ≤ M1.

(H5) The functions Ik : H→H are continuous and there exists M2 > 0, such that E‖Ik(x)‖2
H ≤ M2.

(H6) f , σ : J ×Bh ×Hm →H are continuous and there exits constants M3, M4, such that

E‖ f (t, ϕ, x1, x2, . . . , xm)‖2
H ≤ M3, E‖σ(t, ϕ, x1, x2, . . . , xm)‖2

H ≤ M4.

Theorem 3.3. Let the assumptions (H3)-(H6) are satisfied then the impulsive stochastic differential equation
(1.1)-(1.3) has at least one mild solution.
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Proof. let us consider the space Br = {y ∈ B′′h : ‖y‖ ≤ r}. It is obvious that Br is closed convex and bounded
subset of B′′h . Consider the operator N : Br → Br defined by

(Nz)(t) =



Sα(t)(φ(0)− g(y + z)) +
∫ t

0 Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)),

. . . , y(am(s)) + z(am(s)))ds +
∫ t

0 Tα(t− s)σ(s, ys + zs,

y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ [0, t1],

Sα(t− t1)[y(t−1 ) + z(t−1 ) + I1(y(t−1 ) + z(t−1 ))]

+
∫ t

t1
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

t1
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (t1, t2],

. . .

Sα(t− tp)[y(t−p ) + z(t−p ) + Ip(y(t−p ) + z(t−p ))]

+
∫ t

tp
Tα(t− s) f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds

+
∫ t

tp
Tα(t− s)σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))dw(s), t ∈ (tp, T].

First we shall show that N is continuous, for this let {zn}∞
n=1 be a sequence in Br such that lim zn → z ∈ Br.

When t ∈ [0, t1], we have

E‖(Nzn)(t)− (Nz)(t)‖2
H ≤ 3E‖Sα(t)[g(y + zn)− g(y + z)‖2

H

+3E‖
∫ t

0
Tα(t− s)[ f (s, ys + zn

s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

− f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]ds‖2
H

+3E‖
∫ t

0
Tα(t− s)[σ(s, ys + zn

s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

−σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H.

Then for t ∈ (ti, ti+1], where i = 1, 2, . . . , p, then we have

E‖(Nzn)(t)− (Nz)(t)‖2
H ≤ 3E‖Sα(t− ti)[zn(t−i )− z(t−i ) + Ii(y(t−i ) + zn(t−i ))− Ii(y(t−i ) + z(t−i ))]‖

2
H

+3E‖
∫ t

ti

Tα(t− s)[ f (s, ys + zn
s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

− f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]ds‖2
H

+3E‖
∫ t

ti

Tα(t− s)[σ(s, ys + zn
s , y(a1(s)) + zn(a1(s)), . . . , y(am(s)) + zn(am(s)))

−σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H.

Since the functions f , σ, g and Ii, i = 1, 2, . . . , p, are continuous, hence limn→∞ E‖(Nzn)(t)− (Nz)(t)‖2
H → 0.

This implies that the mapping N is continuous on Br.

Now we show that N maps bounded set into bounded sets in Br. Let z ∈ Br then we have E‖(Nz)(t)‖2
H ≤

M̂, for t ∈ (ti, ti+1], i = 0, 1, 2, . . . , p. Then for t ∈ [0, t1], we have

E‖(Nz)(t)‖2
H ≤ 3E‖Sα(t)[φ(0) + g(y + z)]‖2

H

+3E‖
∫ t

0
Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]ds‖2

H

+3E‖
∫ t

0
Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2

H,

≤ 3M̃2
S[r + M1] + 3M̃2

T
T2α

α2 M3 + 3M̃2
T

T2α−1

2α− 1
M4.
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For t ∈ (ti, ti+1], i = 1, 2, . . . , p, then we have

E‖(Nz)(t)‖2
H ≤ 3E‖Sα(t− ti)[y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))]‖

2
H

+3E‖
∫ t

ti

Tα(t− s)[ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))ds‖2
H

+3E‖
∫ t

ti

Tα(t− s)[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H

≤ 3M̃2
S[r + M2] + 3M̃2

T
T2α

α2 M3 + 3M̃2
T

T2α−1

2α− 1
M4 = M̂.

It proves that N maps bounded set into bounded sets in Br for all sub interval t ∈ (ti, ti+1], i = 1, 2, . . . , p.
Finally, we show that N maps bounded set into equi-continuous sets in Br. let l1, l2 ∈ (ti, ti+1], ti ≤ l1 < l2 ≤
ti+1, i = 0, 1, 2, . . . , p, z ∈ Br, we obtain for t ∈ [0, t1]

E‖(Nz)(l2)− (Nz)(l1)‖2
H ≤ 3E‖[Sα(l2)− Sα(l1)][φ0 + g(y + z)]‖2

H

+3E‖
∫ t

0
[Tα(l2 − s)− Tα(l1 − s)][ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . ,

y(am(s)) + z(am(s)))]ds‖2
H + 3E‖

∫ t

0
[Tα(l2 − s)− Tα(l1 − s)]

×[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H,

≤ 3[M1 + r]E‖[Sα(l2)− Sα(l1)]‖2
H + 3M3E‖

∫ t

0
[Tα(l2 − s)− Tα(l1 − s)]‖2

H

+3M4E‖
∫ t

0
[Tα(l2 − s)− Tα(l1 − s)]‖2

H.

For t ∈ (ti, ti+1], i = 1, 2, . . . , p, we have

E‖(Nz)(l2)− (Nz)(l1)‖2
H ≤ 3E‖[Sα(l2 − ti)− Sα(l1 − ti)][y(t−i ) + z(t−i ) + Ii(y(t−i ) + z(t−i ))]‖

2
H

+3E‖
∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)][ f (s, ys + zs, y(a1(s)) + z(a1(s)), . . . ,

y(am(s)) + z(am(s)))]ds‖2
H + 3E‖

∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)]

×[σ(s, ys + zs, y(a1(s)) + z(a1(s)), . . . , y(am(s)) + z(am(s)))]dw(s)‖2
H,

≤ 3[M2 + r]E‖[Sα(l2 − ti)− Sα(l1 − ti)]‖2
H + 3M3E‖

∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)]‖2
H

+3M4E‖
∫ t

ti

[Tα(l2 − s)− Tα(l1 − s)]‖2
H.

Since Tα(t) and Sα(t) are strongly continuous its implies that liml2→l1 ‖[Sα(l2 − ti) − Sα(l1 − ti)]‖2
H = 0

and liml2→l1 ‖[Tα(l2 − ti) − Tα(l1 − ti)]‖2
H = 0 This implies that N is equi-continuous on all subintervals

(ti, ti+1], i = 1, 2, . . . , p. Thus by Arzela -Ascoli theorem, it follows that N is a compact operator. Hence N
is completely continuous operator. Therefore, by Schauder fixed point theorem, the operator N has a fixed
point, which in turns implies that (1.1)-(1.3) has at least one solution on [0, T]. This completes the proof of the
theorem.

4 Example
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Example 4.1. Consider the following nonlocal impulsive fractional partial differential equation of the form

∂q

∂tq u(t, x) =
∂2

∂y2 u(t, x) +
1

25

∫ t

−∞
H(t, x, s− t)Q1(u(s, x), u(a1(s), . . . , u(am(s)))ds

+

[
1

25

∫ t

−∞
V(t, x, s− t)Q2(u(s, x), u(a1(s), . . . , u(am(s)))ds

]
dw(t)

dt
, (4.5)

u(t, 0) = u(t, π) = 0, t ≥ 0, (4.6)

u(t, x) +
m

∑
k=1

cku(x, tk) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π], (4.7)

∆u(ti)(x) =
1
9

∫ ti

−∞
qi(ti − s)u(s, x)ds, x ∈ [0, π], (4.8)

where ∂q

∂tq is Caputo’s fractional derivative of order 0 < q < 1, 0 < t1 < t2 < · · · < tn ≤ T are prefixed numbers,
φ ∈ Bh. Let H = L2[0, π] and define the operator A : D(A) ⊂ H → H by Aω = ω′′ with the domain D(A) :=
{ω ∈ X : ω, ω′are absolutely continuous, ω′′ ∈H, ω(0) = 0 = ω(π)}. Then

Aω = ∑∞
n=1 n2(ω, ωn)ωn, ω ∈ D(A), where ωn(x) =

√
2
π sin(nx), n ∈ N is the orthogonal set of eigenvectors

of A. It is well known that A is the infinitesimal generator of an analytic semigroup (T(t))t≥0 in H and is given by

T(t)ω =
∞

∑
n=1

e−n2t(ω, ωn)ωn, for all ω ∈H, and every t > 0.

The subordination principle of solution operator (Theorem 3.1 in [3]) implies that A is the infinitesimal generator
of a solution operator {Sα(t)}t≥0. Since Sα(t) is strongly continuous on [0, ∞), by uniformly bounded theorem, there
exists a constant M > 0, such that ‖Sα(t)‖L(H) ≤ M, for t ∈ [0, T]. Let h(s) = e2s, s < 0 then l =

∫ 0
−∞ h(s)ds = 1

2
and define

‖φ‖Bh =
∫ 0

−∞
h(s) sup

θ∈[s,0]
‖φ(θ)‖L2 ds.

Hence for (t, φ) ∈ [0, T]×Bh, where φ(θ)(x) = φ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π]. Set u(t)(x) = u(t, x),

f (t, φ, u(a1(t)), . . . , u(am(t))))(x) =
1

25

∫ 0

−∞
H(t, x, θ)Q1(φ(θ, u(a1(t)), . . . , u(am(t)))(x))dθ,

σ(t, φ, u(a1(t)), . . . , u(am(t))))(x) =
1

25

∫ 0

−∞
V(t, x, θ)Q2(φ(θ, u(a1(t)), . . . , u(am(t)))(x))dθ,

Ii(φ)(x) =
1
9

∫ 0

−∞
qi(−θ)φ(θ)(x)dθ,

g(x) =
m

∑
k=1

cku(x, tk).

Then with these settings the equations (4.5)-(4.8) can be written in the abstract form of equations (1.1)-(1.3). Further
we have here L f =

1
25 , Lσ = 1

25 , L = 1
9 , T = 1, l = 1

2 , M̃T = 1, M̃S = 1
5 and m = 2. In this formulation of the problem

we can verify the assumptions of Theorem (3.2). We get the value of condition in Theorem (3.2) as Θ = .73 < 1. This
implies that there exists a unique mild solution u on [0, 1].

Example 4.2. Here we consider the following non-trivial problem

∂q

∂tq u(t, x) =
∂2

∂y2 u(t, x) +
e−t

25 + et

∫ t

−∞
H(t, x, s− t)[Q1(u(s, x), u(a1(s), . . . , u(am(s))) +

t
7
]ds

+
e−t

25 + et

∫ t

−∞
V(t, x, s− t)[Q2(u(s, x), u(a1(s), . . . , u(am(s))) +

t
7
]dw(s) (4.9)

u(t, x) = u(t, π) = 0, t ≥ 0, (4.10)

u(t, x) +
m

∑
k=1

cku(x, tk) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π], (4.11)

∆u|
t= 1

2
− = sin(

1
9
‖u(1

2

−
, x)‖), 0 ≤ t ≤ 1, 0 ≤ x ≤ π, (4.12)
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where q ∈ (0, 1). In the perspective of Example 1 we set

f (t, φ, u(a1(t)), . . . , u(am(t))))(x) =
e−t

25 + et

∫ 0

−∞
H(t, x, θ)[Q1(φ(θ, u(a1(t)), . . . , u(am(t)))(x)) +

t
7
]dθ,

σ(t, φ, u(a1(t)), . . . , u(am(t))))(x) =
e−t

25 + et

∫ 0

−∞
V(t, x, θ)[Q2(φ(θ, u(a1(t)), . . . , u(am(t)))(x)) +

t
7
]dθ.

Then with these settings the equations (4.9)-(4.12) can be written in the abstract form of equations (1.1)-(1.3). Hence
the our problem (4.9)-(4.12) have a unique mild solution on [0, 1].
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